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Introduction 
A time series is a sequence of measurements equally-space through time or along some 
other metameter. The numbers of pregnancies each week in the JiVitA Project study in 
Bangladesh are shown in Figure 1 as an illustration.  

The study goal is to reduce maternal and infant mortality through population-
based randomized trial of vitamin A or beta-carotene supplementation (Joanne Katz, 
personal communications). Nearly 45,000 pregnant women have been randomized to 
receive different supplements. They and their babies are followed to observe their health 
outcomes. 

The pregnancy time series in Figure 1 has several interesting features. Most 
apparent is the seasonality in the numbers of pregnancies that tend to be higher in the 
early summer than winter months. We can also see some evidence that the weekly 
number of pregnancies is decreasing over time. Finally, on closer examination, it appears 
that the number of pregnancies in a week may be negatively associated with the number 
the few weeks before. That is, if there were more than expected pregnancies in a given 
week, fewer may occur in the succeeding weeks. This is another way of saying that 
nearby observations tend to be correlated in a time series. This correlation can be of 
interest, for example, when we are trying to predict the near future of the series or it can 
be a nuisance as it would be if we were trying to determine whether the downward trend 
in Figure 1 is likely to be a chance event. 

Figure 2 plots the correlation coefficient between the number of pregnancies for 
one week and the number u weeks later against the lag u from 1 to 20.  
 
As detailed below, this autocorrelation function (ACF) demonstrates that the 
observations in the time series can not be assumed to be independent as is done in most 
standard statistical analyses. The autocorrelation requires that special time series methods 
be used instead.  

The goals of time series analysis include simple description, explanation, 
prediction or control (9). The plots above are examples of descriptive analysis used to 
uncover patterns of potential scientific import. We typically use regression analysis to 
explain the dependence of a response time series Yt on predictor series X1t, … ,Xpt while 
taking appropriate account of the lack of independence among the time series 
observations. In the JiVitA example, we might use simple functions of time to explain the 
seasonality in the pregnancy data and to ask whether there is evidence of a systematic 
downward trend. If we are predicting a future response Yn+u using an observed series, we 
can regress the response at a given time on preceding responses and possibly also on 
covariates that are known into the future such as week in the example above. Finally, 
when the goal is to control a process, we use time series analysis to determine whether 
the process is systematically deviating from expectation and to identify changes to the 
process that will bring it back to the desired trajectory. In our example, we might be 
interested to know whether the downward trend is systematic and if so, how it might be 
reversed. Process control is particularly important in industrial applications and will not 
be considered here further.  

The interested reader who is familiar with regression analysis will find the book 
by Diggle (13) an excellent introduction to time series analysis for biomedical and public 
health research. For technical details about time series models and forecasting, the classic 
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text by Box and Jenkins (4) is recommended. A technical treatment of time series theory 
is given by Brockwell and Davis (5).  

This paper provides an overview of key ideas and methods for time series analysis 
of public health and biomedical data. We illustrate the problems and methods with basic 
analyses of the pregnancy time series and with reference to articles from the public health 
literature. We begin with a review of some ideas that underpin the statistical reasoning 
and methods for analyzing time series data. The next two sections discuss descriptive and 
explanatory methods in turn. We then summarize some of the recent public health and 
biomedical literature that uses times series methods and finally present two recent 
examples from our time series research that extend the simple methods in novel 
directions. 
  
Time Series as a Single Observation of a Stochastic Process 
Probability theory underlies statistical reasoning and practice. A central concept is the 
random variable Y that represents the outcome of an experiment or observational 
process. The adjective random implies that the variable can take different values, each 
with its own probability. The probability distribution P(y) for the random variable Y is 
just a listing of the probability the variable takes each of its possible values y. That is,  
P(y) =  Pr(Y=y).  For example, if Y is the number of live pregnancies in the first week of 
2004 in the JiVitA project, then Y can take any value from among the non-negative 
integers: 0, 1, 2, … Here, P(150) is the chance that exactly 150 babies will be born that 
week.  

In thinking about random variables, it is helpful to think of an urn with a large 
number of beads. Each bead has a value y written on it. When we do an experiment or 
make an observation, we choose a bead at random from the urn. The probability P(y) is 
then just the fraction of beads that have the particular value y written on them.  

A stochastic process {Y0, Y1, Y2, …} is a possibly infinite sequence of random 
variables ordered in time (39, 35). A time series is a single realization of a stochastic 
process. In the urn model, instead of a single number written on each bead, imagine a 
whole time series written there. With a random variable, we are interested in the 
probability the variable takes each of its possible values. With a stochastic process, we 
can ask the same question about the random variable at every time or about combinations 
of them. For example, we might be interested in the probability that Y7 is greater than 
200 or the joint probability that none of Y0, Y1, …,Y10 exceeds 300. 

