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Bayesian smoothing of irregularly-spaced data using

Fourier basis functions

Christopher J. Paciorek
Department of Biostatistics, Harvard School of Public Health

Abstract

The spectral representation of Gaussian processes via the Fourier basis provides a
computationally efficient specification of spatial surfaces and nonparametric regression
functions in various statistical models. I describe the representation in detail and intro-
duce the spectralGP R library for computations. Because of the large number of basis
coefficients, some form of shrinkage is necessary; I focus on a natural Bayesian approach
via a particular parameterized prior structure that approximates stationary Gaussian pro-
cesses. I review several alternative parameterizations in the literature, suggest a simple
modification suitable for exponential family data, and provide example code demonstrat-
ing MCMC sampling using the spectralGP library. I note that mixing can be slow in cer-
tain situations for reasons I describe, and provide some suggestions for MCMC techniques
to improve mixing, also with example code. Note that I do not attempt to exhaustively
compare parameterizations or MCMC techniques, but hope to provide a range of alter-
natives that may be useful for various models as well as some general recommendations
grounded in experience.

Keywords: Bayesian statistics, Fourier basis, FFT, geostatistics, generalized linear mixed
model, generalized additive model, Markov chain Monte Carlo, spatial statistics, spectral
representation.

1. Introduction

Smoothing in the context of spatial modeling and nonparametric regression, often in an ad-
ditive modelling scenario such as a generalized linear mixed model (GLMM) or generalized
additive model (GAM), is a common technique in applied statistical work. A basic general
model is

Yi ∼ F(f(xi, si), φ)
h(f(xi) = xT

i β + g(si;θ), (1)

where Yi, i = 1, . . . n, is the ith outcome, F is commonly an exponential family distribution,
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2 Bayesian smoothing using Fourier basis functions

φ is a dispersion parameter, h(·) is the link function, xi is a vector of covariates for the ith
observation, and g(si;θ) is a smooth function, parameterized by θ, evaluated at the location
or covariate value of the ith observation, si, depending on whether the smooth function is
in the spatial domain or covariate space. In this work I focus on on settings in which g(·;θ)
is a spatial surface, but results hold generally for one dimension and potentially for higher
dimensions.

There have been two basic approaches to modelling the smooth function, g(·;θ), each with a
variety of parameterizations. One approach considers the function as deterministic within a
generalized additive model (GAM) framework (Hastie and Tibshirani 1990; Wood 2006), e.g.
using a thin plate spline or radial basis function representation with the function estimated
via a penalized approach. The other takes a random effects, or equivalent stochastic process,
approach in which the smooth function is treated stochastically, potentially via a Bayesian
approach. Within this latter approach, one might consider a collection of correlated random
effects, in which case (1) is a generalized linear mixed model (GLMM) (McCulloch and Searle
2001; Ruppert, Wand, and Carroll 2003). Alternatively, stochastric process representations
such as kriging (Cressie 1993) or Bayesian versions of kriging (Banerjee, Carlin, and Gelfand
2004) usually take g(·;θ) to be a Gaussian process. The random effects approach can also
be considered as a stochastic process representation based on the implied covariance function
of the process induced by the covariance structure of the random effects. Note that by
considering a prior over functions or equivalently over the coefficients of basis functions, the
additive model can be expressed in a Bayesian fashion, and there are connections between
the thin plate spline and stochastic process approaches (Cressie 1993; Nychka 2000) and also
between thin plate splines and mixed model representations (Ruppert et al. 2003). When
interest lies in the linear coefficients and the smooth structure/spatial covariance is a nuisance,
one approach to fitting such models is via estimating equations (e.g., (Heagerty and Lele
1998; Heagerty and Lumley 2000). My primary interest is in situations in which the smooth
function is the outcome of interest, e.g., in predicting exposure to pollutants or spatial surfaces
of climate variables, in which case such methods are not useful.

While models of the form (1) have a simple structure, unless the responses are Gaussian and
the sample size is limited, fitting them can be difficult for computational reasons. If the
response were Gaussian, there are many methods, both classical and Bayesian, for estimating
β, g(·;θ), and θ. Most methods rely on integrating g(·;θ) out of the model to produce
a marginal likelihood or posterior, thereby moving the smooth structure out of the mean
and into the variance, such that the observations have a simple, mean structure, (in (1)
this is linear in a set of covariates), and a variance that is a sum of independent noise and
spatially correlated structure. This leaves a small number of parameters to be estimated,
often using numerical maximization or MCMC. However, for large n, computations can be
burdensome as they involve matrix calculations of O(n3). In the non-Gaussian case and
in hierarchical modeling in which the unknown process lies in the hierarchy of the model,
this integration cannot be done analytically, which leads to substantial difficulty in fitting
the model because of the high dimensional quantities that need to be estimated, as well
as burdensome matrix calculations. One set of approaches to the problem focuses on the
integral in the GLMM framework, using EM (McCulloch 1994, 1997; Booth and Hobert
1999) and numerical integration (Hedeker and Gibbons 1994; Gibbons and Hedeker 1997) to
maximize the likelihood or approximating the integral to produce a penalized quasi-likelihood
that can be maximized by iteratively weighted least squares (IWLS) (Ruppert et al. 2003).
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Likelihood and covariance approximations can reduce the computational complexity of the
matrix calculations (Stein, Chi, and Welty 2004; Furrer, Genton, and Nychka 2006), while
the gam() function in the mgcv library in R uses the reduced rank thin plate spline approach
of Wood (2004) fit by penalized IWLS. Rue and Tjelmeland (2002) exploit computationally
efficient methods for fitting Markov random field (MRF) models by approximating stationary
GPs using MRFs.

An alternative is to fit a Bayesian version of the model using a computationally efficient
basis. The approach introduced by Wikle (2002) approximates a stationary GP structure for
g(·;θ) using a spectral representation to decompose the function in an orthogonal basis, in
particular using Fourier basis functions and employing the FFT for fast computation (Wikle
2002; Royle and Wikle 2005; Paciorek and Ryan 2005). While the Fourier basis approach
has some adherents and is one of the few efficient alternatives within the Bayesian paradigm,
the intricacies and bookkeeping involved in working with the complex-valued basis coefficients
make it hard to simply apply the methodology and replicate results. My goal here is to present
the representation in detail (Section 2), and provide an R library, spectralGP, for working
with the approach that handles the bookkeeping and sampling of coefficients for use within
Markov chain Monte Carlo (MCMC) (Section 3). I describe several parameterizations for
exponential family data (Section 4), and discuss detailed MCMC implementation and mixing
issues that arise in fitting models, as well as general recommendations on parameterizations
and sampling techniques (Section 5). I note that my experience shows slower mixing than
one would desire; advances in this area are an open area for research.

2. Fourier basis representation

To simplify the notation I use gs to denote the vector of values calculated by evaluating g(·) for
each of the elements of s (e.g., for each observation location), namely gs = (g(s1), . . . , g(sn))T ,
suppressing the dependence on hyperparameters. Also, where necessary, I denote a set of
unspecified parameters as θ. Proposal values are denoted with a ∗, e.g., θ∗, and vectors of
augmented quantities with a tilde, e.g., Ỹ .

2.1. Basic process model

In many Bayesian models, the unknown functions, be they spatial or regression surfaces,
are represented as a Gaussian process or by a basis function representation. Diggle, Tawn,
and Moyeed (1998) formalized the idea of generalized geostatistical models, with a latent
Gaussian spatial process, as the natural extension of kriging models to exponential family
responses. They used Bayesian estimation, suggesting a Metropolis-Hastings implementation,
with the spatial function sampled sequentially at each observation location at each MCMC
iteration. However, as shown in their examples and discussed elsewhere (Christensen, Møller,
and Waagepetersen 2000; Christensen and Waagepetersen 2002; Christensen, Roberts, and
Sköld 2006), this implementation is slow to converge and mix, as well as being computationally
inefficient because of the covariance matrix involved in calculating the prior for gs.

An alternative approach that avoids large matrix calculations is to express the unknown
function in a basis, gs = Ψu, where Ψ contains the basis function values evaluated at the
locations of interest, and estimate the basis coefficients, u. These coefficients are taken to have
a prior distribution; constraints on the function, such as degrees of smoothness, are imposed
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4 Bayesian smoothing using Fourier basis functions

through this prior distribution and the basis choice. When the coefficients are normally
distributed, this representation can be viewed as a GP evaluated at a finite set of locations,
with Cov(gs) = ΨCov(u)ΨT .

Isotropic GPs can be represented in an approximate fashion using their spectral representation
as a Fourier basis expansion, which allows one to use the Fast Fourier Transform (FFT) to
speed calculations. Here I describe the basic model in two-dimensional space, following Wikle
(2002).

The key to the spectral approach is to approximate the function g(·) on a grid, s#, of size
M = M1×M2, where M1 and M2 are powers of two. Evaluated at the grid points, the vector
of function values is represented as

gs# = Ψu, (2)

where Ψ is a matrix of orthogonal spectral basis functions, and u is a vector of complex-valued
basis coefficients, um = am + bmi, m = 1, . . . ,M . The spectral basis functions are complex
exponential functions, i.e., sinusoidal functions of particular frequencies; constraints on the
coefficients ensure that gs# is real-valued and can be expressed equivalently as a sum of sine
and cosine functions. To approximate mean zero stationary GPs, the basis coefficients have
the prior distribution, (

a
b

)
∼ N(0,Σθ) (3)

where the diagonal (asymptotically; see (Shumway and Stoffer 2000, Section T3.12) covariance
matrix of the basis coefficients, Σθ, parameterized by θ, can be expressed in closed form (for
certain covariance functions) using the spectral density of the covariance function desired to
parameterize the approximated GP.

