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SUMMARY. We present a method for the simultaneous estimation of the basic

reproductive number, R0, and the serial interval for infectious disease epidemics,

using readily available surveillance data. These estimates can be obtained in real

time to inform an appropriate public health response to the outbreak. We show

how this methodology, in its most simple case, is related to a branching process

and describe similarities between the two that allow us to draw parallels which

enable us to determine the theoretical properties of our estimators. We provide
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simulation results that illustrate the efficacy of the method for estimating R0 and

the serial interval, in real time. Finally we implement our proposed method with

data from three infectious disease outbreaks.

KEY WORDS: Basic Reproductive Number; Branching Processes; Infectious Dis-

ease Epidemics; Serial Interval.
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1. Introduction

Infectious diseases seem to be an endemic condition in the world. The emergence

of new pathogens, the persistence of mutating diseases, such as influenza, and the

threat of bioterrorist events motivate the need for ever-improving statistical meth-

ods for the rapid understanding of emerging disease outbreaks as they happen.

The goal of these methods should be to supply public health officials with tools

to understand the epidemiology of an epidemic in real time with data that is read-

ily available. A more accurate understanding of the epidemiological parameters

of a disease increases the likelihood of a more effective public health response,

such as better control measures, and accurate information being disseminated to

the public. There are two epidemiological parameters of an outbreak that can be

used to characterize the disease: the basic reproductive number, R0, and the serial

(or generation) interval; the latter defined as the time between a primary case and

a secondary case developing symptoms (Fraser et al., 2004; Bauch et al., 2005).

For instance, many argue that the reason that Sever Acute Respiratory Syndrome

(SARS) was controlled was not just due to the change in seasons, but also the rel-

atively long serial interval (estimated mean of 8.4 days and standard deviation of

3.8 days) and reasonable R0 (R̂0 = 2.2− 3.6) (Lipsitch et al., 2003; Wallinga and

Teunis, 2004; Riley et al., 2003). By comparison, influenza has an average serial

interval of between two and four days (Longini et al., 2004) with an estimated R0

similar to that of SARS (Mills et al., 2004). The short serial interval of influenza

necessitates more aggressive strategies for control, including the development of

a vaccine.

Mathematicians, epidemiologists and statisticians have developed an array of

useful approaches for understanding and analyzing infectious disease dynamics.
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Many of these methods consider a multistate model formulation, the simplest of

these being the Susceptible-Infected-Recovered (SIR) model. Differential equa-

tions are commonly used to deterministically model the transitions between these

states (Anderson and May, 1991). These models are useful in informing poli-

cymakers and determining effective strategies for managing and containing in-

fectious diseases and have been widely used (see Hethcote, 2000 for examples).

These models have the advantage of being relatively simple to evaluate computa-

tionally. However, infectious disease epidemics are stochastic in nature and thus

a deterministic model will likely fail to capture this dimension. Further, these

models fail to provide any estimates of error, giving only one final answer for the

behavior of the epidemic. Trapman (2006) describes some unusual results that

these models can give.

Stochastic modeling of infectious diseases is an area that has received much

attention. We do not attempt to give a comprehensive overview of this, but rather

refer the interested reader to Anderson and Britton (2000) and Becker and Britton

(1999) and references therein. Perhaps the most simple of these methods is the

Reed Frost model which is appropriate for analyzing data from small epidemics,

particularly from small group data, such as a household. This model rapidly be-

comes complicated as the size of the epidemic increases, restricting its utility to

small outbreaks. More general modeling approaches exist that allow for larger

populations, and inhomogeneous populations. These more general models can be

generally used to estimate the final size of an epidemic and R0. Becker (1989),

Rida (1991) and Shao (1999) describe some approaches to these models.

Becker (1976) and Ball and Donnelly (1995) describe how the initial period

of a stochastic SIR model can be estimated by a branching process. Branching
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processes have been widely studied and their theory is well developed (see Gut-

torp, 1991 and references therein). Estimation of R0 is relatively simple with a

branching process and one can also obtain estimates of the final size of the epi-

demic, as well as the probability of observing a major epidemic (defined as an

epidemic that does not die out on its own). To implement this method one needs

to know the mean of the serial interval, or have an epidemic with a long incu-

bation time, which leads to clearly clustered data that can then be grouped into

generations. An attractive feature of this method is that only daily incidence data

is required and estimation can be performed at any stage of the epidemic, using

data for completely, observed generations.