We typically obtain multiple independent observations on a random variable. For 
example, in National Medical Expenditure Survey (34), the annual medical expenditures 
for roughly 30,000 persons were sampled. Johnson et al. (27) and many others have used 
these data to estimate the mean expenditure for the population or for persons who suffer 
from a major smoking-caused disease.  

In contrast, a time series is a single observation on the stochastic process. We 
want to make an inference about the properties of the underlying stochastic process from 
a single realization, a single observation at each time. With longitudinal data, we observe 
a short time series for each of a large number of subjects (14).   

For example, in the pregnancies example, there is only one series to contemplate. 
Then how can we talk about the probability that the number of pregnancies in week 7 
exceeds 200? It either did or did not.  
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There are two related concepts that make possible the use of probability in time 
series analysis. The first is the assumption of stationarity (35). A stochastic process is 
stationary if the probability distribution of the random variables at a set of times (t1, t2, 
…, tn) is the same as the distribution of the variables at the times (t1+τ, t2+τ,, …, tn+τ), 
that is, if the times are all shifted by the same amount τ. Stationarity says that the 
probability distribution of any set of n variables depends only on their relative, not 
absolute times. If we let n=1, the stationarity implies that the individual observations all 
have the same univariate distribution, in particular, same mean and variance. Under this 
assumption, we can use the replication over time in a time series to make inferences 
about the common mean, variance and other statistics. The ability to make valid 
probability statements by looking over time rather than across replicates at one time is 
called ergodicity (35), the second, closely-related concept. 

A key consequence of the assumption of stationarity is that the degree of 
dependence between two random variables in the stochastic process decreases as the time 
interval between them increases. That is, two observations far enough apart in time are 
essentially independent. This implies that by following a process longer in time, new 
independent information will be accumulated.  

Longitudinal data comprise many, usually shorter, time series. There is a very 
important distinction between time series and longitudinal data analysis (e.g. 14). With a 
single sequence, we must rely on the assumption that observations far enough apart in 
time are approximately independent. When this is true, the amount of information about a 
parameter increases proportional to the number of observations. 

With longitudinal data, we assume that the short time series for individuals are 
independent. We do need to make the stronger assumption that the correlation between 
repeated observations on the same person dies away to 0.0 with increasing time 
separation.  The key sample size is the number of people, not observations for each 
person.  The analysis of longitudinal data is closer to multivariate analysis, in this sense. 

For many regression problems, one can think of creating longitudinal data from 
one long time series by breaking the series into shorter blocks that are long enough so 
that most of the correlation exists within blocks and observations from different blocks 
are approximately uncorrelated. Then inferences can be made robust by borrowing 
strength across independent blocks rather than relying on an assumed autocorrelation 
structure within blocks. This is the idea behind bootstrapping of time series. See for 
example Li & Madalla (28). 
 
Why Time Series Analysis 
The most important assumption is standard regression analysis is that the multiple 
observations are independent of one another. For example, in a study of smoking as a risk 
factor (X) for cardiovascular disease (Y), we assume that the presence of absence of 
disease for one participant is independent of this response for every other participant. The 
idea is that each observation provides new evidence about the association of Y with X. 
We quantify the amount of evidence when we calculate standard errors, confidence 
intervals or hypothesis tests for regression coefficients. If the data are not independent, 
the usual inferences are not correct.   
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With time series data, we expect that neighboring observations are correlated with 
one another, so each observation does not provide entirely independent information and 
the usual regression formulae for standard errors and other inferences are not valid. 

To illustrate, consider the question of whether the pregnancy process underlying 
the time series in Figure 1 has a decreasing mean. We address this question through the 
simple model Yt = β0 + β1t  + εt,  t = 0, 1, …,n where β1 is the rate of decrease in the 
expected number of pregnancies per week. If β1=0, there is no trend. We will assume for 
the moment that the obvious seasonality in the series is the result of autocorrelation in the 
εt, not a systematic component as is actually more realistic given our understanding of 
seasonal influences on pregnancies in Bangladesh.  

Suppose we use ordinary least squares to regress pregnancy counts on time, 
thereby ignoring the correlation among the residuals. The estimate of β1 is -0.43 with 
reported standard error 0.15. Hence, there appears to be strong evidence of a downward 
trend. While the slope estimate from least squares is unbiased in the presence of 
autocorrelated errors, the estimate of its standard error is incorrect. A valid estimate can 
be obtained if we assume that the residuals are a realization of a stationary stochastic 
process. In this case, we obtain a correct estimate of 0.51, more than 3 times as large. 
Using the correct standard error, we reach a different conclusion about the trend. Given 
that the series εt is clearly autocorrelated, we can not conclude that there is a real 
downward trend. 

