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Abstract

Summary: Cross-study validation of gene expression investigations is critical in

genomic analysis. We developed an R package and associated object definitions to

merge and visualize multiple gene expression datasets. Our merging functions use

arbitrary character IDs and generate objects that can efficiently support a variety

of joint analyses. Visualization tools support exploration and cross-study valida-

tion of the data, without requiring normalization across platforms. Tools include

“integrative correlation” plots that is, scatterplots of all pairwise correlations in one

study against the corresponding pairwise correlations of another, both for individ-

ual genes and all genes combined. Gene-specific plots can be used to identify genes

whose changes are reliably measured across studies. Visualizations also include

scatterplots of gene-specific statistics quantifying relationships between expression

and phenotypes of interest, using linear, logistic and Cox regression.

Availability: Free open source from url

http://www.bioconductor.org

Contact: Xiaogang Zhong zhong@ams.jhu.edu

Supplementary information: Documentation available with the package.
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1 Introduction

Genomic data analysis investigates the transcriptional activity of many genes simultaneously.

Because of cost and limitations in the accessibility of biological samples, most genomic

investigations use a limited number of biological samples and focus on specific sample types.

While this provides highly valuable insight on gene regulation, important biological and

medical questions require comparison and integration of gene expression information across

studies and technologies. Our ability to efficiently integrate and accumulate information

from related genomic experiments will be critical in the success of the massive investment

made on genomic studies. Yet, multi-study analysis to date is limited compared to the

formidable potential.

To facilitate multi-study analysis, we developed an R package (MergeMaid) and the as-

sociated object definitions to merge and jointly visualize multiple gene expression data sets.

Our merging function generates objects that can efficiently support a variety of joint analy-

ses. Our visualization tools allow for exploration of the data without requiring normalization

across platforms.

MergeMaid is not the first program developed to merge data from multiple sources. Many

gene expression databases include annotation and data mining tools to facilitate the com-

parison of data from different studies. There are some freestanding programs available

as well. For example, the Institute for Genetic Research (TIGR) has introduced the RE-

SOURCERER (10) annotation database, containing annotation data for several gene expres-

sion platforms and functions to match genes across platforms using either Unigene ids (2)

or the actual base sequence. GeneHopper (9) is a web-based program that uses Unigene ids

to match genes across expression platforms.

MergeMaid occupies a unique place among such programs. It is our belief that issues

of data storage and retrieval should be kept separate from those of analysis. Accordingly,

MergeMaid is not associated with any particular database. The package does not include

functions for matching probe ids across platforms. Merging is carried out on the basis of

user-provided IDs, and the user is free to use RESOURCER, GeneHopper or any other

method to obtain a uniform set of gene IDs.

With MergeMaid, we place the emphasis on the visualization and statistical analysis of

merged gene expression data sets. This is why we have implemented the package in R (7). R

is a free, open-source, object-oriented statistical programming environment, featuring exten-

sive support for microarray analysis as part of the Bioconductor Project (5), which includes

a “dynamic and extendible annotation system that collects mappings between manufacturer-

specified probe set identifiers and public use nomenclature, ontology, and bibliographic sys-

tems” (6). MergeMaid is available through the Bioconductor project and is fully compatible

with the other packages included there. The only dependencies are the survival package,

which is included with the basic installation of R, and the Biobase package from Biocon-
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ductor. The current Bioconductor release requires R 1.9 but MergeMaid is compatible with

earlier versions of R, as long as a matching release of Biobase is used.

2 MergeMaid

Version 2.0 of MergeMaid includes the following primary functions, with corresponding data

classes

mergeExprs Merge Datasets into an object of class mergeExprSet.

intCor Compute integrative correlation coefficients,

returns an object of class mergeCor.

modelOutcome Fit various models to the data. Models currently available include

linear and logistic regression, and Cox hazards,

returns an object of class mergeCoeff.

In addition, there are a number of functions for the manipulation and visualization of

data. These functions depend on the data class for which they are defined and will be

discussed in more detail below.