To make this more explicit, consider the Matérn covariance popular in spatial statistics,

C(τ ; ρ, ν) = σ2 1
Γ(ν)2ν−1

(
2
√
ντ

ρ

)ν

Kν

(
2
√
ντ

ρ

)
, (4)

where τ is distance, σ2 is the variance of the process, ρ is the range (correlation decay)
parameter, and Kν(·) is the modified Bessel function of the second kind, whose order is the
differentiability parameter, ν > 0. This covariance function has the desirable property that
sample functions of GPs parameterized with the covariance are bν − 1c times differentiable.
As ν →∞, the Matérn approaches the squared exponential form, with infinitely many sample
path derivatives, while for ν = 0.5, the Matérn takes the exponential form with no sample
path derivatives.

The spectral density of this covariance, which is used to calculate the elements of Σθ, evaluated
at spectral frequency, ω, is

φ(ω; ρ, ν) = σ2 Γ(ν + d
2)(4ν)ν

π
d
2 Γ(ν)(πρ)2ν

·
(

4ν
(πρ)2

+ ωT ω

)−(ν+ d
2 )
, (5)

where d is the dimension of the space (two in this case) and the parameters are as above.
For an appropriate set of spectral frequencies, the diagonal elements of Σθ are the values of
φ(·; ρ, ν) at those frequencies, and the off-diagonals are zero.

To construct real-valued processes with an approximate GP distribution based on the complex-
valued coefficients given above, some detailed bookkeeping and constraints are required. The
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details that follow draw on Dudgeon and Mersereau (1984), Borgman, Taheri, and Hagan
(1984), and Wikle (2002). The basis functions represented in the basis matrix, Ψ, capture
behavior at different frequencies, with the most important basis functions for function esti-
mation being the low-frequency basis functions.
The first step in representing the function is to choose the grid size, Md, in each dimen-
sion, d = 1, . . . , D, to be a power of two. The Md frequencies in the dth dimension are
then ωd ∈ {0, 1, . . . , Md

2 ,−
Md
2 + 1, . . . ,−1}, where the superscript represents the dimen-

sion. There is a complex exponential basis function for each distinct vector of frequencies,
ω = (ω1

m1
, . . . , ωD

mD
), md ∈ {0, . . . ,Md − 1}, with corresponding complex-valued basis coeffi-

cient, um1,...,mD .
First I show how to construct a random, mean zero, Gaussian process in one dimension from
the M spectral coefficients, um = am + bmi, m = 0, . . . ,M − 1, and complex exponential
basis functions, ψm(sj) = exp(iωmsj), whose real and imaginary components have frequency
ωm. The circular domain of the process is S1 = (0, 2π) with the process evaluated only at
the discrete grid points, sj ∈ {0, 2π 1

M , . . . , 2πM−1
M }. To approximate real-valued processes,

u0, . . . , uM/2 are jointly independent, u0 and uM/2 are real-valued (b0 = bM/2 = 0), and the
remaining coefficients are determined, uM/2+1 = ūM/2−1, . . . , uM−1 = ū1, where the overbar
is the complex conjugate operation. This determinism causes the imaginary components of
the basis functions to cancel, leaving a real-valued process,

g(sj) =
M−1∑
m=0

ψm(sj)um =

M
2∑

m=0

exp(iωmsj)(am + bmi) +
M−1∑

m=M
2

+1

exp(iωmsj)(aM−m − bM−mi)

= a0 + 2

M
2
−1∑

m=1

(am cos(ωmsj)− bm sin(ωmsj)) + aM/2 cos(ωM
2
sj). (6)

Hence for a grid of M values, the process is approximated as a linear combination of M
spectral basis functions corresponding to M real-valued sinusoidal basis functions, including
the constant function (ω0 = 0). To approximate mean zero Gaussian processes with a par-
ticular stationary covariance function, the coefficients have independent, mean zero Gaussian
prior distributions with the spectral density for the covariance function, φ(·;θ), e.g., (5),
determining the prior variances of the coefficients:

V(um) = φ(ωm;θ) ⇒ {V(a0) = φ(ω0;θ); V(aM/2) = φ(ωM/2;θ); V(am) = V(bm) =
1
2
φ(ωm;θ), o.w.}

(7)
.
The setup is similar in two dimensions, with a matrix of M = M1M2 coefficients, ((um1,m2)),
md ∈ {0, . . . ,Md − 1}, and corresponding frequency pairs, (ω1

m1
, ω2

m2
), and a toroidal do-

main. As seen in Table 1, many coefficients are again deterministically given by other co-
efficients to ensure that the process is a linear combination of real-valued sinusoidal basis
functions of varying frequencies and orientations in <2. The real and imaginary compo-
nents of each coefficient, um1,m2 = am1,m2 + bm1,m2i, are again independent. For (m1,m2) ∈
{(0, 0), (M1

2 , 0), (0, M2
2 ), (M1

2 ,
M2
2 )}, bm1,m2 = 0 and V(am1,m2) = φ(ω1

m1
, ω2

m2
;θ), while for the

remaining complex-valued coefficients, V(am1,m2) = V(bm1,m2) = 1
2φ(ω1

m1
, ω2

m2
;θ).

2.2. Periodicity and Euclidean domains
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6 Bayesian smoothing using Fourier basis functions

Table 1: Visual display of the spectral coefficients for a two-dimensional process. The fre-
quencies in each dimension are indicated by the row and column labels, with hd = Md

2 for
d = 1, 2. The * operation indicates that one takes the matrix or vector, flips it in both the
horizontal and vertical directions (just the horizontal or vertical in the case of a vector) and
then takes the complex conjugates of the elements.

0 1 . . . h2 −h2 + 1 . . . −1
0 u0,0 u0, · u0,h2 u∗

0, ·
1

.

.. u·, 0 uA u∗
B

h1 uh1,0 uh1,h2
−h1 + 1

.

.. u∗
·, 0 uB u∗

A

-1

The construction produces periodic functions; in one dimension the process lives on a circular
domain, while in two dimensions the process lives on a torus. To work in Euclidean space,
we need to map the space onto the periodic domain. The goal is to use the representation on
Euclidean domains without inducing anomalous correlations between locations that are far
apart in Euclidean space, but close in the periodic domain. To do this, I suggest mapping
the Euclidean domain of interest onto a portion of the periodic domain and ignoring the
remainder of the periodic domain as follows.

In one dimension, g(0) = g(2π), so the correlation function, C(τ) = C(g(0), g(τ)) of the
process at distances τ ∈ (π, 2π) is the mirror image of the correlation function for τ ∈ (π, 0)
with Cor(g(0), g(2π)) = 1 (Figure 1). I avoid artifacts from this periodicity by mapping the
interval (0, 2π) to (0, 2) and mapping the original domain of the observations to (0, 1), thereby
computing but not using the process values on (1, 2). Note that the use of πρ rather than ρ
in (5) allows us to interpret ρ on the (0, 1) rather than (0, π) scale. The modelled process on
(0, 1) is a piecewise constant function on an equally-spaced grid of size M/2 + 1. This setup
ensures that the correlation structure of the approximating process is close to the correlation
structure of a GP with the desired stationary correlation function (Figure 1).

As the higher-dimension analogue of the one-dimensional case, I estimate the process on
(0, 1)D. To do so, I map the periodic domain (0, 2π)D to (0, 2)D and then map the observation
domain onto the (0, 1)D portion (maintaining the scale ratio in the different dimensions, unless
desired otherwise), thereby calculating but ignoring the process values outside this region.
Note that if the original domain is far from square, I unnecessarily estimate the process in large
areas of no interest, resulting in some loss of computational efficiency. Wikle (2002) and Royle
and Wikle (2005) do not mention the issue of periodicity; it appears that they use a somewhat
larger grid than necessary to include all observations (sometimes called padding) and rely on
the correlation decaying sufficiently fast that anomalously high correlations between distant
observations induced by the periodicity do not occur. For example, notice in Figure 1 that
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Figure 1: Comparison of correlation structure of GPs based on the standard Matérn covariance
on the Euclidean domain, (0, 2) (dashed lines), and approximate GPs based on the Fourier
basis for the periodic domain, (0, 2π), mapped to (0, 2) (solid lines), for three values of ρ.
Note that the Euclidean correlation for ρ = 0.05 falls off to zero as rapidly as the periodic
case and remains at zero for all remaining distances.

for ρ = 0.05 the correlation does not start to rise again until the distance is almost 2.0, so a
small amount of padding would suffice).