So the first reason to use time series methods is to obtain valid inferences.  The 
second reason is to obtain efficient estimates and inferences. The least squares estimator 
of the slope is the unbiased estimator with the smallest possible variance when the 
residuals are uncorrelated and have equal variance over time. In the presence of 
correlation, there is another linear estimator with smaller variance. If we assume the 
estimated autocorrelation function is the true one for this problem, then the optimal 
estimate of the trend is -0.42 with standard error 0.45. This standard error is 0.06 smaller 
than the standard error (0.51) for the least squares slope. Hence, by using optimal time 
series methods, we can reduce the standard error of the slope by 10% percent. This is like 
having roughly 30 [=(.51/.45)2 * 149] more observations. In summary, using time series 
methods produces valid and more efficient inferences.    
 
Trend or Autocorrelation; Fixed or Random Variation 
The need to assume stationarity does not prevent us from modeling processes that change 
over time. As illustrated above, we can decompose the stochastic process Yt = St(β) + εt 
where St is assumed to be a systematic change in the level of the process over time that 
can be represented by  a small number of parameters β and εt is a stochastic process of 
deviations about the trend that we more reasonably assume form a stationary process.  

In the regression above, we decomposed the time series into a linear trend and 
residual series that we assume is stationary. But there is also obvious seasonality in the 
residuals. Trends and seasonal fluctuations can arise from either systematic or random 
events. Whether we treat these variations as part of the systematic or random component 
depends on our beliefs about the underlying process during the period of observation and 
beyond. 

Figure 3 shows four monthly data sets simulated from the simplest time series 
model Yt = ρ Yt-τ + at, t=1, 2,…,n  where the at are independent and identically 
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distributed normal variates with mean 0 and common variance. The four series 
correspond to the values of ρ = 0.5 and 0.99; τ = 1 and 12.   

Note in panel (a) (ρ = 0.5; τ = 1), the series looks stationary because the 
autocorrelation is modest. In panel (b) (ρ = 0.99; τ = 1), the correlation at lag one is near 
1.0 and the series meanders with trends that persist for extended periods. Panels (c) and 
(d) demonstrate that seasonality can appear if the current monthly value depends on the 
one 12 observations ago.  

Whether a longer-term trend represents the “meandering” of a stationary process 
that will eventually reverse itself or whether it represents a trend that will persist can 
usually not be clearly established from a finite record, alone. This is the core of the 
argument about global warming (26). The preferred model must be determined by 
external evidence about the mechanisms that give rise to the observed trends.   
 
Descriptive Time Series Analysis 
In descriptive analysis, the objective is to create data displays and summary statistics that 
lead to a better understanding of the variation in the response over time. For example, we 
want to understand factors that influence the pregnancy rate in the JiVitA Project 
population.  The time series plot shown in Figure 1 is the simplest and often most 
effective tool. It makes apparent a downward trend, seasonality and possibly 
autocorrelated residuals.  

A time series plot can be enhanced by adding a smooth curve that highlights 
trends amidst the variation. Inherent in smoothing is a decomposition: Yt = St + Rt where 
S and R are the smooth and rough parts of the series, respectively. The simplest 
smoothing methods are the running mean and running median of length 2m+1. Here, the 
smooth value at time t is just the average (mean or median) of the Yts from t-m up to 
t+m. The degree of smoothness of the St that is produced increases as m increases. The 
averaging interval 2m+1 is called the bandwidth of the smoother. Running medians are 
insensitive to outliers but tend to produce undesirable discrete jumps in the resulting 
smooth curve. An iterated combination of running medians, then means produces the 
resistance to outliers of the median and the smoothness of the mean (45). Running means 
are a special case of kernel estimators of St obtained by taking weighted averages of 
neighboring observations. Usually, we choose weights that decrease as we move away 
from t. Other popular methods of smoothing include smoothing splines and wavelets. 
Hastie et al. (23) present an overview of smoothing methods. 

In many problems where there are different mechanisms operating at different 
time scales, it is natural to decompose a time series into more than two components, that 
is we let Yt = S1t + S2t + … + Spt + Rt. In the pregnancy time series, it makes more sense 
to assume the pregnancy process is the sum of three terms: a long-term trend that reflects 
the changing population, seasonality that results from the demands of an agrarian society 
and the effects of weather and residuals that can be assumed to be stationary (11). Figure 
4 shows this decomposition.  If we calculate the autocorrelation of the residuals after 
removing the long-term trend and seasonality, we discover a statistically significant 
negative autocorrelation at a lag of 3 weeks. This discovery, not readily apparent in the 
original series, is discussed further below. 

In studies of the association of daily mortality with air pollution (e.g. 2), the daily 
time series can usefully be decomposed into annual trends, seasonality, monthly 
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variation, weekly variation and daily variation. One motivation for this decomposition is 
that air pollution and confounders have different influences at the different time scales. 
For example, annual trends are influenced by changing: medical practice, population size, 
smoking rates and other slowly varying factors. The seasonal component reflects the 
effects of infectious disease epidemics and weather. The daily variation includes the 
effects of acute but not chronic exposure to air pollution. This decomposition has been 
used to estimate a pollution-mortality association that is less sensitive to confounding and 
robust to “harvesting” where only the very frail are affected by pollution (49).  