The mergeExprs function and the mergeExprSet class The primary data class in the

MergeMaid package, required for all analytic functions, is the mergeExprSet, based on

the exprSet class defined in bioconductor. The mergeExprs function is used to build

mergeExprSet objects.

data a list of ExprSet objects, one per study

geneStudy incidence matrix indicating which genes are measured in each study.

notes

The best way to build a mergeExprSet object is with the function mergeExprs. The

function mergeExprs accepts expression data in a variety of formats, including exprSet

objects, simple matrices of expression values and other mergeExprSets. Any combina-

tion of these is acceptable. Merging is based on user-supplied gene ids (e.g. Genbank,

Unigene, or LocusLink ID’s). These IDs should make up the rownames for each expres-

sion data matrix.

Frequently an expression array will include multiple probesets for some genes, and these

may be assigned the same geneid. This presents a special problem for the merging of

data across platforms, becoming important when carrying out an analysis on the merged

data, (e.g. regression or survival analysis) for which genes need to be unambiguously

matched. In general, appropriate measures are left up to the user at ID assignment. To

prevent potential problems, replicates within a dataset which still share the same ID

are averaged during the merging process.
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There are a number of functions to access and manipulate the data in a mergeExprSet.

exprs returns the contents of the data slot

geneStudy returns the contents of the geneStudy slot

notes returns the contents of the notes slot

names returns study names

geneNames returns the entire list of gene IDs

phenoData returns a list containing the phenodata (if any) included for each study

[ returns a mergeExprSet object containing only the indicated studies

intersection returns a single exprSet containing all studies and all common genes

data<- replaces the contents of the data slot

notes<- replaces the contents of the notes slot

names<- replaces the study names

geneNames<- replaces gene IDs.

The two main analytic functions in the package are defined for mergeExprSet objects

as well, but are discussed in separate sections, as each has an associated class.

The intCor function and the mergeCor class When working with data from different

sources is to important to identify those genes which are measured in similar ways in

the various datasets, and which thus can be used in joint analyses.

MergeMaid includes a gene reproducibility index called the integrative correlation

coefficient (3; 8) which is calculated using the function intCor. Within each study,

and for each pair of genes, we calculate the correlation coefficient of expression values

across subjects. By examining whether, for a specific gene, these correlations agree

across studies we can quantify the reproducibility of results without relying on direct

comparison of expression across platforms.

For a pair of studies, let C1 and C2 be the two M × M correlation matrices for genes.

For gene m, the gene-specific correlation of correlations is the correlation of the m-th

row in C1 with the m-th row in C2. Gene-specific correlation of correlations can be

used to filter genes for reproducibility across studies. The threshold should depend on

the sample sizes and the levels of both biological and technological variation.

The output from the intCor function is an object of class mergeCor, containing inte-

grative correlation coefficients for a set of studies. Such an object contains the following

slots

cors a list of correlation matrices, one per study, indexed by gene

pairwise.cors matrix containing the integrative correlation for each pair of studies.
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If n is the number of studies then for i < j ≤ n, the pairwise correlation of correlations

for studies i and j is stored in column n(i − 1) − i(i − 1)/2 + j − i of the pairwise.cors

slot.

The total integrative correlation for each gene is obtained by averaging the n(n − 1)/2

pairwise integrative correlations.

The methods available for this class are:

cors Accessor function for the cors slot.

pairwise.cors Accessor function for the pairwise.cors slot

integrative.cors Accessor function, returns total integrative correlation for each gene.

plot Draw scatterplots to compare correlations of genes.

In addition, there is a function called intcorDens, which plots a smooth density curve

for the true distribution of integrative correlation coefficients as well as two null distri-

bution density curves, each obtained by permuting expression values randomly within

gene. These plots can be used to identify a useful threshold of reproducibility. Since the

permutation required the original expression data, this function is defined for merge-

ExprSet objects rather than for mergeCor objects, but in spirit belongs here.

The modelOutcome function and the mergeCoeff class The function modelOutcome

calculates gene/study specific coefficients for a variety of models. The output from the

modelOutcome function is an object of class mergeCoeff. Such an object contains the

following slots

coeffs a matrix of coefficients, rows=genes, columns=studies

coeff.std matrix of standardized coefficients

zscore matrix of zscores for the coefficients

Only 3 models are implemented in the first version of MergeMaid: linear regression,

logistic regression and cox proportional hazard rate regression.