2.3. Computations and statistical modeling of observations

The process at the observation locations is calculated through an incidence matrix, K, which
maps each observation location to the nearest grid location on the subset of the periodic
domain,

gs = Kgs# = KΨu. (8)

For a fine grid, the error induced in associating observations with grid locations should be
negligible and the piecewise constant representation of the surface tolerable. The compu-
tational efficiency comes in the fact that the matrix Ψ, which is M × M , need never be
explicitly formed, and the operation Ψu is the inverse FFT, and so can be done very effi-
ciently (O (M log2(M))). In addition, evaluating the prior for u is fast because the coefficients
are independent a priori. This stands in contrast to the standard MCMC setup for GP models,
in which the prior on gs involves an n× n matrix and therefore O(n3) operations. Of course
the gridding could be done without the Fourier basis approach, but this would only reduce
the computations to O

(
(M/2D)3

)
(the division by 2D occurs because the padding would

not be required). Note that with the gridded approach, the number of observations affects
the calculations only through the likelihood, which scales as O(n), because the observations
are independent conditional on gs. The complexity of the underlying surface determines the
computational efficiency by defining how large M should be; simple surfaces can be estimated
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8 Bayesian smoothing using Fourier basis functions

very efficiently even if n is large.

3. R spectralGP library

The spectralGP library for R provides an object-oriented representation of the Fourier basis
approach to computation with GPs. The library allows one to initialize GP objects, simulate
random processes, plot and output the process values, and sample the Fourier basis coeffi-
cients using the MCMC sampling schemes described in Section 4. The key functions in spec-
tralGP are a constructor function, gp(), and a number of S3 methods: two MCMC sampling
methods for the coefficients, Gibbs.sample.coeff.gp() and propose.coeff.gp(); a method
for simulating GPs, simulate.gp(); a method for changing the GP hyperparameter values,
change.param.gp(); calculation of the logdensity of the coefficients, logdensity.gp(); and
prediction and plotting methods. Internal methods not meant for users include calculation
of the coefficient variances, calc.variances.gp() and updating of the process values af-
ter changes in the coefficients, updateprocess.gp(). Auxiliary functions allow for copying,
copy.gp(); determining the basic grid used, getgrid.gp(); and extracting the object element
names, names.gp(). Several functions deal with conversion between coordinate systems: a ba-
sic lon/lat to Euclidean x/y projection, lonlat2xy(); mapping a Euclidean domain to (0, 1)D,
xy2unit(); and mapping locations in the domain to the closest grid points, new.mapping().
Several auxiliary functions are borrowed from the fields library, namely rdist.earth() as well
as image.plot() and its auxiliary functions, image.plot.info() and image.plot.plt().

Since a GP object will be used repeatedly in a Bayesian MCMC approach, I choose to use a
pass-by-reference scheme in the coding, using R environments to mimic object-orientation in
traditional languages (E.A. Houseman, pers. comm.). In this way, one can operate on the GP
objects and change internal elements without having to pass the entire object back from the
function. This is possible because unlike other R objects, environments are not copied when
passed to functions. Each instantiation of a gp object is an environment, initialized with a
call to new.env() and assigned the class “gp”. The elements of the object, e.g., myFun here,
are local variables within the environment, accessed via list-like syntax, e.g., myFun$value.
S3 methods are used to operate on the gp objects, with the difference from standard R that
global changes can be made to the elements of an object within the method by virtue of
those elements residing within an environment. For example, the call, simulate.gp(myFun),
samples new coefficients and updates the process based on those coefficients without having
to pass myFun back to the calling environment, yet the changes to myFun are effective in the
calling environment. Also note that care must be taken when assigning gp objects because
environments are not copied when used in assignments; I have created an explicit copy.gp()
function to make a new copy of a gp object; assignment merely creates an additional name
(i.e., pointer) referencing the existing object. I chose not to use S4 methods because my
understanding is that their implementation is still somewhat slow and spectralGP works with
large objects and substantial computation. I have used native R code for the entire library
both for simplicity and because the essential computations within the library are already
compiled code, namely the functions, fft(), rnorm(), and dnorm().

Some additional intricacies included in the library are mentioned parenthetically in the next
two sections. Note that in the library, the process is scaled by 1/

√
M1M2, as described in

Section 4.1, relative to the exact process values (6).
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Also note that C. Wikle has released Matlab code for the Fourier basis computations on his
website (http://www.stat.missouri.edu/~wikle).

4. Basic MCMC sampling schemes for coefficients

In this section, I describe several parameterizations for simple Bayesian exponential family
models with associated MCMC sampling schemes for the Fourier basis coefficients. Bayesian
estimation of unknown processes represented as GPs relies on shrinkage to estimate the large
number of coefficients; coefficients of low-frequency basis functions are strongly informed
by the data while those of high-frequency basis functions are shrunk strongly toward their
prior distributions. These following basic parameterizations can also be used with relatively
straightforward modifications in more complicated hierarchical models, although the added
complexity may make the simple blocked sampling scheme the most feasible approach in that
case. Note that for simplicity I consider a scalar mean parameter, µ, but this could be replaced
by a regression term, e.g., Xiβ, or other additive components.

4.1. Data augmentation Gibbs sampling for normal data

For Gaussian data with mean function based on the latent process, g(·), a missing data scheme
allows for Gibbs sampling of the coefficients. This is a simplification of the Gibbs sampling
scheme of Wikle (2002).

Take the data model to be
Y ∼ Nn(µ1 + γKΨu, η2I), (9)

where µ is the process mean and γ is the process standard deviation with σ2 in (4-5) set to
one. Since the prior for the coefficients is normal, we have conjugacy, and the conditional
distribution for u is

u|Y ,θ ∼ NM (V
γ

η2
(KΨ)T (Y − µ1),V )

V = (
γ2

η2
ΨT KT KΨ + Σ−1)−1. (10)

The sample of u represents precision-weighted shrinkage of the data-driven estimates of the
coefficients towards the prior mean of zero.

However, this sampling scheme requires calculation of ΨT KT KΨ, which is not feasible for
large number of grid points; note that if K were the identity, since Ψ is an orthogonal matrix,
this simplifies to

V = (
γ2

η2
I + Σ−1)−1, (11)

which because Σ is diagonal, is easy to calculate. Assuming no more than one observation per
grid cell, K = I can be achieved using a missing data scheme by introducing latent pseudo-
observations for all grid cells without any associated data, including grid cells in which no
data can possibly fall, as described in Section 2.2. Collecting these pseudo observations into
a vector, Ỹ , they can be sampled within the MCMC using a Gibbs step as

Ỹ ∼ NM−n(µ1 + γK̃Ψu, η2I), (12)
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10 Bayesian smoothing using Fourier basis functions

where the K̃ matrix picks out grid cells with no associated data. With this augmentation, Y
in (9-10) is a vector of values on the full grid, Y = (Y obs, Ỹ ), combining actual observations
with pseudo observations, and K = I.

Note that this straightforward expression conceals some details required in working with the
complex-valued coefficients. In calculating (γ2/η2 + Σ−1

ii ), one needs to multiple γ2/η2 by
one-half for all the elements corresponding to complex-valued coefficients to ensure that the
scaling is correct as described in Section 2. Also, the operation ΨT (Y −µ1) is the FFT and the
correct scaling needs to occur so the result is on the scale of the coefficients. In R, I specify the
coefficient variances as M1M2φ(ω;θ) and update the process as Ψu/

√
M1M2. If I then divide

ΨT (Y − µ1) by
√
M1M2 when sampling the coefficients (10-11), the desired approximate

covariance structure for the process is preserved, namely Ψu
·∼ NM (0,C), where the matrix,

C is defined by Cij = C(d(si, sj)) and C(·) is the covariance function whose spectral density
defines φ(·;θ), e.g., (5). The exact algorithm is given in the Gibbs.sample.coeff.gp()
function in the spectralGP library.

In the appendix I provide template code for fitting this parameterization, denoted as Code
A.

If there is more than one observation per grid cell, some possible solutions are to use a
finer grid or to take Y (sj) = Ȳj , namely the average of the observations in the grid cell.
Ideally, one would set η2

j = η2/nj , but this would require calculation of ΨT η−1Ψ, where
η = diag((η2

1, . . . , η
2
M )), which is computationally infeasible. Instead, I suggest using constant

η2 so long as there are relatively few locations with multiple observations per grid cell. One
could also use more extensive data augmentation to supplement the existing observations such
that there are nj pseudo plus true observations per grid cell, with nj equal to the maximum
number of true observations in a cell over all of the grid cells.

Wikle (2002) recommends the uncentered (sensu Gelfand, Sahu, and Carlin (1996)) param-
eterization for the process variance (9), with γ allowed to vary and σ2 ≡ 1 in defining the
covariance of the coefficients (5). He notes that moving the parameter closer to the data
improves mixing and helps avoid dependence with ρ. Note that I follow this approach in
some cases, while in others, I allow σ2 to vary and fix γ ≡ 1. In the spectralGP library, a
value of σ2 not equal to one is specified with the variance.param argument to gp() and the
new.variance.param argument to change.param.gp().