It is possible and often desirable to decompose a time series into nearly as many 
component series as there are observations. The discrete Fourier transform (DFT)  
(3) and discrete wavelet transform (7) are examples. To obtain a DFT, a time series of 
length n (here assumed odd) is re-expressed exactly as its mean plus the sum of (n-1)/2 
cosine waves with frequencies 1, 2, …, (n-1)/2 cycles in the length of the series,  each 
cosine having arbitrary amplitude and phase. The periodogram is the squared amplitude 
of each cosine plotted against frequency as shown in Figure 5 for the pregnancy data. The 
jth value is the amount of variation that can be explained by regressing the time series on 
a cosine wave that completes exactly j cycles in the length of the data. 

The spectrum of the underlying stochastic process is defined as the expected value 
of the squared amplitude. It is estimated poorly by the periodogram each of whose values 
is approximately proportional to the spectrum times an independent χ2 random variable 
with 2 degrees of freedom. Because the χ2 component is so noisy and because the true 
spectrum for a stationary process is likely smooth, a better estimate of the spectrum is 
obtained by using a running mean of the periodogram ordinates (3). The spectrum is the 
Fourier transform of the true autocorrelation function for the process. 

In Figure 5, the utility of the periodogram and estimated spectrum is apparent. 
Notice the relatively higher values at the lowest frequencies (longest periods), in 
particular at the annual frequency (1 cycle per each year of data). These large squared 
amplitudes reflect the trend and the seasonality in the data set. However, there are also 
smaller peaks corresponding to periods of roughly five and two and a half weeks. The 
first peak reflects some near-monthly process in the data. The 2.5 week peak is likely its 
first harmonic indicating that its shape is not exactly like a single cosine. These spectral 
peaks raise the question:  is there a mechanism in this population that is producing a five-
week cycle in the numbers of pregnancies? The investigators have an explanation. The 
data collection system divides women into 5 administrative groups for ascertaining 
pregnancies. Each group is visited once per 5 weeks. The numbers of women in the 
groups are not exactly equal. Hence more births are discovered in some batches than 
others producing this cycling in the total pregnancies. While this finding is not of 
scientific interest, it does demonstrate the usefulness of decomposing the data into 
components and of frequency domain methods for uncovering patterns of potential 
interest.   

Frequency domain methods like these are commonly used in biomedical and 
public health research. Recent papers illustrate applications to the study circadian 
rhythms (e.g. 38), brain function (e.g. 36) and heart performance (e.g. 47). 
 
Overview of Time Series Regression Models 
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When the objective of statistical analysis is explanation, we model the dependence of a 
response process Yt on one or more predictor time series Xt that are assumed to be fixed, 
not random. Explanation is done using regression analysis. A key assumption of the 
standard regression model is that the responses are independent of one another after 
adjusting for predictor variables. With time series data, neighboring values of Y tend to 
be correlated. The correlation must be taken into account to make valid inferences about 
the parameters of the process. 

With a time series rather than a scalar response, we can predict Yt using the past 
responses Yt-1, Yt-2,…,Y1 alone or in combination with covariate series Xt. Autoregressive 
models (AR) are an example of the former. Distributed lags models are an example of the 
latter. AR models are discussed in more detail below. Distributed lags models are used in 
studies of air pollution and mortality. See the recent paper by Bell et al. (2) for examples 
and further references. 

Public health research gives rise to discrete as often as continuous responses. For 
example, in an intervention study to reduce smoking, the response might be a time series 
of daily binary indicators of whether a participant smoked or not on that day. Or, it might 
be the number of cigarettes smoked each day, a counted response. 

With a scalar response for each subject, generalized linear models (GLMs; 31) 
have unified regression analysis for binary, count and continuous outcomes. Linear, 
logistic, probit, log-linear and inverse regression models are special cases of GLMs. Most 
of the time series ideas and methods discussed here for contiinous outcomes have 
extensions to the GLM family. Below, we briefly illustrate how time series models can be 
formulated for discrete as well as continuous responses. 

In some problems, the response Yt is not only influenced by the predictor series 
Xt, but it also influences Xt+1 and/or other future values of the predictor series. For 
example, suppose we are interested in the effect of vitamin A deficiency (X) on the risk 
of acute respiratory infection (ARI) (Y). The question is whether vitamin A deficient 
children are at increased risk of ARI? But in this case, scientists believe that ARI may 
deplete the stores of vitamin A in the liver and cause deficiency. So there is a feedback 
loop whereby poor nutritional status gives rise to a greater risk of infection that further 
depletes the stores of micro-nutrients producing more infection, poorer health and 
possibly death (41). With feedback like this, a full understanding of the relationship of 
the two series requires their joint modeling, not only a regression of Y on X. One way to 
build a joint model is in two parts: a regression of Yt on Xt; and a regression of Xt on Yt-1 
and other variables from the past of the Y process. Work on multivariate time series is 
summarized by Reinsel (37). In the context of many short time series, also see the recent 
book by van der Laan & Robins and references therein (46). 
 