Methods for this class include:

coeff Accessor function for the coeff slot.

coeffstd Accessor function for the coeff.std slot.

zscore Accessor function for the zscore slot.

plot Draw scatterplots to compare coefficients from different studies.

coeff<- Replacement function for the coeff slot.

coeffstd<- Replacement function for the coeff.std slot.

zscore<- Replacement function for the zscore slot.

4
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The plot function is actually defined for the matrix class, rather than for the mergeCoeff

class. The appropriate syntax is plot(coeff(mergecoeff)) or plot(zscore(mergecoeff))

so that the coefficient of interest is specified.

3 Case Study

We illustrate the use of the MergeMaid package using data from two studies of gene ex-

pression in lung cancer, labeled here Stanford (4) and Harvard (1). The discussion of data

preparation and analysis here is necessarily brief. For full details see (8). The Stanford study

uses two-channel cDNA arrays and includes a total of 67 lung tumor samples. The Harvard

study includes 186 lung tumor samples and 17 normal samples on Affymetrix HU95a arrays.

Both studies contain samples with various histologic patterns including adenocarcinoma.

Both studies find that the different histologic patterns can be identified by gene expression

pattern, and also use cluster analysis to identify subclasses of adenocarcinoma.

However, although the conclusions are similar on their face, there are some important

differences. The two studies disagree on the number of subclasses of adenocarcinoma (the

Stanford group identified 3, while the Harvard group identified 4).

Also survival analyses by subgroup gave different results in the two studies. The Stanford

group found very impressive differences in survival among the subclasses of cancer, while

the Harvard group found much more modest differences. Consider, for example, the gene

ornithine decarboxylase which in the Stanford study was found to be highly expressed in the

class of lung cancers with the best survival outcomes, while the Harvard study found the

same gene to be highly expressed in a class of cancers with poor survival outcomes.

By combining the data from the two studies and making a comparative reanalysis of both

we hope to determine the amount of agreement between the two and also identify specific

predictive genetic markers. We cannot expect reanalysis to provide information about every

result. Results from cluster analysis may be driven by real differences in the two cohorts. No

matter how carefully we filter the gene set and normalize the data, regardless of statistical

methodology, it may be impossible to cross-validate findings in this situation.

Here we consider the relatively simple question of whether adenocarcinomas can consis-

tently be distingished from other cancers by gene expression profile. Our answer is yes.

Data Preparation

All computation was conducted in R, using the MergeMaid package, and other R functions.

Data for each study are available as supplements to the respective publications.

First of all, to make the studies more comparable, a logarithmic transformation was

applied to the Stanford data while a cube root transformation was applied to the Harvard

data. Both datasets were then represented as Bioconductor exprSet objects, and the two

5

Hosted by The Berkeley Electronic Press



were merged using Unigene Cluster IDs . There are 3171 genes common to both datasets. Of

these, 307 genes met all quality criteria estalished by investigators in each study. We restrict

attention to these 307 prefiltered genes. The phenodata for each study included indicators

of cancer type.

Analysis and Results

As a first step, we use the function intCor to determine which genes are most reproducible

across the two studies. Using just the Stanford data, we choose one gene g, and calculate

the correlation between g and each one of the other 306 genes. We do the same with the

Harvard data. This gives 306 pairs of matched correlation coefficients for each gene. The

correlation coefficient of these values is our measure of how well expression values for a gene

reproduce across studies.

Built in plotting functions allow the us to visulize integrative correlations. Figure 1

shows two of the genes. The gene in the top panel shows little reproducibility across the

two studies, with an integrative correlation coefficient close to zero. The gene shown on

the bottom has the highest integrative correlation among all genes. The distribution of the

observed correlation coefficients can be seen in Figure 2, along with the expected distribution

when the true correlation is zero.

We might pre-filter here, selecting the most promising genes at this stage, and using only

those for further analysis. We choose instead to proceed a little farther with the whole set

of genes.

We take a logistic regression approach to the problem of classifying cancers. The function

modelOutcome calculates logistic regression coefficients for all common genes, within each

study, and returns standardized coefficients and zscores as well. To facilitate cross-study

comparisons, the following analyses use standardized coefficients. In Figure 3 standardized

logistic regression coefficients for the two studies are plotted against one another. All genes

are included in the top panel, the 50% of genes with the highest integrative correlations

are shown in the middle panel, the 50% with the lowest integrative correlations are on the

bottom. The correlation between logistic regression coefficients is is 0.65 when all genes

are included. This improves to 0.78 for the most reproducible 50% of the genes. Even the

nonreproducible genes have an overall correlation of 0.55.

