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1. Introduction

The advance of high throughput technologies has considerable implications for research in the areas

of cancer detection and prevention. In a gene expression array experiment, the expression levels

of thousands of genes are monitored simultaneously. Such exploratory studies promise to identify

transcripts that show high expression levels in cancer tissues as compared to normal tissues, to

pinpoint the biological processes for cancer at the most basic level, and to discover cDNAs encoding

proteins that could be potentially useful markers for cancer screening and diagnosis.

Typically, microarray experiments involve exploring enormous numbers of genes on a relatively

small set of subjects. For example, in a study concerning gene expression profiling and clinical

outcome of breast cancer (Van ’t Veer et al., 2002), tumor tissue from 34 patients who developed

distant metastases within 5 years and 44 patients who were free of disease for at least 5 years were

analyzed to compare the hybridizations on an array of 25,000 cDNAs. Statistical analysis of data from

such studies is challenging for several reasons. First, when thousands or tens of thousands of genes

are under consideration from a single experiment, performing separate significant tests for each gene

greatly increases the type I error. Second, the expression levels of genes tend to cluster as they may

function on the same biological pathways and thus co-regulate under the experimental conditions

examined. As a consequence, the test statistics can be far from independent. Third, because of

concerns about cost or rarity of the target population, a microarray study is usually carried out on

a small number of subjects. In this situation the underlying distributional assumptions for the test

statistics, which are based on large sample theory, may not be valid or precise enough. It is essential

to take into account these problems in the analysis of data.

It is also important to recognize that an appropriate statistical approach depends on the scientific

objectives of the study. In this article, we consider microarray studies that are aimed to explore a

large pool of genes and select for more careful investigation a subset of genes that are differentially

expressed in two tissue types (e.g., cancer versus healthy tissue). In practice, the gene selection

process entails several steps. As an initial step, one needs to characterize the capacity of each gene

in discriminating between the different tissue types. The choice of statistic is crucial to the entire

process. The classic measure of discrimination, such as the two-sample t-statistic or the Mann-
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Whitney U-statistic are often considered at this stage. Two additional measures that are related to

the Receiver Operating Characteristic (ROC) curve are suggested in Pepe et al. (2003) when there is

emphasis on the discriminating capacity over a particular range of the distribution. Once the statistic

for discrimination is calculated for each gene, the next step towards selecting genes is to rank the

genes based on their evidence for differential expression. At the final stage, one chooses to further

investigate the genes that rank well, for example, one might narrow down future research to the top

k ranking genes. One important question at this stage is what subset of genes should be selected, i.e.,

at what k should one draw the line so that the selection process is statistically more rigorous than

just choosing some arbitrary k?

In this article we focus on statistical methods for this question. Note that we are not concerned

with combining information across genes, a consideration that may or may not follow the analysis

that simply ranks the genes. Our focus is on determining a set of genes that each appear to be

differentially expressed. In section 2, we first review existing statistical methods that can be adopted

for gene selection and then describe a new approach. We compare the performance of our proposed

approach with the existing methods using simulation studies in section 3. We further illustrate our

new approach with an application to the breast cancer data and close in section 5 with some remarks

about the methodology.

2. Selecting Genes

2.1 Existing Methods

Statistical methods for microarray analysis has been a burgeoning area of statistical research in recent

years (for review, see Dudoit, Shaffer, Boldrick (2002)). The problem of identifying differentially

expressed genes can be translated into the framework of multiple hypothesis testing, where each gene

corresponds to a single hypothesis test, and rejecting one hypothesis is equivalent to claiming that

the gene is differentially expressed. Table 1 describe the situation when m genes (or hypotheses) are

tested. We suppose m0 of the m genes are not differentially expressed, or are true null hypotheses.

We denote by R the number of rejected hypothesis, V the number of false positives, and T the number

of false negatives. Only m and R are observable quantities.

An appropriate test procedure should aim to keep both V (the type I error) and T (the type II
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error) small. In the univariate setting, the usual strategy is to first prespecify an acceptable type I

error α, then seek a test with the most power (smallest type II error) among the class of tests with

the same α. To generalize to the multivariate setting, the approach is to define a multiple testing

procedure in terms of the adjusted p-value p̃j for hypothesis j, which takes all other tests that are

involved into consideration, rather than the individually unadjusted p-value pj. One then rejects Hj

if p̃j ≤ α. The adjusted p-values are usually derived in such a way that some type I error rate is

controlled at level α.