Strategies for Regression Models with Time Series Data 
There are two primary types of time series models: marginal models; and conditional 
models given past observations. In both, we condition on the history of the Xt series so 
we suppress the conditioning on the predictor variables to simplify the notation below. 

A marginal model has as its primary target, the expectation of Yt (given the 
covariate time series). We do not condition on the past responses Yt-1, Yt-2,…,Y1. 
Because the time series of observations are autocorrelated, we must simultaneously 
model the correlation between all pairs of observations. Hence, the model has two parts: 
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the usual regression model for the mean as is done for independent observations; and a 
second model for the autocorrelation function. 

A simple marginal linear model is given by: 
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The model for the mean is a standard regression analysis. Its parameters, β, have the 
same interpretation as in ordinary linear regression analysis. The model for the 
covariance among pairs of responses u time intervals apart is assumed to decrease 
exponentially with u. Here, ρ is the correlation of two response variables one time unit 
apart. This particular autocorrelation function is for a first order autoregressive process 
(AR-1) because it arises if the data are generated by: 
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where at is a “white noise” time series comprised of independent observations with mean 
0 and common variance σ2/(1−ρ2). Note this is an ordinary regression model but each  
residual can be expressed as a linear combination of the one that came before plus  an 
independent error. The name “autoregressive process” refers to the second equation 
above in which the residuals at one time are a function of them previous one(s). 

With a binary time series, the analogous marginal logistic model is given by: 
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where  is the odds ratio, a measure of association for two binary responses u 
times apart that is assumed to be a linear function of u characterized by unknown 
parameters, θ. For a marginal model like this one, the interpretation of the regression 
coefficients, β, does not depend on the assumption made about the log odds ratio. With 
binary responses, it is better to specify the model for the associations in terms of log odds 
ratios rather than correlations that are constrained by the mean. He we assume the odds 
ratio decays exponentially with the lag u. This binary equivalent of the autocorrelation 
function has been investigated by Heagerty & Zeger (24) who termed it the lorelogram. 

),( utt YYOR −

An alternative formulation is to model the conditional expectation of the response 
variable as a function of: the covariates, Xt, but also the past responses, Yt-1, Yt-2,…,Y1 .  
In this case, we are combining the model for the dependence of Y on X with the model 
for the autocorrelation by including the prior Y values as predictors. We typically assume 
that the response at time t depends on only the most recent responses, for example 
from times t-1 and t-2. 

In the linear regression case, a basic conditional model has the 
form: 

tptpttt aYYXY ++++= −− ααβ L11     4. 
Where the at are assumed to independent and identically distributed, mean zero random 
variables with common variance. Because the model above assumes that Yt depends only 
on the p previous responses, it is an example of a Markov chain of order p.  
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This formulation is commonly used in economics. Statisticians tend to prefer a 
different parameterization of the same model: 

tptptptttt aXYXYXY +−++−+= −−−− )()( 111 βαβαβ L .  5. 
In this version, we regress the response on the deviation of prior responses from their 
mean, rather than on the responses themselves. By doing so, the marginal expectation 
E(Yt|Xt) = Xtβ so that the regression coefficients, β, in this conditional model also have a 
marginal model interpretation. The two models immediately above give exactly the same 
predictions. The distinction between these two formulations has been discussed in detail 
by Louis (29). 

With binary responses, an example of a conditional model is 

ptptt
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The interpretation of a coefficient βj is the log odds ratio comparing the probability of 
response for persons whose Xj values differ by one unit and who have the same past p 
responses. Since in this model there is no interaction of the predictor variables X with the 
past responses, the interpretation of βj is the same for every history, Yt-1, Yt-2,…,Yt-p. If 
we consider the case where the outcome is a disease presence/absence and all past 
responses 0s, then this can be seen to be a model for disease incidence. In this case, a 
marginal model is for disease prevalence.  Diggle et al. (14) discuss the use of this 
conditional model for modeling disease incidence and maintenance in the context of 
many shorter time series. 

To illustrate the difference in the two parameterizations of the linear time series 
model above, we have regressed the JiVitA weekly number of births on: a linear trend;  
sine and cosine terms with 52 week and 26 week periods to represent seasonality; and on 
the number of births in each of the two previous weeks. We fit the model using the past 
birth numbers themselves and then their residuals corrected for trend and seasonality. In 
the former, the trend estimate is -0.50 (95% CI: -0.72, -0.27). It is the decrease per week 
in the expected number of births but comparing weeks whose recent histories are 
identical. In the second model, the estimate is -0.79 (95% CI: -1.08, -0.50).  Once the 
seasonality is controlled for using the harmonic terms, this model allows us to conclude 
that the births in this study population are decreasing by 0.79 per week or roughly 40 per 
year. Once seasonality is modeled, the evidence is strong that the trend is not due to 
chance alone.  
 