For non-normal data from the exponential family, Yi ∼ F(h−1(fi)), where fi = µ+ γKiΨu,
one might use a Metropolis-Hastings-adjusted version of this Gibbs sampling scheme, again
with data augmentation. The proposal makes use of the linearized observations,

y′i ≡ fi +
∂h(fi)
∂fi

(yi − h−1(fi)). (13)

Ideally, one would use working variances,

η′2i ≡
(
∂h(fi)
∂fi

)2

Var(Yi), (14)

used in fitting GLMs, but a diagonal matrix with η′2i elements would prevent cancellation in
(10). Instead, consider η2 to be a fixed constant that allows one to tune the proposals for
better mixing with reasonable values informed by the working variance expression, perhaps a
rough average of the working variances (14) based on an initial fit of the model. Then use a
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Metropolis-Hastings sample with the following proposal distribution:

u|Y ,θ ∼ N (V
γ

η2
(KΨ)T (Y ′ − µ1),V )

V = (
γ2

η2
I + Σ−1)−1. (15)

I do not pursue this approach for non-normal data further, as I had little success in tuning
the proposals to achieve reasonable acceptance, but further research in this area may be
worthwhile.
One approach to speeding mixing in the case of normal data is to jointly sample η2 and Ỹ by
first proposing η2∗ and then, within the same proposal, sampling Ỹ |η2∗, . . . via a Gibbs sam-
ple, conditional on the proposed value, η2∗. Because this joint sample is not from the joint con-
ditional of (Ỹ , η2| . . .), we need to use Metropolis-Hastings in determining acceptance based
on the ratio of the prior for η2 and likelihood, π(η2∗)L(Y obs|η2∗,θ)/(π(η2)L(Y obs|η2,θ)),
where Y obs is the actual data, which indicates that acceptance does not depend on the value
for the augmented observations, Ỹ . So one can propose η2, decide on acceptance based on the
likelihood of the true observations, and then, if accepted, do a Gibbs sample for Ỹ (12). We
have effectively integrated Ỹ out of the joint conditional density, π(η2, Ỹ |Y obs,θ), thereby
sampling η2 without dependence on Ỹ (Rue and Held 2005, pp. 141-143). In the iterations,
one may also wish to do a separate Gibbs sample for Ỹ alone, apart from the joint sample with
η2. Template code A in the appendix also includes modifications for this sampling approach.

4.2. Latent layer Gibbs sampling for exponential family data

4.2.1. Parameterizing with two latent layers (the Wikle parameterization)

For non-normal data, rather than losing the Gibbs sampling structure for the coefficients,
Wikle (2002) and Royle and Wikle (2005) embed the spectral basis representation in a hi-
erarchical model with additional latent processes and associated variance components. This
approach allows one to do Gibbs sampling in various generalized models in which exponential
family outcomes are related to a latent spatial process in the mean structure (1).
To take a concrete example, the model for Poisson data is

Yi ∼ P(exp(λi))
λi ∼ N (µ+ γKiz, η

2)
z ∼ NM (Ψu, σ2

zI), (16)

where Ψu is the Fourier basis representation with the prior structure (7). One can easily
modify the likelihood and link for other exponential family distributions. The model intro-
duces two variance components, η2 and σ2

z , and an additional latent process, z, defined for
each of the grid cells, including those in which no data can fall, as discussed in Section 2.2.
Note that the variance components account for overdispersion. In Section 5.1.2, I discuss
issues that arise when the data are not overdispersed.
Wikle (2002) suggests a Metropolis-Hastings proposal for λ, with conjugate normal Gibbs
sampling for z and u:

z|λ,u,θ ∼ NM

(
V z

(
γ

η2
KT (λ− µ1) + σ−2

z Ψu

)
,Vz

)
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Vz = (
γ2

η2
KT K + σ−2

z I)−1

u|z,θ ∼ NM (Vu
ΨT z

σ2
z

,V u)

Vu = (σ−2
z I + Σ−1)−1 (17)

Similar adjustments as in the previous section are needed in the Gibbs sampling for u to
account for the complex-valued coefficients and to scale the proposal correctly. In the spec-
tralGP library, u is sampled using the Gibbs.sample.coeff.gp() function, with z taking
the place of the vector of ’observations’. Template code is given in the appendix as Code B.

Note that sampling can require long chain lengths; Royle and Wikle (2005) used eight chains
of length 520,000, retaining every 50th iteration, which suggest slow mixing of the sort I have
experienced as well.

4.2.2. A simplified parameterization with a single latent layer (modified Wikle param-
eterization)

I propose a modification of the model above to eliminate one of the latent layers, thereby
moving the coefficients closer to the data in the hierarchy and eliminating z and σ2

z , which
can be difficult to interpret and may not informed by the data (see Section 5.1.2). The
simplified model for Poisson data is

Yi ∼ P(exp(Kiλ))
λ ∼ NM (µ1 + γΨu, η2I) (18)

where the ith row of K maps the observation to the grid cell in which it falls. One can easily
modify the likelihood and link for other exponential family distributions.

One can use Gibbs sampling for the values of λ corresponding to the J grid cells with no
observations, denoted, λ̃, and for u:

λ̃|Y ,u,θ ∼ NJ(µ1 + γK̃Ψu, η2I)

u|λ,θ ∼ NM (V u
γ

η2
ΨT (λ− µ1),Vu)

Vu = (
γ2

η2
I + Σ−1)−1. (19)

For the elements of λ corresponding to grid cells in which observations fall, λobs, I suggest
Metropolis proposals, done individually for each individual element, but computed in an
efficient vectorized fashion in R. Some intuition for how the information from the data diffuses
to the level of the basis coefficients is that the latent layer, λ, allows for some fluidity between
the process values and the data: individual sampling of λobs for individual grid cells allows
the latent layer to accomodate the data based on adjustments to λobs at individual locations,
while the Gibbs sample of u translates these adjustments to the coefficients. A single joint
sample for the elements of λobs would likely have slower mixing as it would be trying to
sample many grid locations at once, with a single acceptance decision, thereby slowing local
adjustments. Template code is given in the appendix as Code C.
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In similar fashion to joint sampling of (η2, Ỹ ) in Section 4.1, with the parameterization
above, one can improve mixing by jointly sampling η2 and λ̃. First propose η2∗ and then,
within the same proposal, propose λ̃

∗|η2∗ from its full conditional based on the proposed
value, η2∗. Because this joint sample is not from the joint conditional of (η2, λ̃), we need
a Metropolis-Hastings acceptance decision based on the ratio of the prior for η2 and like-
lihood, π(η2∗)L(Y |η2∗,λobs, ...)/(π(η2)L(Y |η2,λobs, . . .)), with acceptance not depending on
the value for the augmented locations, λ̃, thereby effectively integrating λ̃ out of the joint
conditional density, π(η2, λ̃|λobs,Y ,θ). So in practice one can propose η2∗, decide on ac-
ceptance, and then, if accepted, do a Gibbs sample for λ̃ (19). In the iterations, one may
also wish to do a separate Gibbs sample for λ̃ alone. Template code C in the appendix also
includes modifications for joint sampling of (η2, λ̃).

4.3. Blocked Metropolis sampling for exponential family data (simple pa-
rameterization)

An alternative to Gibbs sampling that avoids the use of the additional hierarchical layers
and variance components (Section 4.2) is a simple model with straightforward Metropolis
sampling for the coefficients described in Paciorek and Ryan (2005). This approach has the
advantage of tying the coefficients to the data by involving the coefficients directly in the
likelihood, without the intervening levels in Section 4.2. For data that are not overdispersed,
the simple model avoids introducing the overdispersion parameter(s), η2 (and σ2

z).

The basic approach is to specify the obvious parameterization in which the data are directly
dependent on the latent spatial surface, which for Poisson data is

Yi ∼ P(exp(µ+ γKiΨu)). (20)

I suggest sampling the coefficients in blocks according to coefficients whose corresponding
frequencies have similar magnitudes (Paciorek and Ryan 2005). I use smaller blocks for the
low-frequency coefficients, thereby allowing these critical coefficients to move more quickly.
The high-frequency coefficients have little effect on the function and are proposed in large
blocks. The first block is the scalar, u0,0, corresponding to the frequency pair, (ω1

0, ω
2
0) = (0, 0)

(but note that in Section 5.2 I suggest not sampling this coefficient). The remaining blocks
are specified so that the block size increases as the frequencies increase. For example, the
next block might include the coefficients whose largest magnitude frequencies are at most
one, i.e., um1,m2 s.t.max{|ω1

m1
|, |ω2

m2
|} ≤ 1, but excluding the previous block, giving the block

of coefficients, {u0,1, u1,0, u1,1, uM1−1,1}. Recall that there are additional coefficients whose
largest magnitude frequencies are at most one, e.g., uM1−1,0and uM1−1,M2−1, but these are
complex conjugates of the sampled coefficients. The next block might be the coefficients whose
largest magnitude frequencies are at most two, i.e., um1,m2 s.t.max{|ω1

m1
|, |ω2

m2
|} ≤ 2, but ex-

cluding the previous block elements. The real and imaginary components of the coefficients
in each block are proposed jointly, Metropolis-style, from a multivariate normal distribution
with independent elements whose means are the current values. Since the coefficients have
widely-varying scales, I take the proposal variance for each coefficient to be the product of
a tuneable multiplier (one for each block) and the prior variance of the coefficient, which
puts the proposal on the proper scale. In the add.blocks.gp() function in spectralGP li-
brary, the default blocks are set by grouping coefficients based on the frequency thresholds,
0, 1, 2, 4, . . . , 2Q, where Q = log2(max(M1,M2))−1. The coefficients can be proposed in spec-
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tralGP using the propose.coeff.gp() function. Template code for fitting by this approach
is given in the appendix as Code D.