One type I error rate, the family-wise error rate (FWER), is defined as

FWER = P [V ≥ 1]. (1)

It is the probability of reporting at least one false positive in the family of hypotheses. The step-down

algorithm of Westfall and Young (1993) is an example of a multiple testing procedure that controls

FWER. The procedure defines the jth adjusted p-value as p̃j = P [min1≤l≤mPl ≤ pj |Hc
0]. Here Hc

0

denotes the complete null hypothesis, where all the null hypotheses are true (i.e., m = m0) and

Pl is the unadjusted p-value for the lth hypothesis denoted with capital letter here because it is a

random variable. The joint distribution of (P1, ..., Pm) can be estimated by permuting the columns

of the gene by array data matrix. This algorithm thus takes into account the potential dependence

structure amongst genes. Compared with the popular Bonferroni procedure, the approach is less

conservative.

Benjamini and Hochberg (1995) suggested a multiple testing procedure that aimed to control a

different type I error rate, namely, the false discovery rate (FDR). In their definition,

FDR = E(V/R|R > 0)P (R > 0) (2)

The concept of FDR is appealing in the context of gene discovery for several reasons. First, FDR

has a straightforward interpretation. It is the expected proportion of false positives among genes

for which H0 is rejected, and approximately, it is P [H0|rejected] since P [R = 0] is typically small.

In many applications it can be less stringent than controlling FWER. More importantly, when the

goal of a microarray study is to narrow down to a small subset of genes as potential candidates

for scrutinization in the next stage of research, one can usually tolerate a small number of false
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positives in exchange for higher power. Controlling FDR directly translates into controlling the

amount of unnecessary effort invested in a few false positives in the next stage of gene discovery.

several procedures have been proposed to control FDR. For example, Benjamini and Hochberg (1995)

described a linear step-up procedure. Suppose we order the unadjusted p-values as p(1) ≤ p(2) . . . ≤

p(m), with corresponding ordered null hypotheses H(1), H(2), . . ., H(m). The adjusted p-value for

H(j) is p̃BH
(j) = mink=j,...m

{
min(m

k p(k), 1)
}
. We reject H(1), . . . ,H(k) for k = max{j : p̃BH

(j) ≤ α}

for a desired FDR level α. It can be shown that for independent and continuous test statistics, the

procedure yields FDR = α ∗ m0/m, which is ≤ α. Furthermore, the same level of FDR control

holds for positively dependent test statistics as well in the sense defined by Benjamini and Yekutieli

(2001). One example of positive dependency structure is positively correlated normally distributed

test statistics. When m0/m is substantially smaller than 1, it is tempting to consider an adaptive

procedure so FDR is controlled exactly at level α. For example, Storey (2002) suggested to first

estimate m0, and reject H(1), . . . ,H(k) for k = max{j : p̃BH
(j) ∗ m̂0/m ≤ α}. To estimate m0, Storey

suggests the following procedure

m̂0(λ) =
Σm

i=1I{pi ≥ λ}
1 − λ

, (3)

where λ is in the interval (0, 1) and can be chosen using cross-validation, for example. The adaptive

procedure is usually more powerful because it is less conservative, being based on the bound m
m̂0

α

rather than α for p̃BH
(j) .

Different from the multiple testing procedures described above, the SAM (significance analysis of

microarrays) procedure (Efron et al., 2000, Tusher et al., 2001) chooses rejection regions from the

distributional properties of the test statistics. The original SAM procedure proposed by Efron et

al. (2000) makes use of the ordered test statistics t(1) ≥ t(2) . . . ≥ t(m) and a resampling technique.