Autoregressive Moving Average (ARMA) Models for Gaussian Processes 
The autocorrelation function (ACF) for a first order autoregressive model decays 
exponentially with lag.  In general, the ACF for an AR-p model is mixtures of 
exponential functions that decay or oscillate to zero with increasing lag. The regression 
form of the AR-1 model above makes it clear that, given Yt-1, the correlation of Yt with 
Yt-u, u>1 will be 0.0. In general, this conditional correlation of Yt with Yt-u, given the 
intervening observations Yt-1, …, Yt-u+1, is called the partial autocorrelation function 
(PACF). It is useful to determine whether to increase the order of an autoregressive 
model because for an AR-p model, the PACF is non-zero for u ≤p and 0 otherwise. 
Autoregressive models adequately describe the autocorrelation functions observed in a 
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wide range of public health and biomedical problems and are easy to use with standard 
regression programs. 

In some problems, however, the autocorrelation is large for only a few lags and 
then drops to near 0.0, rather than decaying exponentially with lag. Here, we use a 
moving average (MA-q) model defined 

qtqttt aaaY −− +++= θθ L11      7. 
where the at are independent Gaussian (normal) variables with mean 0 and constant 
variance. The MA model describes the observed process as a finite linear combination of 
independent innovations. Its ACF is non-zero for exactly the first q lags and zero beyond. 
Its PACF is a mixture of exponentials or damped harmonics, like the ACF for the AR 
model. 

Finally, the ARMA-(p,q) model is a combination of the two models. The ARMA-
(1,1) is particularly useful because it can arise when an AR-1 process is observed with 
error (13). The classic text on ARMA modeling is by Box & Jenkins (4) who introduced 
the modern approach to time series modeling.  

ARMA models are stationary by their definition and hence do not have long-term 
trends that take the process far from its mean level. When time series data display a clear 
trend, a stationary model is not appropriate. We discussed above including predictor 
variables, for example simple functions of time, to deal with trends. But another approach 
is to assume process change, not the process itself, is stationary. The simplest model of 
this type is the random walk where the change from one time to the next is a Gaussian 
variable with mean zero and constant variance. This process can meander far from its 
zero mean. The random walk is a special case of an ARIMA-(p,d,q) model or 
autoregressive, integrated, moving-average model where an ordinary ARMA-(p,q) model 
is assumed, not for the data, but for its dth difference. See Box & Jenkins (4 ) for details. 
 
Non-linear Time Series Models 
The term “non-linear” time series refers to models where there are systematic departures 
from the Gaussian, ARMA framework described above. There are many interesting ways 
to formulate such models. We have already mentioned the generalized linear model (31) 
extensions of autoregressive models for binary, count and other non-Gaussian data. 
Diggle et al. (14) discuss GLMs for time series in detail. Log-linear models for time 
series of counts were developed by Zeger (48) and have been modified and applied by 
many investigators in studies of air pollution and morbidity and mortality (e.g. 2).  

Another simple way to extend autoregressive models and create non-linearity is to 
adopt an AR-p model but allow the conditional variance of Yt given the past to depend on 
the past observations as the conditional mean does. These autoregressive conditional 
heteroscedastic or ARCH models, first introduced by Engle (16), can account for periods 
of increased variation in a process that might reflect a sudden increase in instability of the 
underlying process.  

Also in the AR family, a non-linear model results if we assume that the past 
responses influence the current one through a non-linear function. For example, we might 
assume that the two previous responses predict the current one by: 

21122211 −−−− ++ tttt YYYY ααα . The interaction would allow two successive extreme values 
to have a greater influence than would be predicted by their individual effects.  
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There is close connection between non-linear time series models and chaos theory 
or dynamical systems (19). The simple deterministic equation Yt = rYt-1(1-Yt-1) was first 
discovered by Robert May (30) to produce stochastic looking time series for a certain set 
of values of r. This equation is a deterministic analogue of a non-linear first order 
autoregressive process. The connections between non-linear time series models and 
dynamical systems are developed by Tong (44) and references therein. 
 
Recent Applications of Time Series Analysis 
Papers reporting time series analyses are wide spread in the biomedical and public health 
literature. A search of PubMed for the term “time series analysis” in the titles or abstracts 
of English publications identifies 999 papers, 798 since 1990.  This section gives a brief 
overview of clusters of topics or disciplines where time series methods have been most 
commonly employed in recent years to demonstrate the flavor and diversity of 
applications and to provide the reader with entrée to specific areas that may be of further 
interest. 