4.4. Hyperparameter priors

Assuming exponential family data and the Matérn covariance (4-5), the hyperparameters in
the data augmentation and block sampling schemes are θ = (µ, γ, ρ, ν, η2), with η2 not present
for some likelihoods. Wikle (2002); Royle and Wikle (2005) include the additional variance
components, σ2

z and η2.

Royle and Wikle (2005) use inverse gamma priors for η2 and σ2
z with a diffuse normal prior

for µ. For ρ they use the reference prior of Berger, De Oliveira, and Sansó (2001) for the
Gaussian likelihood case to avoid the use of an improper diffuse prior that could lead to an
improper posterior.

Paciorek and Ryan (2005) specify independent, proper, but non-informative priors for the
elements of θ, except for ν, which cannot be estimated for a grid-level process (even for the
continuous case, this is difficult to estimate without some observations very close together)
and which is fixed in advance (ν = 4 gives smooth processes with a small number of deriva-
tives). Gelman (2006) suggests truncated uniform and folded non-central t distributions on
the standard deviation scale for variance components and argues against IG(ε, ε) priors as
these have a sharp peak at small values that can strongly affect inference. Berger et al. (2001)
argue for reference priors and against proper but non-informative priors, including truncated
distributions, in part because they are concerned about the posterior concentrating at extreme
values or on the truncation limit. In the setting here, I believe that the exact form of the priors
is not critical, except that it is desirable to keep the parameters in a finite interval to prevent
them from wandering in extreme parts of the space in which the likelihood is flat. In cases
with sufficient data, the prior should play little role in estimation and prediction, whereas the
situations that concern Berger et al. (2001) with regard to truncation and vague proper priors
arise when the data provide little information, in which case their concern about the posterior
concentrating on the truncation limit seems little different than having it constrained by the
reference prior. I discuss identifiability and priors for σ2

z and η2 in more detail in Section 5.1.

5. MCMC sampling considerations

In Sections 5.1-5.4, I describe some factors that impede mixing and some modifications to
the basic sampling schemes discussed above that can help to improve mixing. In Section
5.5 I discuss some general sampling issues and make broad recommendations. Note that
for any particular application, these recommendations may not provide the best mixing and
consideration of alternatives discussed in this paper may improve matters.

I explored sampling effectiveness using a few simulated datasets, meant to provide a range
of function complexity and data intensity. All have Poisson data with the sampling locations
sampled uniformly in (0, 1)2: Data1 has 225 observations while Data2 has 1000 observa-
tions, both with the mean function, f(x1, x2) = 1.9 · (1.35 + exp(x1) sin(13 · (x1 − 0.6)2) ·
exp(−x2) sin(7x2)), used by Hwang, Lay, Maechler, Martin, and Schimert (1994) (Fig. 2), a
fairly simple function that when fit with a GP has ρ̂ ≈ 0.3. Data3, Data4, and Data5 use the
same mean function; a GP with ρ = 0.05, µ = 0, γ = σ = 1 (Fig. 2); and 400, 800, and 2500
observations, respectively.
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Figure 2: Mean functions used in simulated datasets: simple function (left) with ρ̂ ≈ 0.3 and
more complicated GP (right) with ρ = 0.05.

I fit the data with the various parameterizations and sampling schemes using MCMC with a
burn-in of 10,000 iterations and runs of 100,000 additional iterations. To assess mixing speed,
I considered the trace plots, autocorrelations, and effective sample sizes (ESS) (Neal 1993, p.
105),

ESS =
T

1 + 2
∑∞

d=1 Cord(θ)
, (21)

where Cord(θ) is the autocorrelation at lag d for a given posterior quantity, θ, truncating the
summation at the lesser of d = 10000 or the largest d such that Cord(θ) > 0.05. I focus on
ESS for 1.) the overall log posterior density, π(f(θ|y)) (as suggested in Cowles and Carlin
(1996) and calculated up to the normalizing constant), 2.) the critical smoothing parameter,
ρ, and 3.) a random subset of 200 function estimates.

5.1. Variance component magnitudes and mixing speed

Here I discuss how the magnitude of a key variance component influences mixing. I start with
the simple case of normal data.

5.1.1. Normal model and error variance

Under the normal model, as η2 → 0, we have an interpolating surface that passes through
the observations. In spatial statistics, such interpolation may arise relatively frequently when
measurements are made with little measurement error. In this case, non-zero η2 is interpreted
as fine-scale heterogeneity (Cressie 1993, p. 59). Depending on the dataset, it can be the
case that the estimate of η2 is quite small, but with gaps in the observations, there may
quite a bit of uncertainty in prediction at locations between the observations. In this case of
interpolation, we have essentially specified a parametric multivariate normal model; if this is
not a good interpolation model for the underlying spatial surface, the true uncertainty may
be greater than indicated in the posterior because of model uncertainty.

The key sampling consideration arising from small values of η2 is that the size of MCMC
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Figure 3: Decay of proposal variances (scaled relative to prior variance) for three representa-
tive coefficients as a function of the relative error variance (η2/γ2) for (left column) GPs with
ρ = 0.1 and (right column) GPs with ρ = 0.4. Example process realizations are shown in the
lower row.

moves for the basis coefficients is quite small. As η2 → 0,

V (ui|Y ,θ) = (
γ2

η2
+ Σ−1

ii )−1 → 0 (22)

for the Gibbs sample proposal variance (15-19). For coefficients of low frequency basis func-
tions, as η2 get small, the proposal variance is a small fraction of the magnitude of the coef-
ficient (for high frequency basis functions, this is not the case, but these have little impact
on the process estimate) (Figure 3). This occurs because the process estimates are specified
exactly (when η2 = 0) at the observation locations, and any proposal at those locations is
constrained by the observations. This constrains the proposal for the entire spatial process.
Mixing can be challenging in such problems even if uncertainty away from the observations
is substantial and of real interest. While this issue seems likely to arise in other GP repre-
sentations, except when the process values can be integrated out of the model, the issue is
particularly clear with the spectral representation.

5.1.2. Latent layer model for exponential family data and dispersion parameter
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Figure 4: ESS for a sample of 200 function values (boxplots) and for the log posterior density
(’LP’) as a function of fixed η2.

The approaches described in Section 4.2 introduce variance component(s) that allow for Gibbs
sampling of the coefficients, at the expensive of making the model more complicated and
moving the coefficients further away from the data in the model hierarchy. The introduction
of the variance components, η2 and σ2

z , has important implications for MCMC sampling that
relate to the discussion in Section 5.1.1 that the size of η2 affects the proposal variances for
the coefficients.

Let’s first consider model (18) with only a single variance component, η2. If the data are
overdispersed, the parameter η2 can account for this additional dispersion, with µ1 + γΨu
representing the unknown smooth function and λ a more heterogeneous process in which
η2 > 0 introduces overdispersion. Note that inference about the unknown smooth function
should likely be based on µ1 + γΨu rather than λ, with simulations showing that inference
based on λ has larger posterior variances and is overly conservative for the unknown mean
function. When there is not overdispersion, the posterior for η2 should concentrate near zero,
indicating that the data are from the exponential family distribution. While this might be
the correct inference, if the value of η2 does approach zero in the MCMC sampling, the chain
will mix very slowly, as in the case of normal data, because V (ui|Y ,λ,θ) → 0 as η2 → 0
as in (22). Smaller values of η2 result in small proposal variances and slow movement of the
coefficients. Figure 4 shows the ESS for the log posterior density and for a sample of function
values as a function of fixed η2 for Data3, Poisson data generated without overdispersion.

In the case of overdispersion, the data can inform η2, and prior distributions such as the
inverse gamma priors of Wikle (2002); Royle and Wikle (2005) may suffice. When there is
little overdispersion, these priors are more problematic. Note that the inverse gamma prior
has a rapidly-decaying left tail, dropping off as exp(−1/x), so the inverse gamma prior assigns
no mass to small values of η2, preventing the posterior from having mass in this area. For
example, the IG(0.5, 2) prior has very little mass at values less than 0.05 while the IG(1, 10)
has very little mass at values less than 0.006. Fitting the model to Data2 with the IG(0.5, 2)
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Figure 5: Posterior densities for η2 under an IG(0.5, 2) prior and a lognormal prior truncated
at 0.02

prior shows that the constraints imposed by the inverse gamma prior cause the posterior to
have its mass in the extreme lower range of the prior (Figure 5). Changing the prior to a
truncated lognormal distribution results in most of the posterior mass lying at very small
values of η2 near the truncation point, suggesting the sensitivity to the prior.

This suggests that when the observations are not overdispersed (η2 = 0) that the prior has
substantial impact on the posterior for η2. A prior that weights the model away from small
values of η2 has the desirable impact of improving mixing at the cost of forcing overdispersion,
while use of a prior that allows for small values of η2 carries the risk of very slow mixing. This
suggests that we might choose a prior or even fix η2 in advance to achieve optimal mixing,
treating η2 as an MCMC tuning parameter. The danger of using large values of η2 is that
while mixing will improve, introduction of overdispersion causes the posterior variances of key
quantities such as the function estimates to increase, giving overly conservative inference and
less precise point estimates. In Table 2, we see average interval lengths, posterior coverage,
and predictive ability based on R2 for function estimates from Data3 (for which mixing is
shown in Figure 4) as a function of fixed values of η2. For the smallest value of η2 coverage is
too low and intervals are too small because of poor mixing, while for the larger values of η2

interval lengths increase, with coverage becoming overly conservative and predictive ability
declining. A compromise value of η2 (say 0.32 in this case) appears to do a good job of trading
off between mixing and precision and interval properties.