A novel and very innovative technique for estimating R0 was developed by

Wallinga and Teunis (2004). As with the branching process estimator, their method

requires information on the number of new cases each day for the entire epidemic,

and knowledge of the serial interval. Using ideas from network theory, the au-

thors derive an estimator for Rt, the effective reproductive number for each day,

that performs well. Their method assumes that there is no immigration into the

system and thus that all cases can be traced back to the index case(s). Cauchemez

et al. (2006) provide a modification of this method that allows real-time estimation

of R0 using Bayesian techniques to augment the data. Additionally, Cauchemez

et al. (2006) have recently described a Bayesian method that uses a small subset

of contact tracing data and daily case counts to determine the efficacy of the inter-

ventions by observing posterior probabilities of R0 < 1. The serial interval is not

estimated, but no information on it is required, except that provided by the contact

tracing data.

In what follows we describe a novel method for the real-time estimation of
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R0 and simultaneously the serial interval during the initial explosive phase of

the epidemic (though the methodology can be extended more generally), using

simple surveillance data. Traditionally the serial interval has only been estimated

through detailed, time-consuming and expensive contact tracing. We describe

an estimator that uses information on the number of cases observed each day;

information that is much more readily available than is contact tracing. In some

cases prior information on the serial interval may exist and interest may focus only

on estimating R0. We begin by considering this particular case. Estimating just

R0 seems risky as the estimation can go awry if the serial interval is misspecified.

So we next introduce a method that simultaneously estimates both, R0 and the

serial interval. These methods are simple to implement and seem to perform well,

as we show with simulated and real data.

2. Methods
2.1 Likelihood

Assume that the data we have available is the periodic incidence, N = {Nt},

t = 0, . . . , T , with t indexing some time unit and Nt, the number of new cases

at time t. Without loss of generality, we assume that t is indexing days, however

this method is applicable to any discrete time unit. We consider that a typical

infectious disease outbreak can be characterized by a two step process: we first

have the basic reproductive number, R0, the average number of secondary cases

produced by a single infected in a population of susceptible individuals. We then

consider the serial interval, the distribution of the time between a primary case

developing symptoms and a case, that she or he infects, becoming ill. This inter-

val is a function of the incubation distribution and distribution of infectiousness

which are not readily observed. Note that the distribution of the serial interval
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can be linked to the incubation distribution (see Kuk and Ma, 2005), which is also

sometimes used to characterize an outbreak.

As a possible model, suppose that the number of secondary cases produced

by an infected individual follows a Poisson distribution, with expected value R0,

and that the serial interval is described by a multinomial distribution. We assume

that primary cases always appear with symptoms before their secondary cases,

that there is no movement in and out of the system of infected cases, and that an

outbreak behaves in the following manner: Let N0 individuals be the cases that

initially show at the outset of the epidemic. Each of these cases independently

generates secondary cases according to a Poisson distribution with mean R0. Let

X0 ¦ represent the total number of cases produced by the initial N0 cases, then

X0 ¦ ∼ Pois(N0R0). We then allow these X0¦ cases to present over the subsequent

k days according to a multinomial distribution. In general we use the notation

where Ni represents the total number of cases on day i, Xij represents the number

of cases that present on day j, which were generated by the Ni cases, and Xi ¦

denotes the total number of cases produced by primary cases on day i (i.e. Xi ¦ =
∑

j Xij). If k, the maximal length of the serial interval, is assumed to be three, for

example, then we can illustrate this with the following schema:

N0

N1 = X01

N2 = X02 +X12

N3 = X03 +X13 +X23

N4 = X14 +X24 +X34

N5 = X25 +X35 +X45
...

...
...

Note that this schema does not give any indication of the time at which the

infection interaction occurred, but only depicts the time at which cases become
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symptomatic. We do not observe the Xij , if we did we could easily estimate R0

and the probability vector, p of the multinomial distribution. If we could observe

the Xij , we might construct their likelihood as follows

L(R0,p | N,X) =[
e−N0R0(N0R0)

X0·

X0·!

] [(
X0·

X01 · · ·X0,1+k

)
pX01

1 · · · pX0,k

k

]

[
e−N1R0(N1R0)

X1·

X1·!

] [(
X1·

X12 · · ·X1,1+k

)
pX12

1 · · · pX1,1+k

k

]

...[
e−NT R0(NT R0)

XT ·

XT ·!

] [(
XT ·

XT,T+1 · · ·XT,T+k

)
p

XT,T+1

1 · · · pXT,T+k

k

]
.