Under the assumption that none of the genes is truly differentially expressed, the labeling of the two

groups, cases and controls, can be interchanged. One performs B permutations of the labels and

obtains t(j),b for b = 1, . . . , B. The expected value t̄(j) for the jth order statistic under Hc
0 can then

be estimated based on the permuted samples. For a fixed threshold ∆, genes with |t(j)− t̄(j)| ≥ ∆ are

claimed significant by the SAM procedure. The SAM procedure can be tailored to control FDR∗,

a quantity similar to the FDR that is defined above. This requires estimating the FDR∗ for each
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∆ from the permutation samples under Hc
0 (Storey, 2002) and then choosing the ∆ that yields the

desired FDR∗ level. The strength of the approach is that it offers great flexibility in choosing rejection

regions while controlling for FDR∗ at a desired level. However, the procedure is based on the implicit

assumption that the distributions of t(j) − t̄(j) are homogenous. Furthermore, the procedure controls

FDR∗ = E(V |Hc
0)/R, which is not the same as the FDR as originally defined by Benjamini and

Hochberg (1995).

2.2 The AP Method

We propose a new multiple hypothesis testing procedure here. Consider calculating the following

adjusted p-value for the kth ordered gene: p∗(k) = P [|T 0|l ≥ |t(k)||Hc
0, l ≤ k]. This is the probability

under Hc
0 of observing a statistic as extreme or more extreme than the observed kth order statistic t(k)

among the top k order statistics T 0
(l), l ≤ k. In calculating p∗(k), T 0

(l) is a random variable for t(l) under

Hc
0. The proposal is to declare genes whose adjusted p-values are ≤ α as significant (details below).

The idea has some intuitive appeal in our opinion. Given the observed order statistic t(k), it asks

how likely it is that under the complete null hypothesis Hc
0 the test statistic for genes (1), (2), ..., (k)

would exceed t(k). The quantity p∗(k) calibrates t(k) to the distributions of the order statistics under

Hc
0. This seems like a natural step. It is similar to SAM in this regard. However, SAM rejects on the

basis of |t(j) − t̄(j)| with a cut-off ∆, that is the same for all genes. Our procedure on the other hand

acknowledges that the distribution of T 0
(j) may not be symmetric about its mean and that its variance

may depend on the order (j). Moreover, we will show in section 3 that the operating characteristics

of our procedures are comparable (and sometimes better than) existing procedures. We suggest

estimating p∗(k) using a resampling procedure to avoid assumptions about the joint distribution of test

statistics and to take into account the potential dependence structure amongst genes. In summary,

implementation of our procedure consists of the following steps:

1. Compute the order statistics t(1) ≥ t(2) · · · ≥ t(m).

2. Perform B permutations of the group labels and obtain t(j),b for each permutation sample b.
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3. Compute

p∗(k) =
1
B

B∑

b=1

1
k

k∑

l=1

I(|t(l),b| ≥ |t(k)|) (4)

4. Monotonize the p-values: p̃(j) = mink=j,...m

{
min(p∗(k), 1)

}

5. Reject H(j) if p̃(j) ≤ some chosen α.

3. Simulation Study

We present the results from numerical studies in this section.

3.1 Compare the proposed AP procedure with SAM

We first evaluate the performance of our resampling-based p-values procedure (hereafter referred to

as AP) with SAM, as both procedures make use of the distributions of the order statistics under

Hc
0. We generated m = 500 gene expression values X1, · · · , Xm for n0 control and n1 case subjects.

For the small sample study, we chose n0 = n1 = 20 and for the moderate sample study we choose

n0 = n1 = 50. We set equal numbers of true null and alternative hypotheses, i.e., m0 = 50%m.

Two scenarios for generating expression levels of different genes were used. In the first scenario,

Xk ∼ N(0, σ0) with σ0 ∼ N(1, 0.5), for k = 1, . . . ,m for controls and for k = 1, . . . ,m0 for cases.

For cases the expression levels of regulated genes Xk, k = m0 + 1, . . . ,m are generated as Xk ∼

N(2.0, σ1), where σ1 ∼ N(1.5, 0.5). Although we allow some variation in terms of dispersion of the

distributions of different genes, these distributions still come from the same location-scale family and

are symmetric. In the second scenario, we used gamma distributions for generating the expression

data. The gene expression values for all m genes of controls and m0 null genes for cases are specified

as Xk ∼ γ(1, 1), and the expression levels of regulated genes for cases are generated as Xk ∼ γ(2, 0.8),

k = m0 + 1, . . . ,m. Thus in this scenario we assume genes expression levels are not symmetrically

distributed.