In general, to obtain reliable inference about overdispersion, one would want to initially allow
sufficient freedom in one’s prior for η2 to allow small values of η2 to have substantial posterior
mass. However, if the data appear to not be overdispersed and one wants to achieve reasonable
mixing, one may want to run a version of the model with a fixed, larger value of η2 and report
inference for the other aspects of the model based on that MCMC. One can examine interval
length as a function of η2 in comparison with mixing properties to determine a good value of
η2. Cross-validation may be helpful for assessing coverage.
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Table 2: Average 95% credible interval coverage and length, as well as test R2 of posterior
mean, for 200 function estimates, as a function of fixed η2 for Data3.
η2 coverage interval length test R2

0.012 0.73 1.60 0.33
0.12 0.92 2.45 0.57
0.32 0.93 2.54 0.57
0.52 0.97 2.75 0.53
0.752 0.97 2.89 0.49
12 0.95 2.93 0.50
22 0.94 3.43 0.04

Turning to the model (16), there are two variance components, η2 and σ2
z . Interpretation of

these parameters is difficult as the parameterization divides any inherent overdispersion into
components that are not identifiable if there is no replication within cells. Royle and Wikle
(2005) note that in their model η2 accounts for overdispersion, in particular observer variabil-
ity in counting birds, while σ2

z represents uncorrelated variability across grid cells, inducing
a lack of spatial smoothness beyond that induced by the discretization. With replication in
the cells, Royle and Wikle (2005) claim that both η2 and σ2

z are identifiable, but that with
few replicates posterior correlation of these variance components may be high. Wikle (2002)
and Royle and Wikle (2005) sample both components and find reasonable mixing, perhaps
because their inverse gamma distributions prevent small values of the components and per-
haps because with their real count data there is real overdispersion that provides information
about a functional of the variance components (η2 + γ2σ2

z), while replication provides in-
formation about η2. In contrast, I have had difficulty achieving reasonable mixing for the
two variance components in simulations with no overdispersion (σ2

z = η2 = 0), presumably
because of the lack of identifiability and lack of overdispersion. Figure 6 shows example trace
plots and superimposed prior and posterior densities for η2 and σ2

z for an MCMC run with
Data2. Note how the posteriors concentrate on the smallest values allowed by the priors and
how the likelihood mixes well, indicating that the process values, λ, are well-identified by the
data and mix well.

5.2. Non-identifiability of u1,1 and µ

The Fourier basis function corresponding to the coefficient, u0,0, is a constant function. As
such, it is not identifiable with respect to an overall mean parameter, µ, specified outside
of the Fourier basis representation of the Gaussian process (16,18,20). One might choose to
omit µ from the model, but this would generally be a mistake as the covariance structure (7)
imposes a restrictive prior on u0,0. A large value of γ or σ would allow for a process mean
far from zero, but this would also allow the function to have high variability. An example
of where the problem arises is a process with large mean, say 100, but whose variability
places the function entirely in (99, 101). Such a process would require a large value of u0,0

but if γ or σ is large enough to allow this, each would be so large as favor process estimates
that vary widely around 100. Instead, a separate mean parameter is a better choice that
will help to avoid slow mixing because of nonidentifiability. One can fix u0,0 = 0, without
otherwise constraining the model. The spectralGP library can fix the coefficient and ignore it
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Figure 6: Trace plots for Wikle approach applied to Data2.

when calculating the prior density of the coefficients; this is done based on the const.fixed
argument to gp(). However, to generate GPs using the Fourier basis approximation, one
should not fix this constant, in order to retain the desired approximate covariance structure.

5.3. Joint sampling of hyperparameters and process

In parameterizations in which the coefficients are not directly involved in the likelihood, poor
mixing may be an issue. In particular, poor mixing can occur for the covariance hyperparam-
eters of the coefficients, namely ρ and, in the centered parameterization, σ2, or ψ1 and ψ2 in
the reparameterization described in Section 5.4.

For illustration, consider ρ. The difficulty in sampling ρ is that a simple Metropolis-Hastings
proposal for ρ results in a new set of variances for the coefficients, u. Since these coefficients are
not part of the proposal, proposing ρ∗ can easily produce a low prior density for u|ρ∗ because
the new prior is inconsistent with the current u. For example, with a process generated based
on ρ = 0.1, the prior logdensity of u|ρ = 0.1 is 50411 while the prior logdensity of u|ρ∗ = 0.101
is 50387, a change of 24 in the logdensity, despite the fact that the surfaces generated based
on ρ = 0.1 compared to ρ = 0.101 are indistinguishable even with massive amounts of data,
assuming non-negligible error variance. Note that the issue here is not a matter of whether
we can sample from the full conditional for ρ; the primary obstacle in sampling ρ is the strong
dependence of ρ and u (Rue, Steinsland, and Erland 2004). A better proposal would account
for the strong dependence between ρ and u by proposing them jointly, allowing the lower
levels of the model hierarchy close to the data to arbitrate between different values of ρ. In
the context of Markov random field models, (Rue and Held 2005, pp. 142-143) suggest a
similar strategy of jointly sampling process values and their hyperparameters.
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My strategy is to tie the covariance hyperparameters more closely to the coefficients and hence
to the data by having the effects of proposing new hyperparameter values ripple down through
the hierarchy of the model. I do this by jointly proposing a hyperparameter, generically
denoted θ ∈ {ρ, σ2, ψ1, ψ2}, and, then conditional on that hyperparameter and within the
same Metropolis-Hastings proposal, proposing the process coefficients, u|θ, . . .. This provides
a joint proposal for (θ,u) that adjusts u in such a way that it is more consistent with the
proposed value, θ∗. Parameterizations that permit proposing u|θ, . . . from its full conditional
are likely to particularly benefit from this approach, with u effectively integrated out of the
joint density. Provided the correct Hastings adjustment (ratio of proposal densities) is made,
this joint proposal is a standard, valid Metropolis-Hastings sampling scheme, implemented
as a marginal proposal for θ and a conditional proposal for u|θ, . . ., with a single acceptance
decision, as discussed in (Rue and Held 2005, p. 142). I now detail these joint proposals in
the three basic sampling schemes described in Section 4.
For the data augmentation sampling approach for normal data, one proposes θ∗, and then uses
the full conditional to propose u|y, θ∗ (10). Acceptance is then determined based on the ratio
of the proposed and current posterior densities for u, θ|y divided by the Hastings ratio for u
(and θ as well if not proposed symmetrically). Note that the proposal for u is conditional
on the proposed θ∗, so a Metropolis-Hastings acceptance decision is needed because we are
not doing a joint Gibbs sample for (u, θ). The Hastings ratio is based on the proposal mean
(10) and variance (11), with the variances for complex-valued coefficients scaled by two (7)
and not including the coefficients that are complex conjugates of sampled coefficients. This
is calculated in the spectralGP library using the Hastings.coeff.gp() function. Template
code is provided in the appendix as Code E.
In the modified Wikle approach, the presence of the latent λ̃ values (18) distances the coef-
ficients from the data. However, one can mimic the proposal just described by sampling θ
and u|θ,λ, conditioning on λ rather than y, and being satisfied with a proposal for u that
is consistent with the new proposed θ∗ and the current λ, albeit without any direct influence
of the data. Again a Hastings correction is needed, and can be calculated using the Hast-
ings.coeff.gp() function, but with λ taking the place of y. Template code is given as Code
F. For the original Wikle approach, z takes the place of λ above.
However, in neither the modified nor original Wikle parameterizations does the sampling
directly link θ to the observations, causing there to be no influence of the likelihood on the
acceptance. An alternative that carries the changes through to the level of the data is to avoid
sampling from the conditionals as described above and instead propose to move u and λ (and
z in the Wikle parameterization) in such a way that their prior densities remain constant.
First propose θ∗. Then, deterministically propose,

u∗i = ui ·

√
(Σθ∗)i,i√
(Σθ)i,i

, i = 1, . . . ,M. (23)

Modifying ui based on its prior variance, (Σθ)i,i, allows the hyperparameters to mix more
quickly by avoiding proposals for which the original coefficients are no longer probable based
on their new prior variances. In the modified Wikle parameterization, one next proposes

λ∗i = λi − γ(Ψu)i + γ(Ψu∗)i, (24)

while in the Wikle parameterization, one proposes z∗i = zi − (Ψu)i + (Ψu∗)i and finally
λ∗i = λi − γKiz + γKiz. This approach propagates the changes through the model in a way
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Table 3: ESS for log posterior density, ρ, and median (range) of 200 sample function values
by dataset for three sampling approaches: 1.) sampling γ and ρ using simple Metropolis-
Hastings, 2.) jointly sampling each of σ2 and ρ with u based on conditional Gibbs sample for
u, and 3.) jointly sampling each of σ2 and ρ with u based on deterministic modification of
u (23). η2 is fixed at 0.32. ’NM’ indicates that the chain has not burned in or is mixing so
slowly as to make calculation of ESS uninformative.