This configuration assumes independence in transmission events. We rearrange

the terms in this likelihood such that the future Xi,T+l (l > 0) can be properly

normalized and summed out as Poisson random variables. Arranging the rest of

the terms allows us to sum out the remaining unobserved Xij as binomial and

multinomial random variables. To illustrate how this is done, consider, without

loss of generality, the case where k = 3 and T = 3.

First, we use the fact that X02 = N2 − X12 and X13 = N3 − X03 − X23 and

substitute for these terms. Performing this substitution and rearranging the terms

leaves us with the following likelihood:
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L(R0,p | N) = exp{−R0(N0 + N1 + N2 + N3)}[
(R0N0p1)

X01

X01!

] [
(R0N0p2)

N2−X12

(N2 −X12)!

] [
(R0N0p3)

X03

X03!

]

[
(R0N1p1)

X12

X12!

] [
(R0N1p2)

N3−X03−X23

(N3 −X03 −X23)!

] [
(R0N2p1)

X23

X23!

]

[
(R0N1p3)

X14

X14!

] [
(R0N2p2)

X24

X24!

] [
(R0N2p3)

X25

X25!

]
.

The final three terms of this likelihood are not observed, so we normalize and sum

over the Xij, j > 3. The likelihood becomes:

L(R0,p | N) = exp{−R0(N0 + N1 + N2 + N3 − p3N1 − p2N2 − p3N3)}[
(R0N0p1)

N1

N1!

] [
(R0N1p1)

X12(R0N0p2)
N2−X12

X12!(N2 −X12)!

]

[
(R0N0p3)

X03(R0N1p2)
N3−X03−X23(R0N2p1)

X23

X03!(N3 −X03 −X23)!X23!

]

We normalize the final two terms to be binomial and multinomial distribution

functions, respectively. Summing over the Xij leaves us with the likelihood in

terms of the observed Nt, a thinned Poisson:

L(R0,p) =
T∏

t=1

e−µtµNt
t

Nt!
, (1)

where µt = R0

∑min(k,t)
j=1 Nt−jpj . Because of its clean and familiar form, we

can simply use maximum likelihood techniques to estimate R0 and the pj, j =

1, . . . , k. We need to specify k with the constraint that k < T . We have found that

the specification of k has a trivial impact on the results if k is sufficiently large

(see Figure 2).
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2.2 Estimation

2.2.1 Serial interval known Consider when we know the serial interval. There

are situations when the disease of interest might be of known etiology and the se-

rial interval is known with some accuracy. This could occur, for example, in an

analysis performed after an outbreak when contact tracing has already been per-

formed, or in an outbreak of a disease with preexisting estimates of the serial

interval. In such cases, interest focuses on the estimation of R0 only. The method

of Wallinga and Teunis (2004) is well-suited to post epidemic analysis. However,

if we are interested in the estimation of R0 while the epidemic is still occurring,

we would need to use the modification proposed by Cauchemez et al. (2006).

Unfortunately, this method is complicated to implement. The branching process

estimator can also be used in this case, but timeliness might be compromised since

only complete generational counts can be used. In what follows, we describe an-

other real time estimator for R0 that is simple to implement. First we show how

this can be derived as a maximum likelihood estimator from the likelihood in (1).

We show how this estimator relates to a branching process estimator and describe

results pertinent to our application. Then we show the relationship between the

Bayesian posterior mode and the MLE and describe the properties of a Bayesian

estimator.

From (1) we obtain the score equation,

UR0(T ) =
T∑

t=1

(Nt − µt)

R0

,

where µt = R0

∑min(k,t)
j=1 Nt−jpj . Setting this to zero and solving for R0 yields the

following estimator (MLE),
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R̂0 =

∑T
t=1 Nt∑T

t=1

∑min(k,t)
j=1 pjNt−j

. (2)

This estimator can be compared to the branching process estimator of the

offspring mean. Branching processes would either assume that the serial inter-

val is a degenerative distribution with a mean of one, or that we can clump the

data into generations based on prior knowledge of the serial interval or obvi-

ous clustering in the data (plausible for diseases with a long incubation distri-

bution). For instance if the mean of the serial interval is µ days, then the vector

of daily case counts, N = {N1, N2, . . . , NT}, can be grouped into generations as

N∗ = {N0,
∑µ

t=1 Nt,
∑2µ

t=µ+1 Nt, . . . ,
∑mµ

t=(m−1)µ+1 Nt}, where T/µ = m. In this

case, N∗ would be used to estimate R0 as:

R̃0 =

∑m
i=1 N∗

i∑m
i=1 N∗

i−1

. (3)

Therefore both (2) and (3) require some information on the serial interval, how-

ever one can argue that (3) requires less information; in fact, if one knows the

mean of the serial interval distribution the data can theoretically be clustered into

generations with only this information. To implement this method of estimation

with confidence, one would want to have some contact tracing information, accu-

rate information on the incubation distribution or serial interval, or a disease (such

as smallpox) with a long serial interval in a small population where data is clearly

clustered (see Becker, 1989 chapter 9 for an example). (2) requires complete

specification of the serial interval.