The explosion of biotechnology has increased the rate and complexity of data 
acquisition producing single time series or large collections of time series in the basic 
sciences. For example, gene expression is now repeatedly measured through time 
creating tens of thousands of time series that are to be analyzed simultaneously to 
describe molecular and cellular processes (42; 17). To date, most investigators have 
applied ordinary least squares regression to the data. Because autocorrelation is ignored, 
standard errors of regression coefficients will not be valid, but if the nature of the 
autocorrelation is similar across genes, the relative ranking of coefficients across genes 
will be correct. 

Time series analysis is also common in physiologic studies. For example, 
DiPietro et al. (15) used advanced sonography to monitor fetal neuro-development.  They 
have studied the psychophysiology of the maternal-fetus relationship by monitoring 
maternal heart rate and skin conductance in tandem with fetal heart rate and motor 
activity at various times during gestation. As detailed in the example in the next section, 
they use cross-correlation functions to quantify the evolving interaction of mother and 
fetus. 
  In physiologic research, image analysis has dramatically increased the demand for 
time series studies. Positron emission tomography (PET) and functional magnetic 
resonance imaging (fMRI) produce what is inherently time series data. The signal to 
noise ratio is small for both technologies making more sophisticated times series models 
attractive. With fMRI, the scientific focus is on oxygen consumption while oxygen 
transport is directly observed. This necessitates adjustment for hemodynamic delay using 
time series techniques.  With fMRI, it is common to obtain a time series at each of 10^5 
or more voxels (positions) in the brain. Hence, time series analyses are repeated this 
many times, once at each position and the parameters, usually regression coefficients are 
then summarized in maps. This approach, implemented as Statistical Parametric Mapping 
or SPM was introduced by Friston and colleagues (18) and is supported by software from 
the Wellcome Trust in England. 

In critical care medicine, new technology has made it possible to simultaneously 
acquire at high sampling frequency, time series on many physiologic processes, to store 
and analyze these data to monitor patient health status and to predict outcome. For 
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example, Goldstein et al. (20) describe a system in a pediatric intensive care unit that 
samples and stores 11 different physiologic variables once per second. Goldstein and co-
authors (21) have previously illustrated the application to heart rate variability of time 
and frequency domain time series methods to track patient status and to predict outcomes. 
Clinical guidelines using such analyses have been developed (43). Non-linear dynamic 
models and the associated chaos theory has even attracted the attention of critical care 
physicians monitoring patient status (22). 

Time series methods have had substantial use in basic epidemiologic studies of 
infectious and chronic diseases. A recent monograph of statistical methods including time 
series models for monitoring population health is by Brookmeyer & Stroup (6). An 
illustration of times series methodology is given by Checkley et al. (10) who studied the 
effects of el Nino-driven variations in temperature on hospital admissions for diarrhoeal 
diseases in Peru. Allard (1) reviews the use of time series methods for tracking infectious 
disease processes.  

In environmental epidemiology, time series models are used to characterize the 
variation in environmental conditions and to investigate the relationship of exposures to 
health outcomes. Modern time series studies of air pollution and health began in the 
1970s. For example, Hexter & Goldsmith (25) studied the association of daily mortality 
in Los Angeles county with levels of carbon monoxide. Since then, there has been an 
explosion of time series research on the association of particulate and other air pollution 
measures with daily hospitalizations and deaths in individual cities and across the U.S., 
Europe, and Canada. See Bell et al. (2) for an excellent review of the history of this work 
and for an extensive bibliography. 

Health services researchers employ time series to evaluate planned and unplanned 
interventions. For example, Meara and colleagues (32) used the autoregressive regression 
analysis described above to estimate the change in time trends for percentages of 
newborns receiving medical services associated with national and state legislation that 
mandated such services be provided. They show that legislation in the Ohio Medicaid 
population was associated with a dramatic change from an increasing to decreasing trend 
in the fraction of newborns discharged from the hospital within one day. Similar methods 
were used to quantify the effects of the SARS epidemic on medical expenditures in 
Taiwan (8) and to  test the effects of Florida’s repeal of its motorcycle helmet laws on 
traffic fatalities (33).  

Finally, demographic analyses of population health status often involve time 
series methods. For example, Shmueli (40) fit a time series regression model to estimate 
the effects of income inequality as measured by the Gini Index on life expectancy and 
infant mortality over a 21 year period in Israel.  A short distributed lags model was 
assumed so that  health outcomes could depend on the degree of inequality from multiple 
recent years.  
 
Recent Examples 
This section presents two recent examples of exploratory time series analyses using time 
and frequency domain methods. In each case, simple displays of the data using the 
methods described above make apparent characteristics of the underlying process that are 
worth investigating further.  
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Fetal monitoring: DiPietro and colleagues (15) acquired measurements of fetal heart 
rate (FHR) and fetal movement (FM) 5 times per second for a 50 minute period on 120 
mother-fetal pairs who were monitored in this way at 20, 24, 28, 32, 36 and 38-39 weeks 
of gestation. Since FHR and FM are simultaneously recorded, this is an example of a 
multivariate time series where Yt is a vector with two entries, call them Y1 and Y2. Figure 
6 displays these data for one monitoring session. 