For each simulation configuration, we generated S = 500 datasets and performed both our pro-

posed procedure and the SAM procedure. The two-sample test statistic we used to gauge differential

expression is the Mann-Whitney U-statistic (denoted by AUC) or equivalently the Wilcoxon ranksum

statistic. The SAM procedure is therefore slightly different from the original algorithm of Tusher
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et al.(2001). For each dataset, we first calculate AUC for each gene and order them as AUC(1),

AUC(2),. . ., AUC(m). We then take B = 1000 permutations of the group labels. For each permuta-

tion b we obtain the corresponding ordered AUC statistics: AUCb
(1), AUCb

(2),. . ., AUCb
(m). For the

SAM procedure, we calculate dj = |AUC(j) − AUC
B
(j)| for the jth ordered AUC, where AUC

B
(j) is

the average of AUCb
(j) across the B permutation samples. We reject the corresponding jth gene if

the value of dj exceeds some prespecified quantity, ∆. For AP, we calculate the adjusted p values

for the ordered genes based on the same permutation samples using the procedure as described in

the previous section, and reject a gene if the adjusted p value is less than a prespecified value, α.

For each dataset s and each procedure, we record Rs, the number of genes that are claimed to be

differentially expressed, and Vs, the number of genes rejected among all the genes that are in truth

not differentially expressed. Let Qs = Vs/Rs if Rs 6= 0, and 0 if Rs = 0, we then calculate FDR as

FDR =
1
S

S∑

s=1

Qs, (5)

and average power as

Power =
1
S

S∑

s=1

Rs − Vs

m − m0
, (6)

where (Rs − Vs)/(m − m0) is the proportion of differentially expressed genes that are claimed to be

significant. Note that the average power is equivalent to the true positive rate (TPR). In addition,

we record the false positive rates (FPR) as

FPR =
1
S

S∑

s=1

Vs

m0
, (7)

Decision criteria for the AP and the SAM procedures are defined by thresholds, α and ∆ respec-

tively, that are on completely different scales. To compare the performances of the two procedures

we therefore use ROC curves. That is, for each procedure, we plot TPR versus FPR as the threshold

varies across its entire possible range. The ROC curve is a one-one monotone function from (0, 1) to

(0, 1) that is a well accepted measure for comparing decision procedures. Better decision procedures

are characterized by higher ROC curves. For n0 = n1 = 20, if the gene expression levels are of gamma

variates, the ROC curve based on the adjusted p-values from the AP procedure dominates the curve

based on the SAM procedure (Figure 2, top left panel), especially over the region where FP is less
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than .2. This indicates that for this particular simulation configuration, the AP procedure has higher

accuracy at distinguishing between cases and controls than the SAM procedure. Furthermore, plots

of average power versus FDR (Figure 2, top right panel) again show that AP is a more powerful

procedure than SAM for this simulation configuration. For example, with FDR of 0.05, the average

power is 0.71 for AP, compared with 0.45 for SAM; for FDR at 0.1, the average power is 0.86 for

AP but 0.81 for SAM. However, these differences are not observed in the simulation situation where

samples are generated solely from normal distributions (Figure 1). In addition, the superior perfor-

mance of AP over SAM diminishes at moderate sample size such as n0 = n1 = 50 (bottom panels,

Figure 1 and Figure 2) . These results may not be too surprising. A possible explanation is that

SAM assumes homogenous and symmetric distributions of test statistics for all genes and that this an

assumption is more likely violated with smaller sample sizes. On the other hand, the AP procedure

naturally incorporates the variation in the distribution of the test statistic from gene to gene, and

does not require any specific distributional assumption. It is thus a more robust and more powerful

procedure, particularly in small samples.

3.2 Controlling FDR and power

We next compare the performance of the AP procedure with multiple testing procedures that proposed

to control the FDR. We investigate to what extent factors such as the dependency structure and

number of genes impact on the performance as measured by the FDR and average power.