The close connection between (2) and (3) is advantageous in better under-

standing (2). Branching process theory provides information on the probability

of extinction, or experiencing a nonexplosive epidemic which can be applied in
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this setting. For instance, if R0 < 1, the epidemic will die out with probability

one, providing a goal for containment strategies. Following the methods described

by Harris (1963), the probability of extinction, pe, for our model is given by the

smallest root of the equation:

0 = exp{R0(pe − 1)} − pe. (4)

If N0 is greater than one, the probability of extinction becomes pe
N0 .

Branching process theory on the asymptotic properties of the process and es-

timators has been well developed (see, for instance Guttorp, 1991 and references

therein). The asymptotic results of consistency and normality of (3) are condi-

tional on the explosion set, which we define as an outbreak that does not terminate

by chance, but continues to grow in the absence of interventions and population

constraints. These properties are described as having N0, T →∞. Therefore, it is

reasonable to assume that (2) will be at least approximately normal conditional on

the explosion set. Simulation results support this and, in fact, seem to show that

convergence is much quicker to the log normal distribution, indicating a tendency

toward a skewed distribution. In reality, asymptotic properties have limited utility

for us since convergence is slow (Hall and Heyde, 1980) and we will likely (or

at least hopefully) never meet the asymptotic conditions in real life applications,

due to population size constraints, natural immunity, and public health measures.

However the asymptotic conditions do serve to justify the estimator as being rea-

sonable.

Bayesian inference provides us with a different, but related estimator to (2).

Suppose we have a (conjugate) prior to the Poisson likelihood of a Gamma with

shape and rate parameters given by κ and ν, respectively. Then the posterior
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density for R0 is a Gamma density with shape and rate parameters κp(T ) =
∑T

t=1 Nt + κ and νp(T ) =
∑T

t=1

∑min(k,t)
j=1 pjNt−j + ν, respectively. Thus the

posterior mode for R0 is,

R̃0 =

∑T
t=1 Nt + κ− 1∑T

t=1

∑min(k,t)
j=1 pjNt−j + ν

. (5)

A noninformative prior, where κ = 1 and ν ' 0, leads to the quasi-equivalence

between the MLE and the Bayesian posterior mode. In cases where the etiology of

the infectious agent is known, an informative prior is sensible and provides greater

information earlier in the epidemic. Then as the number of new cases accumulate

(i.e. as κp(T ) and νp(T ) become larger) the prior becomes less important and

the MLE and the posterior mode estimator become equivalent. Thus, if R0 > 1,

there is positive probability, say q(R0N0) (obtained from (4)), that κp(T ) → ∞.

Therefore, with probability q(R0N0) the posterior distribution of R0 will approach

a Normal distribution with mean κp(T )/νp(T ) and variance κp(T )/ν2
p(T ). This

implies that the posterior distribution of R0 approaches a Normal distribution as

the epidemic grows. From this, we can assume that R̂0 also tends to a Normal

distribution, conditional on the epidemic growing.

2.2.2 Serial interval unknown Problems can arise when we make incorrect

assumptions about the serial interval, and as a result if one does not have a good

estimate of the serial interval distribution, the estimator of R0 may not be reliable.

In this section we extend the method described in Section 2.2.1 to estimate both R0

and the serial interval. We explore some of the complexities that may arise when

one attempts to estimate both R0 and the serial interval, but overall the proposed

method performs well.
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Consider the likelihood described in (1). We can use maximum likelihood

techniques to estimate R0 and the pj, j = 1, . . . , k simultaneously. For the sake

of parsimony, we can model the pj and thus reduce the dimensionality of the pa-

rameter space. For example we can utilize a two parameter Gamma distribution

which will provide a rich family with sufficient flexibility to model a large number

of infectious disease data sets. This leads to the estimation of only three parame-

ters, R0, α, and β; the last two being the shape and rate parameters of the Gamma,

respectively. Therefore we model the pj as

pj ∝ βα

Γ(α)

∫ j

j−1

xα−1e−βxdx. (6)

This formulation means that we are discretizing the Gamma distribution and, since

k is finite, truncating it, as well. We normalize the pj to ensure that they sum to

one and represent a density. Therefore if k is not selected to be large enough, the

pj may not follow a Gamma distribution even approximately. This would tend to

have a greater impact when estimating with a small amount of data where k is

necessarily set to be lower than the maximal probable serial interval. We also note

that the choice of the limits of integration in (6) are general and one could use any

reasonable choice of limits, depending on the disease and available data.