It is well known clinically that in the third trimester, large fetal heart accelerations 
are associated with fetal activity. A relatively straight-forward time series technique, the 
cross-correlation function, provides a visual description of how these associations 
develop with weeks of gestation. As described above, the autocorrelation function ρ(u) is 
the correlation for values of a series at time t with those from the same series at time t-u. 
By the stationarity assumption, we estimate ρ(u)  by the sample correlation coefficient for 
the pairs (Yt, Yt-u) for t=u+1, u+2,…,n.   

The cross-correlation function ρ12(u) between two series Y1t and Y2t is just the 
correlation between observations from Y1 at time t with those from Y2 at time t-u, that is, u 
times before. We estimate ρ12(u) by the sample correlation coefficient from the pairs (Y1t, 
Y2 t-u). Note that ρ12(u) can be different for positive and negative lags while the 
autocorrelation function  satisfies ρ(u) = ρ(-u).  

Figure 7 is a descriptive plot of the average, over individuals, of the cross-
correlation functions for FM and FHR for each gestation week. Notice that a peak cross-
correlation at lag of approximately -6 seconds (FM leads FHR) starts to appear at 24 
weeks of gestation. As the fetus gets older, this peak grows and becomes more clearly 
defined. This result, first discovered by DiPietro et al. (15) captures a potentially 
important characterization of the development of the cardiovascular system of the fetus.  
 
Mapping Brain Function: Electrocorticographic (ECoG) signals are brain electrical 
potentials recorded by electrodes placed on the cerebral cortex of subjects undergoing 
surgery for intractable epilepsy. In this study, ECoG signals were recorded on a grid of 
48 electrodes to localize seizure foci and to map brain functions (12). These signals were 
recorded 1000 times per second while subjects performed cognitive and motor tasks. 
Each session produced a time series vector with an entry for each of the 48 electrodes. In 
Figure 8, we see time series obtained for one electrode for 10 trials of the same motor 
task. In general, the first 1.4 seconds “look different” from the remaining 1.6 seconds; the 
signals appear to be non-stationary. Notice the average of the signals is not a useful 
quantity. This is because the signals are out of phase, that is, have their minima and 
maxima at different times and therefore average out to 0. This is a case where it is more 
convenient to consider the periodogram and spectra, collectively called frequency domain 
statistics.  

Each of the 47 2-dimensional plot in Figure 9 corresponds to an electrode. The 
horizontal axis is time from 0 to 3 seconds. Because of the change in the look of the 
series over time, the periodogram and spectrum for each electrode was estimated for bins 
of time moving from left to right. The vertical axis represents frequency with slow 
fluctuations at the top and faster ones at the bottom. The color represents the estimated 
value of the spectrum which measures the size of the fluctuations at each frequency 
according to the scale on the right.  
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This descriptive display shows that the time series for the electrodes 
corresponding to the lower right part of the array in Figure 9 have substantial variations 
at the longer-time scales (red color at top of the plots). Of particular interest is the 
dramatic change in activity in column 6, rows 3 and 4 between 0.5 and 1.0 seconds into 
the trial at frequencies between 8 and 13 Hz. Variation at these frequencies is “turned 
off” as the subject does the task. These frequencies are obviously essential to this 
particular brain function (12). This part of the brain should not be disturbed if the skill to 
perform this particular task is to be preserved after the surgery.  
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Figure 1. Number of live pregnancies per week to women participating in the JiVitA 
Project in Bangladesh for 149 consecutive weeks starting in August.  

 
Figure 2. Autocorrelation function (ACF) for the data shown in Figure 1 with boundaries 
for testing the hypothesis of no correlation.   
 
Figure 3. Four random series from stationary processes illustrating apparent trends and 
seasonality. 
 
Figure 4. Decomposition of the pregnancy number time series (top panel) into thee 
components: trend, seasonality and residuals. 
 
Figure 5. Periodogram (o) and spectrum estimate (line) for the pregnancy time series. 
 
Figure 6. Time series plots of fetal movement (above)and fetal heart rate (below). The red 
line in the first plot is at 15, which is used as the threshold for defining a movement 
event. The red line in the second plot is an estimate of the base line measurement 
obtained by applying a running mean with bandwidth of approximately 5 minutes.  
 
Figure 7. Average of sample cross-correlation functions for all fetuses for the different 
gestation weeks. The yellow shades are point-wise standard deviations. 
 
Figure 8. Time series obtained from one electrode for 10 of the 50 trials and averages 
taken over the 10 replicates and over all 50 trials.  
 
Figure 9.  Estimates of the time-varying spectra of the signals obtained for the 47 
electrodes. The top left electrode was defective and is not shown. The positions of plots 
on the grid are related to the positions of the electrodes on the brain. The colors represent 
log spectrum estimate. 
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Figure 3 
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