We generate m = 40, 200, 1000 gene expression values. For the small sample study, we choose

n0 = n1 = 20 and for the moderate sample we choose n0 = n1 = 50. We consider different numbers

of true null hypotheses m0 with m0 = 50%m, 75%m, or 90%m. The gene expression values are

specified as Xk ∼ N(0, 1), k = 1, . . . ,m for controls and k = 1, . . . ,m0 for cases, while Xk has a

mixture distribution with p = .7, and Xk ∼ (1 − p) ∗ N(0, 1) + p ∗ N(1, 2), k = m0 + 1, . . . ,m for

cases. The gene expression values are correlated in groups of 10. Specifically, within each cluster of

10 consecutive genes, we let the correlations among the first five genes and the correlations among the

second five genes (denote by r1) be positive, however the correlation between the first 5 genes and the

second 5 genes (denote by r2) can be either positive or negative. In summary we consider the following
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correlation structures: (r1 = 0, r2 = 0), (r1 = 0.3, r2 = 0.3), (r1 = 0.3, r2 = −0.3), (r1 = 0.6, r2 = 0.6),

(r1 = 0.6, r2 = −0.6), When the correlations are negative, the ‘positive dependence’ condition of

Benjamini and Yekutieli (2001) does not hold. For each gene k, we calculate the test statistics AUCk

from the Xk for the n0 cases and n1 controls. For each simulation configuration, S = 500 datasets were

generated. We implemented the linear step-up procedure (hereafter referred to as BH), the adaptive

procedure (hereafter referred to as Adapt) with λ = 0.5 and our resampling-based AP procedure. We

did not consider the SAM procedure in this set of simulation studies since SAM controls a different

FDR than do the other procedures.

First consider a small sample study with 20 cases, 20 controls and 40 genes. Figure 3 displays

FDR versus threshold (α) for studies with different correlation structures and different numbers of

true null hypotheses m0. For the BH procedure, the FDRs are less than α in all cases, and they get

closer to α as the percentage of the true null hypotheses increases. In fact, they are very close to the

value m0
m α. This is consistent with the theoretical result which states that the FDR is controlled at

level m0
m α for continuous and positively dependent test statistics. Interestingly, even in situations with

both positive and negative correlations, where the positive dependence requirement is not satisfied,

it appears the BH procedure still controls FDR at a level that is comparable with level of control

achieved for positive dependence situations. For our AP procedure, the FDRs are higher than those

from the BH procedure, but less than the threshold α for m0/m ≤ 75%. Furthermore, the FDRs

from the AP procedure increase as the number of the null hypotheses increase, as was seen for the

BH procedure. The FDR exceeds α in the setting where m0/m = 90%. Thus the AP procedure

does not necessarily control the FDR (nor was it intended to). For the adaptive procedure, the

FDRs are almost always higher than for the other two procedures, particularly when m0/m is small.

In contrast to the AP and BH procedures, the adaptive procedure is sensitive to the underlying

correlation structure. When the genes are statistically independent, the FDRs from the adaptive

procedure are close to the corresponding α. However, when genes are positively correlated, we see in

many cases that the attained FDR is often greater than the corresponding α at which it wishes to

control the FDR. When genes are both positively and negatively correlated, the adaptive procedure

seems to underestimate m0 and thus the FDRs tend to be lower than α. A possible explanation for

9
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this is that the weak dependence assumption required for the adaptive procedure probably does not

hold when the number of genes is small.

Corresponding to the configurations in Figure 3, Figure 4 shows average power versus threshold.

In general, the adaptive procedure is more powerful than the other two procedures, particularly in

settings where the number of true null genes are small. Moreover, the AP procedure is always more

powerful than the BH procedure. However the advantage of the adaptive procedure diminishes when

the majority of the genes are not differentially expressed in truth. For example, when m0 = 75%m,

the AP procedure is at least as powerful as the adaptive procedure.

Similar patterns are found in a study with the same number of genes but bigger sample sizes,

n0 = n1 = 50, and in studies with larger numbers of genes: m=200 (see Table 2, Table 3, Table 4),

and m = 1000 (data not shown). As the number of genes increases, the adaptive procedure better

estimates m0/m, but still seems to be problematic when genes are both negatively and positively

correlated.