We can use these plots to identify good candidates in our search for genes that distinguish

between adenocarcinoma and squamous cell carcinoma. Those genes falling closest to the

diagonal on this plot, having large and very similar absolute regression coefficients in both

studies should be both informative about cancer type, and also good choices for platform

independent markers. Formally, we averaged the study specific regression coefficients using

sample size weighting, and selected genes with the highest absolute average coefficients.

Once a specific panel of genes is selected, we define the panel profile score. Within each
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study, expression values are centered and standardized, gene by gene. Expressions for those

genes with a negative logistic regression coefficient are multiplied by −1 so that all genes

vote in the same direction. Standardized expressions are averaged across genes to give a

single panel profile score for each study.

We partition the data into training and test sets to evaluate our results. The training

set consists of 100 samples, 50 from each study. Each group of 50 is half adenocarcinoma

and and half other cancers. The test set contains the remaining 153 subjects from the

Stanford study including 89 adenocarcinomas and 18 from the Stanford study including 12

adenocarcinomas. Logistic regression coefficients were calculated and ranked using only the

training data, and the sign of the coefficient is determined then and carried over to the test

panel as well.

We consider 3 panels of genes. The Stanford panel consists of the 20 genes with the largest

logistic regression coefficients in the Stanford study. The Harvard panel likewise consists of

the 20 most promising genes in the Harvard study. To obtain the third composite panel,

we first use the integrative correlation coefficient to identify the most reproducible 50% of

the genes, and then select the 20 reproducible genes with the largest average regression

coefficient. The Stanford and Harvard panels have only 5 genes in common. Each shares

12 genes with the common panel, including 4 of the 5 common genes. We use area under a

ROC curve to measure performance.

Receiver Operator Characteristic (ROC) curves provide a compact way to represent speci-

ficity and sensitivity for a classification tool. The area under the ROC curve, which always

takes values between zero and one, is commonly used to summarize results. We constructed

6 ROC curves, evaluating each of the 3 gene panels on both the 18 chip Stanford test set and

the 89 chip Harvard test set. Results are summarized in Table 1. As was to be expected,

each study-specific panel does much better on its own test set than it does on the other,

although overall results are not too bad. We are gratified to see, though, that the composite

panel outperforms both study specific panels on either data set.

4 Discussion

Our goal in creating the MergeMaid package is to facilitate the joint statistical analysis of

multiple studies from possibly very different sources. By this time there is a great deal of

expression data available, created using different technologies and stored in various databases

the world over. Our knowledge of genes, their identifying characteristics and their functions

are changing constantly and very rapidly. We believe that it is extremely important at

this time to avoid dependence on any particular database and any specific method of gene

identification. For the same reasons, we prefer that analytic procedures be open, transparent

and easy to modify.

The heart of the package is the mergeExprSet data structure, an extension of the Bio-
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conductor exprSet structure. Analytic and plotting functions are chosen to give comparable

results though data comes from different sources. The functions included in the inital release

are ones that we have found useful in our own work. Package capabilities are easily extended,

and we expect to add additional features and functions in future releases. The open source

philosophy of R makes it easy for users to customize routines to meet their own needs.
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Combined Stanford Harvard

Stanford 0.917 0.917 0.819

Harvard 0.913 0.872 0.906

Table 1: Area under the Reciever Operator Characteristic curve. Each of 3 panels, Combined, Stanford and

Harvard, was evaluated on two test sets, one from each study.
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Figure 1: Visualization provided by the mergeCor plot function. The top panel illustrates gene-specific

correlations across studies for a gene with low reproducibility, while the bottom panel shows a gene with

high reproducibility.
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Figure 2: Visualization provided by intcorDens. This plot shows the observed distribution of integrative

correlation coefficients as well as a null distribution obtained by permuting sample IDs.
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Figure 3: Visualization provided by the mergeCoeff plot function. Each plot shows logistic regression coeffi-

cients for each gene. The top panel includes all 307 genes. The middle panel includes the 154 genes with the

highest integrative correlation coefficients. The bottom panel shows the 153 genes with the lowest integrative

correlations.
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