Collection of Biostatistics Research Archive COBRA Preprint Series

Year 2007

Paper 28

Assessment of Sample Size and Power for the Analysis of Clustered Matched-Pair Data

William F. McCarthy*

*Maryland Medical Research Institute, dr.w.f.mccarthy@gmail.com This working paper is hosted by The Berkeley Electronic Press (bepress) and may not be commercially reproduced without the permission of the copyright holder.

http://biostats.bepress.com/cobra/art28

Copyright ©2007 by the author.

Assessment of Sample Size and Power for the Analysis of Clustered Matched-Pair Data

William F. McCarthy

Abstract

This paper outlines how one can determined the sample size or power of a study design that is based on clustered matched-pair data. Detailed examples are provided.

This paper outlines how one can determined the sample size or power of a study design that is based on clustered matched-pair data.

As a review, the following 2 x 2 table is used to summarize the results of a study based on K clusters of matched-pair data:

Procedure 2		Procedure 1		
	Success		Failure	
Success	$\sum_{k=1}^{K} a_k$		$\sum_{k=1}^{K} b_k$	$\sum_{k=1}^{K} (a_k + b_k)$
Failure	$\sum_{k=1}^{K} c_k$		$\sum_{k=1}^{K} d_k$	
	$\sum_{k=1}^{K} (a_k + c_k)$			$\sum_{k=1}^{K} n_k = \mathbf{N}$

 Table 1. McNemar's-Like Table for K Clusters of Matched-Pair Data.

The following table is used to summarize the data for non-clustered matched-pair data:

 Table 2. McNemar's Table for Non- Clustered Matched-Pair Data.

Procedure 2		Procedure 1		
	Success		Failure	
Success	а		b	a+b
Failure	С		d	
				a+b+c+d=N
	a+c			
Collection	of Biostatisti			
Resea	rch Archive			

Procedure to determine sample size of a study design that is based on clustered matched-pair data.

- 1. Initially assume that a non-clustered design will be used.
- Specify the design parameters for the proposed study. 2.
 - a. $\alpha = 0.05$, two-sided
 - power = 80%b.
 - c. proportion of matched-pairs with Procedure 1 [Success], Procedure 2 [Success] = 0.03
 - proportion of matched-pairs with Procedure 1 [Success], Procedure 2 [Failure] = 0.07 d.
 - proportion of matched-pairs with Procedure 1 [Failure], Procedure 2 [Success] = 0.02 e.
 - f. proportion of matched-pairs with Procedure 1 [Failure], Procedure 2 [Failure] = 0.88
- Calculate the sample size required for a non-clustered design based on these design parameters (You can use 3. nQuery).
 - Results of nQuery: n (number of matched-pairs) = 262a.
- Next, we need to specify a design parameter associated with the clustered study design: Intra-class correlation 4. (ICC)
 - ICC (ρ) is the correlation between pairs of subjects chosen at random from the same cluster. a.

i.
$$\rho = \frac{\sigma_B^2}{\sigma_B^2 + \sigma_W^2}$$

1. where σ_B^2 is the between cluster variability

2. where σ_w^2 is the within cluster variability

- b. the size of the ICC is generally larger for smaller clusters
 - i. households ~ 0 to 0.3 (large)
 - ii. postcodes ~ 0 to 0.05 (medium)
 - iii. health districts ~ 0 to 0.001 (small)
 - iv. actual ICC usually not known at the design stage unless you have pilot data or published ICC's.
- 5. Once the ICC is specified, we need to compute the Inflation Factor (IF) aka Design Effect (Deff).
 - The IF (Deff) is a multiplier that tells us how much more the total sample size N needs to be a. increased in order to maintain the design parameters specified in the non-clustered study design (Refer to 2. above).
 - IF = 1 + (n-1)*ICCb.
 - i. where n = (average sample size per cluster)
 - ii. where ICC is the intra-class correlation
 - c. So even when the ICC is small, the IF is substantial if n is large!
 - When n = 1 (no clustering), IF (Deff) = 1, otherwise > 1. d.
 - The power of a clustered design can be increased when one: e.
 - i. increases the number of clusters (more effective)
 - ii. increases the sample size per cluster (less effective; not much gain in power after 50 subjects per cluster!)