One can also consider a Bayesian approach to this problem. There is no con-

jugate prior and in general analytic solutions for the posterior modes for the pa-

rameters of interest do not exist. Use of computationally intensive Markov Chain

Monte Carlo methods are necessary to perform this analysis. In what follows, we

use a maximum likelihood approach as it is much easier to implement in practice

and we can show it to be reliable, especially with the data sets we have examined.
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3. Simulation Study

We now present results from a simulation study. For this we consider four Gamma

distributed serial intervals with the following means and variances: (1) 2.97 and

0.98, (2) 3.00 and 9.18, (3) 8.00 and 16.00, and (4) 8.00 and 16.00 (referred to

hereafter as Cases 1-4). We allow R0 to be 0.9, 1.25 and 2.00. We simulate 1000

datasets for each of these 12 scenarios. The simulated datasets contain 100 days

of data, except when R0 = 2.00 and the serial interval is from either Case 1 or

2, where we simulated 50 days worth of data. When R0 = 0.9 we begin each

simulation with 100 cases. When R0 is larger than one, we begin each simulation

with two index cases. To be consistent with branching process theory, we only an-

alyze those simulations that do not die out before 50 (when R0 = 2 and the serial

interval is short) and 100 (in all other cases) days. We maximize the likelihood

using a Nelder Mead optimizing routine. We report the median and interquartile

range (IQR) in presenting simulation results, due to the skewed distributions of

the parameters described in section 2.2.1.

3.1 Serial Interval Known

We first assume that the serial interval is known. For these simulations we

only consider serial interval cases 1 and 2.

In Table 1 we compare our method to that of Wallinga and Tuenis (WT es-

timator) and the simple branching process estimator. It should be clearly stated

that the data used in this analysis does not completely match the assumptions of

Wallinga and Tuenis, since it does not represent a completed outbreak. However

we feel it is worthwhile to see how they perform as a real time estimator. In Table

1 the impact of not meeting this assumption is minimal for R0 small, but becomes

more dramatic as R0 increases to 2.00. All methods perform well when the serial

15
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interval is correctly specified. We note that when the serial interval is incorrectly

assumed (the non-bolded entries) the estimates become biased. Specifically for

the MLE and branching process estimator when the serial interval is assumed too

long we observe that we overestimate R0, as intuition would prescribe. When

the serial interval is assumed too small we tend to be negatively biased. The bias

pattern for the WT estimator is not clear. The branching process estimator closely

follows the MLE estimator due to the similarity in their form. In fact, we see

here that knowing the full distribution of the serial interval offers little advantage

over only knowing the mean of the serial interval, when the data is simulated as

above, indicating that R0 can be well estimated without knowledge of the second

moment of the serial interval. If the serial interval is misspecified, this method is

more sensitive, as it cannot draw on other information about the serial interval that

might offset the misspecification of the mean. Additionally, when the true mean

of the serial interval is not an integer, it is more difficult to implement the branch-

ing process method and one must either round the mean of the serial interval or

somehow redistribute the data.

[Table 1 about here.]

3.2 Serial Interval Unknown

As shown in Table 1, misspecifying the serial interval can lead to inaccurate

estimates of R0. Therefore, if the serial interval is unknown, or the existing es-

timate is known with little confidence, it would be desirable to estimate it. The

likelihood-based method presented in Section 2.2.2 can be used for this purpose.

We estimate the serial interval and R0 for all 12 data sets described above. In

Table 2 the method performs very well in the estimation of both R0 and the serial

interval parameters. We note the impact of the final epidemic size and find that
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when R0 = 1.25 there appears to be a stronger correlation between the overall

parameter estimates and the final epidemic size. Figure 1 more clearly shows the

impact of the final epidemic size on the final parameter estimates. Here we notice

that as the number of cases increase, the parameters tend to provide more accurate

estimation of the true parameters. The number of epidemics that go to zero cases

prior to the end of the simulation are also shown. These values can be predicted

from branching process theory using the probability of extinction, pe.