One phenomenon we observed from our simulation studies as well as from the literature is that

a procedure with higher FDR is usually more powerful. This may simply result from its using a less

stringent criterion for declaring a gene to be significant. Ideally a procedure should be compared

against the class of procedures that controls FDR at the same level. To compare the powers of

the three multiple testing procedures when operating at the same FDR levels (and here at different

thresholds α), we plot average power as a function of FDR. In Figure 5, we use data from the

simulation studies with correlation structure r1 = 0.6, r2 = −0.6 for m = 200 and m = 1000. It

appears that for each value of m0/m the operating characteristics of the three procedures lie on a

single curve. That is for the three testing procedures we considered in the simulation studies, the

same power can be achieved if we are willing to tailor the threshold so the same level of FDR is

achieved. Furthermore, the figure suggests that there may exist a fundamental relationship between

FDR and average power for a given data structure, regardless of the multiple testing procedure that

one chooses, or the total number of genes in the pool.

In summary, the simulation studies demonstrate that the three procedures differ in regards to their

attained FDR when the same thresholds α is applied to each. However, they have the same trade-off
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between increasing FDR and increasing average power, so in this sense they are not fundamentally

different in their operating characteristics. Nevertheless in practice one needs to specify α and proceed

with selecting genes accordingly. The adaptive procedure is attractive because it is least conservative

(and hence more powerful) since it seeks to control FDR at a level close to α. However, the adaptive

procedure assumes the same conditions as those of BH, and requires m0/m be well estimated. Thus

for some correlation structures we found that the actual FDR of the procedure can exceed the nominal

level. This may be worrisome in applications. The new AP procedure does not make any distributional

assumptions and is strikingly more powerful than the BH procedure. However, like the SAM procedure

it is not designed to control the FDR and was observed to not control FDR when m0/m is large.

These results are encouraging.

4. Analysis of the Breast Cancer Data

We analyze a publicly available cDNA microarray dataset from a study of breast cancer reported by

Van’t Veer et al. (2002). The data consist of approximately 25,000 gene expression measurements

from 44 cases found to have good prognosis cases and 34 who had a poor prognosis. The goal of

the study is to identify a subset of genes that are predictive of the prognostic status of breast cancer

patients. Although Van’t Veer et al proceeded to combine data across genes for prediction, we are

concerned here only with the first step to select a set of genes which are each associated with prognosis.

The gene expression measurement is the logarithm of the ratio of the intensities of the red to green

fluorescent dyes, where green dye is used for the reference pool and red is used for the experimental

tissue. In the study of Van’t Veer et al. (2002), as a first step the authors selected some 5000 genes

by applying gene filtering techniques that are described in the paper. To investigate properties of our

new multiple testing procedure, we follow the same gene filtering procedure and obtain a sample of

4866 genes. We use the AUC test statistic to describe how well a gene discriminates those subjects

that develop distant metastases within 5 years (poor prognosis status) from those who are disease free

beyond 5 years (good prognosis status). Figure 6 displays the distribution of the AUCs for the 4866

genes. The AUC statistics for most of the genes are between 0.5 to 0.6, indicating that the majority

of the genes are not differentially expressed.

We first calculate the unadjusted p-value for each gene using the Wilcoxon rank-sum test, the test
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that uses the AUC value as its test statistic. 839 out of 4866 genes (17.24%) have a p-value less than

0.05, suggesting that the problem with multiple comparisons may be quite substantial here. If we

perform the Bonferroni adjusted procedure, only two genes have an adjusted p-value less than 0.05.

We performed the BH linear step-up procedure, the adaptive procedure and our new AP procedure.

For the adaptive procedure, we obtain an estimated m0/m = 0.70 with a smoothing method suggested

by Storey(2003). For the AP method, the adjusted p-values are calculated based on 1000 random

permutations. Figure 7 displays the p-values for the top 200 genes using the above multiple testing

procedures along with the unadjusted p-values. When we choose to reject genes at the 0.05 level,

four genes are rejected by the BH procedure, 7 genes are claimed as significant by both the AP and

the adaptive procedures. When we choose to reject on the basis of α < 0.1, we find that 133, 197

and 317 genes are selected by the BH, AP and the adaptive procedures respectively. These results

are consistent with our numerical finding that the adaptive procedure is usually the most powerful

procedure. Assuming that our simulation study results apply to this dataset, with m0/m = 0.70,

the FDR is controlled at level less than or equal to α for the BH or AP procedures, however for the

adaptive procedure FDR could be potentially higher than α depending on the correlation structure

of the data. This means that for the new procedure, among the 4866 genes we considered, on average

at most 20 genes out of the 197 genes could be false positive. If we can afford the time and costs that

are spent in vain on the 20 genes, we may benefit from studying a relatively bigger pool of potentially

informative genes. In this particular dataset, our new algorithm appears to be effective.