4.63

- Determine the total sample size N required for the clustered design: 6.
 - Compute IF (Deff) a.
 - i. the design parameters specified in 2.a. through 2.f. are used
 - ii. the ICC is assumed to be 0.001, 0.05, 0.3
 - iii. the non-clustered total sample size is 262 (Refer to 3.a. above)
 - iv. the assumed number of clusters is 20 (i.e., average n per cluster is 13.1)
 - 1. IF = 1 + (13.1-1)*0.32. IF = 1 + (13.1-1)*0.05=
 - = 1.605
 - 3. IF = 1 + (13.1-1) * 0.001= 1.0121
 - Compute the total sample size N required for the clustered design b.

i. IF = 4.63, then $N = 1213.06 = 1214 \rightarrow 93$ clusters of size 13.1

- ii. IF = 1.605, then $N = 420.51 = 421 \rightarrow 32$ clusters of size 13.1
- iii. IF = 1.0121, then N = $265.17 = 265 \rightarrow 20$ clusters of size 13.1

Example of power reduction when the effect of clustering is not accounted for in the sample size.

The design parameters for the proposed study.

$\alpha = 0.05$, two-sided	
power = 80%	
proportion of matched-pairs with Procedure 1 [Success], Procedure 2 [Success] =	0.03
proportion of matched-pairs with Procedure 1 [Success], Procedure 2 [Failure] =	0.07
proportion of matched-pairs with Procedure 1 [Failure], Procedure 2 [Success] =	0.02
proportion of matched-pairs with Procedure 1 [Failure], Procedure 2 [Failure] =	0.88

The sample size required for a non-clustered design based on these design parameters: n (number of matched-pairs) = 262

The assumed number of clusters is 20 (i.e., average n per cluster is 13.1)

IF = 1 + (13.1 - 1) * 0.3	=	4.63
IF = 1 + (13.1 - 1) * 0.05	=	1.605
IF = 1 + (13.1 - 1) * 0.001	=	1.0121

The total sample size N required for the clustered design if you want to maintain the design parameters specified:

IF = 4.63,	then	N =1213.06 = $1214 \rightarrow 93$ clusters of size 13.1
IF = 1.605,	then	$N=\ 420.51=\ \ 421\rightarrow 32\ clusters\ of\ size\ 13.1$
IF = 1.0121,	then	$N=\ 265.17=\ 265 {\rightarrow}\ 20 \ clusters \ of \ size \ 13.1$

Power of the clustered design if the design parameters are held the same but the IF has not been applied:

ICC= 0.3 (large),	IF = 4.63,	then	Power $= 21\%$
ICC= 0.05 (medium),	IF = 1.605,	then	Power = 57%
ICC= 0.001 (small),	IF = 1.0121,	then	Power $= 79\%$

References

Kerry SM and Bland JM (1998). The intraclass correlation coefficient in cluster randomization. BMJ, 316: 1455-1460 (9 May)

http://bmj.bmjjournals.com/cgi/content/full/316/7142/1455

Bland JM (2003). Cluster randomised trials in the medical literature. Talk presented to the RSS Medical Section and the RSS Liverpool Local Group, 12 NOV 2003. http://www-users.york.ac.uk/~mb55/talks/clusml.htm

Bogaerts K. (2004). An introduction to the analysis of cluster randomized trials. Seminars in Epidemiology, Catholic University, Leuven, Belgium (25 MAR 2004) http://www.med.kuleuven.ac.be/biostat/courses/Bogaerts25MAart2004.pdf

Personal Communication from Valerie L. Durkalski (<u>durkalsv@musc.edu</u>) regarding the use of the ICC for sample size determination when considering clustered matched-pair data, June 7, 2004.