Sampling Method

Quantity Dataset simple: γ, ρ joint, Gibbs: σ2, ρ joint, deterministic: σ2, ρ

Data1 NM 42 193

LP Data2 NM 87 205

Data3 NM 17 447

Data5 NM 143 646

Data1 NM 37 146

ρ Data2 NM 70 145

Data3 NM 15 414

Data5 NM 125 289

Data1 549 (28-1898) 510 (34-1338) 597 (90-1808)

f Data2 1806 (22-3496) 1805 (132-3763) 2137 (229-4231)

Data3 236 (5-2154) 611 (200-3062) 657 (307-3232)

Data5 1563 (17-6503) 1964 (519-8958) 2021 (467-8971)

that ties θ directly to the likelihood. Such deterministic proposals are valid MCMC proposals
so long as the Jacobian of the transformation is included in the acceptance ratio, based on
a modification of the argument in Green (1995). The Jacobian of the transformation for
u cancels with the ratio of the prior distributions for u, π(u∗|θ∗)/π(u|θ), to give the final
Metropolis-Hastings acceptance for the entire joint proposal of (θ∗,u∗,λ∗) or (θ∗,u∗,z∗,λ∗)
based only on the ratio of the proposed and current prior densities for θ, the proposed and
current likelihoods, and any required Hastings ratio to account for non-symmetric proposals
for θ. Note that the transformations for z and λ have Jacobian of one. The validity of the
deterministic proposal can be seen intuitively by considering Metropolis proposals in place
of the transformation (23) with the mean (23) and very small proposal variances, ζ2 ≈ 0,
e.g., u∗i ∼ N (ui((Σθ∗)i,i)1/2((Σθ)i,i)−1/2, ζ2), and calculating the acceptance ratio of such a
proposal. Template code for the modified Wikle parameterization is given in the appendix as
Code G. Note that a similar joint proposal could be made for θ = σ2

z to tie this hyperparameter
more closely to the data.

For the coefficient block sampling scheme, no Gibbs scheme is available. Instead, one can
carry out a joint sample in a similar manner to that just described, by sampling θ∗ and then
u∗|θ∗ based on (23). Acceptance is determined by the ratio of the proposed and current
prior densities for θ and proposed and current likelihoods, and any required Hastings ratio to
account for non-symmetric proposals for θ. Template code is given in the appendix as Code
H.

In Table 3, I show a comparison of mixing for the modified Wikle parameterization (18)
with 1.) straightforward sampling of γ and ρ, 2.) joint sampling of {σ,u} and of {ρ,u}
based on Gibbs samples for u|σ2, . . . and u|ρ, . . ., and 3.) joint sampling via (23). Both joint
sampling approaches appear to mix much more quickly than the simple Metropolis-Hastings
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proposals for the hyperparameters. Surprisingly, the joint sampling with the full conditional
sampling for u|θ, . . . does not mix as well as the deterministic shift of u|θ, perhaps because
the conditional Gibbs sample does not modify λ and therefore does not involve the likelihood
in the determination of proposal acceptance, whereas the deterministic approach shifts λ as
well as u. Note that for η2 ≡ 0.22, the improved mixing of the deterministic shift proposal
compared to the conditional Gibbs is even more marked (not shown).

5.4. Covariance parameterization

In a GP model part of the difficulty in estimating the covariance parameters occurs because
of limitations on identifiability. The data cannot readily distinguish the overall variability in
the function, captured by γ or σ, from the decay in the spatial correlation, captured by ρ.
In Bayesian models, these parameters tend to have high posterior correlation, while Zhang
(2004) has shown that these two parameters cannot both be estimated consistently under
infill asymptotics, but that a functional of the two can be estimated consistently. Note that
in thin plate spline models and in the mixed model representation suggested by Kammann
and Wand (2003) and Ruppert et al. (2003), there is only one parameter in place of the
two covariance parameters here. However, as discussed further in Section 6, comparisons of
estimates using the Fourier basis approach here suggest that ρ cannot be fixed in advance
without seriously affecting the function estimates because the function heterogeneity is not
adequately represented.

Given the results of Zhang (2004), in which the ratio, σ2/ρ2ν , can be estimated consistently,
consider reparameterizing on the log scale as ψ1 = log σ + log ρ and ψ2 = log σ − log ρ. This
approach uses the centered parameterization, fixing γ ≡ 1. The reparameterization will tend
to reduce posterior correlation and allow each parameter to move more freely. Joint sampling
as described in Section 5.3 can also be employed with this reparameterization. Template
code for sampling based on the reparameterization and joint sampling of the parameters and
process values using deterministic conditional proposals for u (23-24) is given in the appendix
as Code I under the modified Wikle parameterization and code J under the block sampling
approach.

Since the joint sampling of θ with u based on deterministic proposals for u and λ appeared
to be the best of the options in Section 5.3, in Table 4, I compare mixing for that approach
with the (σ2, ρ) parameterization and the same joint approach using deterministic proposals
with the (ψ1, ψ2) parameterization. There is little difference in mixing between the two
parameterizations. Table 5 shows posterior correlations of (σ, ρ) and of (ψ1, ψ2) based on
sampling under the original and the new parameterizations. For Data1, Data2, and Data3,
ψ1 and ψ2 have little posterior correlation, suggesting that in principle, sampling using the
new parameterization would mix more quickly, although this is not the case in Table 4.
The minimal difference in mixing was also seen when using the joint sampling with the full
conditional samples of u|θ, . . . and when fixing η2 = 0.22 and η2 = 0.52 and for an alternative
reparameterization, ψ1 = log σ and ψ2 = log σ − log ρ. In practice, the minimal difference
in mixing suggests that the posterior correlation between σ2 and ρ is not materially hurting
mixing, in sharp contrast to the importance of jointly sampling θ and u.

5.5. Empirical comparison of sampling methods and recommendations

Based on the evidence provided in Sections 5.3 and 5.4, it appears that joint sampling of θ
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Table 4: ESS for log posterior density, ρ, and median (range) of 200 sample function values
by dataset when sampling is done using the parameterizations: 1.) {ρ, σ2} and 2.) {ψ1, ψ2}.
η2 is fixed at 0.32.

Parameterization
Quantity Dataset original: σ2, ρ Zhang: ψ1, ψ2

Data1 193 105

LP Data2 205 244

Data3 447 443

Data5 646 777

Data1 146 56

ρ Data2 145 157

Data3 414 431

Data5 289 426

Data1 597 (90-1808) 591 (89-1427)

f Data2 2137 (229-4231) 2154 (235-4274)

Data3 657 (307-3232) 656 (305-3169)

Data5 2021 (467-8971) 1972 (469-8879)

Table 5: Posterior correlations for (σ, ρ) and (ψ1, ψ2) when sampling is done using the pa-
rameterizations: 1.) {log σ, log ρ} and 2.) {ψ1, ψ2}. η2 is fixed at 0.32.

Parameterization
Dataset Posterior correlation original: log σ, log ρ Zhang: ψ1, ψ2

Data1 Cor(log σ, log ρ) 0.70 0.79
Cor(ψ1, ψ2) 0.15 0.24

Data2 Cor(log σ, log ρ) 0.81 0.84
Cor(ψ1, ψ2) 0.08 0.13

Data4 Cor(log σ, log ρ) 0.20 0.21
Cor(ψ1, ψ2) 0.26 0.26

Data5 Cor(log σ, log ρ) 0.56 0.56
Cor(ψ1, ψ2) 0.11 0.12
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Table 6: ESS for log posterior density, ρ, and median (range) of 200 sample function values by
dataset for the three parameterizations: 1.) modified Wikle with η2 fixed at 0.32, 2.) original
Wikle parameterization and sampling approach, and 3.) block sampling.

Sampling Method

Quantity Dataset modified Wikle original Wikle block sampling

Data1 193 NM 54

LP Data2 205 NM 25

Data3 447 NM 53

Data5 646 NM NM

Data1 146 NM 107

ρ Data2 145 NM 40

Data3 414 NM NM

Data5 289 22 NM

Data1 597 (90-1808) 125 (13-321) 551 (247-1166)

f Data2 2137 (229-4231) 56 (9-166) 473 (198-873)

Data3 657 (307-3232) 298 (106-737) 33 (7-139)

Data5 2021 (467-8971) 467 (127-1100) 25 (6-83)

and u in the modified Wikle parameterization greatly improves mixing, with deterministic
sampling of u better than full conditional sampling for u. Also, there is little improvement
from using the parameterization with ψ1 and ψ2.

Here I compare mixing for the three parameterizations in Section 4: the modified Wikle
approach with joint sampling of hyperparameters and coefficients, block sampling with joint
sampling of hyperparameters and coefficients, and the original approach of Wikle. Since the
latter is essentially the same as the modified Wikle approach with one extra layer, I do not
devise a joint sampling scheme for it, but rather consider mixing under the sampling approach
proposed by Wikle (2002) and Royle and Wikle (2005). In general, the modified Wikle
approach outperforms block sampling and the original Wikle approach. Table 6 shows that
for the simple function, block sampling is worse than the modified Wikle approach but shows
some degree of mixing, while for the more complicated function, the block sampling approach
does not appear to have burned in by 100,000 iterations. The original Wikle approach also
has not burned in, as judged by the log posterior density and ρ although the sample function
values appear to be mixing reasonably. Note that while the increase in sample size (from
Data1 to Data2 and from Data3 to Data5) seems to result in somewhat improved mixing, the
effect is not substantial.