We next compare the AP procedure with SAM. The SAM software allows one to interactively

change ∆ to control FDR if desired. Storey (2001) argues that a positive FDR, pFDR = E
[

V (∆)
R(∆) |R(∆) > 0

]
,

may be a better quantity than ∆ since it provides more meaningful interpretation. Corresponding

to the pFDR, he suggests estimating q value, the probability that a null gene is true conditioning on

observing a statistic as extreme or more extreme. We note that although our AP value and q-value

have different interpretations, both are individual measures that take into account the problem with

multiplicity, and both can be used to calibrate differential gene expression. We thus compare our

AP values with q-values reported by the SAM software. To facilitate the comparison for a gene j

we consider a statistic dj , that is based on the two sample t-statistic, but with a small constant s0
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added to the denominator, following the SAM procedure. Among the top 200 genes ranked on d(j),

j = 1, . . . , 200, more significant genes will be identified if we choose to draw the line based on the q

values of the SAM procedure, compared with the selection procedure using the same AP value (top

panel Figure 8). On the other hand, the AP values appear to be more fine tuned with the test statis-

tics. As can be seen in the bottom panel of Figure 8, the AP value (without the final monotonization)

decreases gradually as the value of the test statistic increases. Unlike the q-value which assign equal

values to SAM scores range 3.5 to 5, AP values acknowledge such differences and gives distinct p

values to the scores in that spectrum. In summary, the SAM procedure appears to be more powerful

as it discovers more significant genes given the same significant level. However, the AP procedure is

also attractive as it corresponds more closely with the values of the statistics under consideration.

Furthermore, the estimation procedure for AP values are simpler than that for the q-values which

also rely on more assumptions about the dependence structures and require m0/m and pFDR be well

estimated.

5. Discussion

This manuscript concerns the issue of selecting a subset of genes that are differentially expressed.

We propose a new approach that to deciding which genes to select for further study. Genes are

ranked according to some statistic and the procedure dictates at which k to draw the line.Genes

above k are pursued further. statistically more rigorously select top k genes. Similar to many of the

existing multiple hypothesis testing procedures, we take into account the problem of multiplicity by

calculating adjusted p-values for all genes simultaneously and reject genes if their adjusted p-values

do not exceed a predetermined value α. Similar to SAM, these adjusted p-values are computed based

on the distributions of order statistics under Hc
0.

A strength of the approach we have presented is that the methodology can accommodate many

complications such as dependence amongst genes. Although the proposed method does not directly

control FDR, our simulation studies show that rejection based on the new adjusted p-value method is

as powerful as those methods that aim to control FDR, given the same FDR level. However, for many

of the existing FDR controlling procedures to perform well, certain assumptions about correlation

structures are needed. These assumptions may or may not hold in practice. Furthermore, although
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the proposed method is in spirit similar to the SAM procedure, our procedure has intuitive appeal

and it acknowledges that the distribution of jth order statistic may not be symmetric about its mean

and that its variance may depend on the order (j). Indeed, our simulation study shows that for small

sample sizes where SAM is expected to perform well, our proposed method is more powerful than

SAM if the gene expression levels are not symmetrically distributed.

Our study also leads to some interesting findings on the operating characteristics of our new

method and some existing multiple hypothesis testing procedures. In the diagnostic testing setting,

it is well known that increasing TPR usually is accompanied by decreasing 1-FPR. A similar trade-off

can be observed in the relationship between AP and FDR at least based on our simulation studies.