In the case when R0 = 0.9, we note that there are a large number of such

epidemics, however in this case, we do not exclude the extinct epidemics in the

estimation procedure, but rather truncate the vector of cases such that the final

number of cases is nonzero. Further, we note that the estimates we obtain here

are strikingly accurate and, in general, have small IQRs. It is possible that this

is related to branching process asymptotic theory, which is based on the initial

number of cases, N0 →∞. We note that when R0 = 1.25, and we allow N0 = 10,

the estimates improve slightly over the cases when N0 = 2. In this case, it is

unclear if the improved estimate is due to the larger final size of the epidemic of

the larger number of initial cases (as these two values are confounded). To control

for this somewhat, we performed another set of simulations where we simulated

data until a previously fixed final epidemic size was achieved, rather than just for

a certain number of days. In this case, we observed slightly improved results in

those cases where the the final epidemic size was small in Table 2.

[Table 2 about here.]

[Figure 1 about here.]

Figure 2 illustrates estimates of the serial interval obtained when R0 = 2 for

varying k, the maximal length of the serial interval. We note that the value of
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k does not appear to have a large impact on the estimates of the serial interval.

Further, the method appears to perform well for estimating the serial interval.

[Figure 2 about here.]

3.2.1 Starting Values The numerical optimization routines utilized to max-

imize the likelihood function require starting values. In general, we have found

that the estimates are not very sensitive to the starting values, however we both

provide a method for obtaining reasonable starting values, as well as a further

description of the uniqueness and existence of solutions to this problem. We de-

scribe this for the simple case when k = 2 and we use a multinomial distribution

for the serial interval, but the result is generalizable.

We have shown that Nt | Ft−1 ∼ Poisson(R0(p1Nt−1 + p2Nt−2)), where

p2 = 1− p1 and Ft−1 = {N0, . . . , Nt−1}. Let θi = R0pi, express this relationship

in the formulation of a Poisson regression model as,

E(Nt) = θ1Nt−1 + θ2Nt−2, t = 1, . . . , T.

We let Z = {Nt−1Nt−2}, where Nt−1 = (N0, N1, . . . , NT−1) and Nt−2 =

(0, N0, N1, . . . , NT−2). Then we can find the ordinary least squares solution for θ

as the solution to

(Z>Z)θ = Z>N.

This estimator ignores the covariance between successive Nt’s. Assuming that

N−1 = 0, this can be expressed as
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( ∑T−1
t=0 N2

t

∑T−1
t=1 NtNt−1∑T−1

t=1 NtNt−1

∑T−1
t=0 N2

t−1

)
θ =

(∑T
t=1 NtNt−1∑T
t=2 NtNt−2

)
.

Therefore, a unique solution for θ exists if Z>Z is nonsingular. The determinant

of this matrix is

det(Z>Z) = (
T−1∑
t=0

N2
t )(

T−1∑
t=0

N2
t−1)− (

T−1∑
t=1

NtNt−1)
2.

By the Cauchy-Schwartz inequality,

(
T−1∑
t=0

N2
t )(

T−1∑
t=0

N2
t−1) ≥ (

T−1∑
t=1

NtNt−1)
2

with equality achieved only when the Nt = αNt−1 for all t = 0, . . . , T ; in other

words, all the Nt = 0. It should also be noted that T must be at least two. In

general, for this to hold, T ≥ k.

Therefore we can consider the ordinary least squares solutions as starting val-

ues for the numerical optimizer of the likelihood. Parenthetically, this also shows

that the serial interval and the reproductive number are not confounded.

3.3 Real Time Analysis

We now illustrate the utility of this method in real time estimation. In Figure

3 we compare the Bayesian estimates to those estimates obtained from the MLE

when the serial interval is known. Here we show the real time MLE and the

Bayesian posterior mode with and without an informative prior. We see that the

two estimates closely mimic one another and that the impact of the informative

prior diminishes rapidly. Additionally the estimates quickly converge to the true

value.

[Figure 3 about here.]
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Figure 4 gives the real times estimates when the serial interval is estimated

for a single epidemic for R0 = 2.0 and each of the four serial interval cases.

Adding the complexity of estimating the serial interval clearly leads to more aber-

rant events in the real-time estimates, however the estimates still converge to their

true values, though the rate at which they do so for these simulations appears to

be slow. Interestingly, when R0 < 1 and N0 = 100, we observe that the real time

simulations converge rapidly to their true values and are exceptionally stable once

they reach the true parameter values.