A key question is how fine a resolution to use for the grid. While one does not want to
oversmooth by virtue of using too coarse a resolution, finer resolution estimation takes longer
to run and can exhibit slower mixing, because of the higher-dimensionality of the coefficients
that are fit in the MCMC. My suggestion is to use a grid that is fine enough for reasonable
prediction with the expected heterogeneity of the surface, but to make use of sensitivity
analyses to choose the grid resolution in light of mixing performance and computational
speed. For the simple simulated data with an effective value of ρ ≈ 0.3 (Data1 and Data2),
a resolution of k = 128 is probably more than sufficient for good prediction (even coarser
resolution might be sufficient), and runs with k = 256 and k = 512 showed slower mixing.
For the simulated data with ρ = 0.05 (Data3, Data4, and Data5), k = 128 also seemed to be
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sufficient. Mixing with k = 256 was not substantially degraded relative to k = 128, but for
k = 512, mixing was substantially worse.

These results suggest that mixing using the block sampling approach is substantially slower
than the modified Wikle approach, particularly with a more variable underlying process.
However, results may depend significantly on the form of the model and the exact data
used. In Paciorek and Ryan (2005), with a coarse grid, simple spatial functions, and binary
observations, mixing was reasonable using the block sampling approach. In a multivariate
setting within a complicated hierarchical model (Paciorek and McLachlan, in prep.), with
a compound Dirichlet-multinomial likelihood for 10 categories and a coarse 32 by 32 grid,
mixing was reasonable, albeit slow, with the block sampling approach, and the modified
Wikle approach provided no improvement and was slower to compute.

5.6. Starting values

Good starting values for the coefficients can be difficult to determine because of the high
dimensionality of the coefficients and lack of a maximum likelihood based estimate due to
the need for shrinkage in estimating the coefficients. In addition as described in Section 2.2,
a portion of the domain contains no observations. For the grid points not used to represent
the domain of interest

((
(0, 1)2

)C ∩ (0, 2)2
)
, it is helpful to initiate values for these buffering

grid points that keep the variability and spatial range features of the data similar across the
whole domain. This can be achieved by ’mirroring’ the initial values from the portion of the
domain in which the observations lie, as follows, in one dimension,

ĝ(sM ), . . . , ĝ(sM/2+2) ≡ ĝ(sM/2), . . . , ĝ(s2). (25)

In two dimensions, the mirroring occurs first across the the line s1 = 1 (for s2 < 1) and then
across the line s2 = 1, such that ĝ(sm1,m2) is defined, for m1 > M1/2+1 and m2 <= M2/2+1
as ĝ(sm1,m2) ≡ ĝ(sM1−m1+2,m2). For m2 > M2/2 + 1, take ĝ(sm1,m2) ≡ ĝ(sm1,M2−m2+2).

In the data augmentation scheme for normal data, we suggest using a gam() fit to estimate the
process values, predicting Ỹ values at unobserved locations using the fitted model, mirroring
the values, and then doing a Gibbs sample for the coefficients. In the Wikle approach, one
can estimate the spatial process at the grid points based on a gam() fit, assign these values
to z (λ in the modified Wikle approach) and initialize u via a Gibbs sample. For the block
sampling scheme, one might use gam() to estimate the process on the grid, ĝs# , add error
and mirror the values, and then estimate u = (γ2

η2 I +Σ−1)−1 γ
η2 ΨT (ĝs#−µ1), mimicing (19).

Some basic experiments with simulated datasets Data1, Data2, Data3, and Data5 suggest
little difference between starting the coefficients based on a Gibbs sample and starting at val-
ues simulated from the prior conditional on the hyperparameter starting values. Reasonably
rapid burn-in occurred when the coefficients were simulated from their prior, although mixing
for Data1 was slightly better for the Gibbs sample starting values. For the coefficients corre-
sponding to low frequencies, the long-run estimates are comparable for the different starting
values. However, it may be the case that the Gibbs sample starting values are useful in some
circumstances.

6. Discussion
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This paper introduces an R library for the Fourier basis representation of Gaussian processes,
pioneered by Wikle (2002), and provides template code for fitting Bayesian models for ex-
ponential family data. The code can be readily adapted for more complicated hierarchical
models as well. I discuss several possible parameterizations, including models allowing for
overdispersion, and describe potential nonidentifiability in the hierarchical model of Wikle
(2002) that may impact mixing. I document some of the critical issues affecting MCMC
mixing in these models, in particular, the difficulty in mixing for ρ in particular and the
dependence of mixing speed on the dispersion parameter, η2. In models with little noise
(interpolating models) or non-Gaussian data cases with little overdispersion, a small value of
η2 can substantially impede mixing. Based on a series of experiments with simulated Poisson
data, I recommend use of a modified version of the parameterization of Wikle (2002), with
an approach for joint sampling of the hyperparameters and the basis coefficients to more
efficiently sample the hyperparameters by tying them more closely to the data. In contrast,
while the block sampling approach of Paciorek and Ryan (2005) works only somewhat less
well for a relatively smooth spatial function, it mixes very poorly for a very unsmooth spatial
function. However, the block sampling approach has the virtue of avoiding the overdispersion
parameter that, if small, can hurt mixing and of simplicity, which may be helpful in more com-
plicated hierarchical models. I could not achieve reasonable mixing of the parameterization
and sampling approach suggested in Wikle (2002), presumably because of dataset-dependent
differences in mixing, but also possibly because of the difficulty in replicating Bayesian MCMC
schemes. Note that these recommendations and conclusions are based on qualitative rather
than exhaustive testing.

The critical smoothing parameters (ρ and either σ or γ) appear to be the parameters that
mix most slowly in the Fourier basis representation, as they are in many spatial models.
In particular, ρ changes the amount of smoothing, by changing the prior weights on the
basis functions, which vary in their frequency. Changing this parameter changes the form of
the model, analogous to adding or subtracting basis functions in a free-knot spline model.
Achieving reasonable mixing across model spaces is generally difficult.

Some alternative spatial models, such as thin plate splines and radial basis function models
with fixed basis functions (Kammann and Wand 2003; Ruppert et al. 2003) have modeled
spatial functions without estimating a spatial correlation parameter, relying solely on variance
components (in the radial basis model) to achieve smoothing. O’Connell and Wolfinger (1997)
relate the ratio of σ2 and η2 in a Gaussian setting to the smoothing parameter in a thin plate
spline model, and Nychka (2000) speculates that this ratio may be more important than the
spatial correlation parameter in smoothing noisy data. Zhang (2004) found that ρ and σ2

cannot both be estimated consistently under infill asymptotics. I experimented with fixing ρ
and forcing σ2 to perform the smoothing role, but found that the model did not estimate the
right amount of smoothing and predictive performance was poor. It may be that in this and
perhaps other spatial models, models with estimated values of ρ are more efficient. This issue
appears not to have been addressed thoroughly in the literature (but see Laslett (1994) and
invited comments) and deserves more attention.

One might explore more sophisticated MCMC algorithms to improve mixing. For example,
Christensen et al. (2006) develop a data-dependent reparameterization scheme for improved
MCMC performance and apply the approach with Langevin updates that use gradient in-
formation; while promising, the approach is computationally intensive, again involving n× n
matrix computations at each iteration, and software is not available. For the Fourier represen-
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tation the high-dimensionality and complex values of the basis coefficients pose an impediment
to such an approach. Based on the results here, I believe that proposals that jointly consider
the key hyperparameters and the basis coefficients are critical in achieving adequate mixing.
One drawback to the GP model presented here is its restriction to stationary GPs. Future
work on this model structure to allow for nonstationarity in the spatial process will con-
sider wavelet bases in place of the Fourier basis used here, in particular the two-dimensional
wavelet basis used by Matsuo, Paul, and Nychka (2006) to fit irregular Gaussian data in a
non-Bayesian fashion. However, mixing may be more challenging in a more complicated model
with additional hyperparameters. An alternative relates to the work of Pintore and Holmes
(2006), who have extended the Higdon/Paciorek/Stein (Higdon, Swall, and Kern 1999; Stein
2005; Paciorek and Schervish 2006) nonstationary covariance model based on kernel convo-
lutions to the spectral domain. This allows one to build nonstationarity based on a latent
process representing spatially-varying ρ or ν. Given the widespread interest in nonstationary
and space-time representations, fast computation for such models is of obvious interest, but it
is not clear how these covariance structures would be represented in the type of basis function
approach developed here.

7. Appendix: Template code

I provide R template code for various parameterizations and sampling approaches described
in Sections 4 and 5. The code makes use of the spectralGP library. The code uses easily
modifiable R functions for the loglikelihood, prior distributions, and Gibbs sampling; the
names of these will be obvious in the code. Also note that parameters take the form of R
lists, with components that will be obvious from the code. The code does not save iterations,
report acceptance rates, or adapt the proposal variances based on acceptance rates, but these
features could be readily added.
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