[Figure 4 about here.]

4. Example

We now show the utility of this method by considering data from three infectious

disease outbreaks. We consider three datasets. The first is from an Ebola outbreak

in 1995 in Congo with 289 cases over the course of 129 days. Chowell et al.

(2004) estimate R0 for this outbreak to be 1.83 (SD = 0.06) using a deterministic

SEIR model and cite Breman et al. (1977)’s estimate of the incubation distribution

to be 6.3 days with a range of 1 to 21 days.

The other two datasets come from the Netherlands and are given in Van Den Broek

and Heesterbeek (2006). The first contains daily incidence data for an H7N7

Avian influenza outbreak in 2003 with 239 cases in 69 days. The final dataset

comes from a Swine Flu outbreak in 1995, with 427 cases over 57 days. Influenza

in humans is characterized by a relatively short incubation time (typically esti-

mated to be around three days) and R0 that has been estimated to be between just

greater than one to over two.

We have described that this method is best suiting for estimating the initial

phase of an epidemic and have not described techniques for implementing this
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method over an entire outbreak that dies out. Therefore, we limit our analysis of

these data to the initial portion of the epidemic when it is still growing to illustrate

the ability that we have to attain rapid estimates of the parameters of interest. Thus

we consider the first 58 days of data for the Ebola outbreak, the first 25 days of the

H7N7 Avian Influenza outbreak and the first 20 days of the Swine Flu outbreak.

Table 3 provides results when we use all of the data during the “growth” phase

of the epidemic. The estimate of R0 for Ebola is strikingly similar to those given

by Chowell et al. (2004). Additionally we note the relatively long serial interval

that is consistent with the previously described incubation distribution. The esti-

mates for both Influenza outbreaks also appear to be consistent with previous re-

sults for Influenza having relatively short serial intervals (µ̂ = 2.95 and 1.40 days)

and values for R0 that exceed one (R̂0 = 1.17 and 1.13). We note, however, that

the estimated interquartile ranges are very high for Ebola and Avian Influenza.

This is likely explained by a number of factors. These outbreaks started with a

much smaller number of cases (one and five) compared to the swine flu epidemic

which started with nine. We have discussed that the asymptotic properties are de-

pendent on having a large number of initial cases. This also might be a reflection

of the bootstrapping technique which we utilize. We simulated 1000 datasets us-

ing the estimated parameters and then consider the variability in these estimates.

The small number of initial cases and small R0 leads to many of these epidemics

being extremely small and dying out, thus leaving us with limited information

to estimate the interquartile range. Finally, this could also be a reflection of the

difficulty involved in estimating the serial interval.

[Table 3 about here.]
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5. Discussion

In this paper, we describe a likelihood-based method for the estimation of the

basic reproductive number and the serial interval using simple surveillance data.

The likelihood of the observed counts of disease is an evolving Poisson. From

this likelihood, we can derive maximum likelihood estimates. We have shown

that when the serial interval is known, the MLE is equivalent to the posterior

mode obtained by using an ‘uninformative’ Gamma prior distribution. Thus the

posterior distribution of R0 can be approximated by a Normal distribution. In

practice we have seen through simulation results that this is often more accurately

approximated by a Log Normal distribution since our simulations have not yet

converged to the asymptotic case. Further we have illustrated how this method can

be extended to incorporate estimation of the serial interval in real-time, requiring

virtually no prior information on the epidemiological parameters of the infectious

agent. These estimation techniques are simple to implement and require minimal

amounts of prior information.

While the results thus far are promising, there are certain caveats that must be

noted. First, the dependencies in the data and the explosive nature of the process

make many traditional statistical inference tools inapplicable. We have shown

that in a simple scenario, this is a branching process and under certain asymptotic

conditions, normality and consistency hold. However, in general these properties

are likely not attainable. This is not of great concern because in practice we are

unlikely to attain asymptotic conditions, making such statements of little practical

use except as guides. Therefore we turn to Bayesian methods and simulations to

explain and understand the small sample properties of the estimators. In this case,

we observe that the estimators do not appear to be normally distributed and have
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heavy tails, but perform well in estimating the behavior of the system.

The theory of branching processes provides useful tools to understand infer-

ence with epidemic data. One of these is the determination of the probability of

an epidemic dying out. In practice we do not typically take note of epidemics that

do not exceed a certain threshold. Undoubtedly there are cases where a pathogen

exists in a population among only a few individuals and fails to start a noticeable

epidemic. We have described the probability of such events occurring and the im-

pact of this on obtaining global estimates of the epidemiological characteristics of

a pathogen. The estimates presented are based on conditioning on the event that

an epidemic occurs.

While our estimator is similar to the branching process estimator, we note that

the unique derivation of our estimator allows for much greater flexibility and op-

portunity than the branching process estimator. We have shown that our proposed

MLE estimator slightly outperforms the branching process estimator (see Table

1), but have also shown how this formulation allows us to estimate the serial in-

terval and describe the disease dynamics in detail beyond the first moment of the

serial interval distribution.

Estimation of the serial interval poses challenges. We observe that longer se-

rial intervals are more challenging to estimate and, of course, require a longer

period of observation. However, the method proposed here performs well and

provides at least an accurate qualitative picture of an epidemic. Implicit in the

calculations is the assumption that the distribution of the serial interval is Gamma.

Our simulations did not test the impact of this assumption and it is possible, even

with this very rich family of shapes, there might be pathogens that do not fol-

low one of these shapes, for instance a bimodal distribution. If this is suspected,
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it would be straightforward to model the serial interval with another parametric

model, including the multinomial, in the most general case, but there is the usual

advantage to using a parsimonious explanation of this distribution. Further adjust-

ments to the Gamma can be made. For instance, the response of a secondary case

to a primary case may not be immediate, such that pi is negligible for i small. In

this case we might wish to model s − τ as a Gamma random variable, where s

is the length of the serial interval and τ is the minimal serial interval in essence

shifting the density to the left by τ units. Additionally, incorporating limited con-

tact tracing data, as Cauchemez et al. (2006) did with their method, might lead to

an increased ability to estimate the serial interval. This might be done via MCMC

methods and the use of a prior distribution estimated from the contact traced data.

We have assumed that secondary cases are generated according to a Poisson

distribution (the so-called offspring distribution). While this may not be perfectly

accurate for disease generation, since individuals or groups of people may have

different characteristics that would lead them to generate cases at varying rates,

we feel that this is a reasonable starting point. Further, this assumption can be

relaxed through proper modeling of R0 to account for factors that might lead to

differential infection rates, including seasonality, day of the week, demographic

variables, and a shrinking susceptible population. Additionally we have assumed

homogenous mixing with this formulation, but again feel that there is adequate

flexibility in the model to relax this assumption.
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Table 3
Estimates of R0 and the serial interval obtained for data from outbreaks of Ebola
in the Congo, Swine Flu and Avian Influenza in the Netherlands. Estimates are

obtained by using the first 58 days for Ebola, 25 days for Avian Influenza and 20
days for the Swine Flu. The interquartile range is estimated using a bootstrap.

R̂0 µ̂ σ̂

Ebola 1.93(1.66, 2.78) 10.82(8.32, 5.06e7) 12.14(5.03, 5.99e7)
Avian Influenza 1.17(1.11, 1.31) 2.96(1.97, 1.13e6) 4.01(1.82, 2.18e6)

Swine Flu 1.13(1.09, 1.28) 1.40(1.01, 4.05) 1.70(0.66, 6.21)
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Figure 1. The log of the estimate of R0 versus the final epidemic size. These
estimates of R0 are calculated when the serial interval is simultaneously being
estimated and are equivalent to those shown in Table 2. Case 2 and 3 refer to the
serial interval used in the simulations and are described in the text.
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Figure 2. Estimated Gamma densities when R0 = 2.0 and with k varying. The
cases are the different serial interval Gamma densities described in the text. Case
1 has a mean of 2.97 and variance of 0.98. Case 2 has mean and variance 3.00 and
9.18, respectively. The mean and variance of case 3 are 8.00 and 16.00, while the
mean and variance of case 4 are 8.00 and 36.00.
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Figure 3. Real time estimates of R0. The solid line traces the MLE estimate
through time. The Bayesian posterior mode is shown. Finer dashed line repre-
sents estimating with an informative prior while the longer dashed line represents
estimates with an uninformative prior. Case 2 and 3 are described in the text.
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Figure 4. Real-time estimates for the parameters when R0 = 2. Analysis began
ten days after the start of the epidemic. Each row in the figure presents the esti-
mates obtained for a single simulation from the corresponding serial interval case
(1-4), as described in the text. the final column shows the epidemic curve for the
simulation used in that row.
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