With the emergence of many new methods for choosing rejection regions in a microarray study, it is

important in our opinion to take into consideration this aspect of the operating characteristics when

the performance of a new method is evaluated.
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Figure 1: Simulation results for the AP and SAM procedures with expression levels from normal
distributions. Top panels show data with n0 = n1 = 20, bottom panels show data with n0 = n1 = 50.
Left panel shows data with ROC curves. Right panel shows Average power versus FDR.
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Figure 2: Simulation results for the AP and SAM procedures with expression levels from gamma
distributions. Top panels show data with n0 = n1 = 20, bottom panels show data with n0 = n1 = 50.
Left panel shows data with ROC curves. Right panel shows Average power versus FDR.
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Figure 3: FDR versus α for m=40, nD = nD̄ = 20. Each row corresponds to a different correlation
structure. The first column presents results from simulations with m0/m = 50%, the second column
with m0/m = 75%, and the third column with m0/m = 90%. The solid diagonal line represents
the benchmark where FDR is equal to the trhreshold α for declaring genes as differentially expressed
using the multiple testing procedure.
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Figure 4: FDR versus α for m=40, nD = nD̄ = 20. Each row corresponds to a different correlation
structure. The first column presents results from simulations with m0/m = 50%, the second column
with m0/m = 75%, and the third column with m0/m = 90%.

IV

http://biostats.bepress.com/uwbiostat/paper223



FDR

A
ve

ra
ge

 P
ow

er

0.0 0.05 0.10 0.15 0.20 0.25

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

AP
BH
Adapt
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Table 1: Outcomes from multiple tests with m genes
# not rejected #rejected

# H0 U V m0

# Ha T S m1

total m-R R m

Table 2: Simulation studies for m=200, r1=0, r2=0.
α FDR Average Power

AP BH Adapt AP BH Adapt
m0 = 50%m

0.01 0.007 0.005 0.010 0.866 0.859 0.877
0.05 0.032 0.027 0.051 0.907 0.902 0.919
0.1 0.061 0.052 0.100 0.923 0.920 0.936
0.2 0.116 0.103 0.199 0.940 0.937 0.955

m0 = 75%m
0.01 0.010 0.008 0.010 0.846 0.836 0.845
0.05 0.045 0.037 0.049 0.889 0.883 0.891
0.1 0.090 0.074 0.100 0.908 0.903 0.910
0.2 0.172 0.149 0.198 0.927 0.923 0.931

m0 = 90%m
0.01 0.013 0.006 0.007 0.489 0.401 0.414
0.05 0.066 0.039 0.048 0.662 0.608 0.621
0.1 0.127 0.089 0.102 0.728 0.689 0.699
0.2 0.239 0.177 0.199 0.797 0.762 0.775

Table 3: Simulation studies for m=200, r1=0.6, r2=0.6.
α FDR Average Power

AP BH Adapt AP BH Adapt
m0 = 50%m

0.01 0.007 0.006 0.012 0.964 0.963 0.968
0.05 0.031 0.026 0.057 0.976 0.975 0.980
0.1 0.061 0.0527 0.111 0.981 0.980 0.985
0.2 0.117 0.104 0.214 0.986 0.985 0.990

m0 = 75%m
0.01 0.009 0.007 0.010 0.959 0.957 0.959
0.05 0.044 0.036 0.051 0.973 0.971 0.974
0.1 0.087 0.071 0.103 0.978 0.976 0.979
0.2 0.172 0.148 0.206 0.983 0.982 0.984

m0 = 90%m
0.01 0.014 0.007 0.008 0.844 0.811 0.818
0.05 0.068 0.042 0.051 0.900 0.885 0.891
0.1 0.128 0.088 0.104 0.923 0.909 0.913
0.2 0.237 0.181 0.214 0.944 0.935 0.940
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Table 4: Simulation studies for m=200, r1=0.6, r2=-0.6.
α FDR Average Power

AP BH Adapt AP BH Adapt
m0 = 50%m

0.01 0.007 0.005 0.008 0.591 0.583 0.595
0.05 0.031 0.025 0.038 0.644 0.636 0.651
0.1 0.062 0.053 0.078 0.671 0.664 0.681
0.2 0.116 0.102 0.150 0.703 0.696 0.718

m0 = 75%m
0.01 0.010 0.007 0.009 0.572 0.562 0.568
0.05 0.045 0.037 0.043 0.621 0.613 0.620
0.1 0.090 0.074 0.089 0.646 0.639 0.646
0.2 0.177 0.153 0.183 0.675 0.669 0.676

m0 = 90%m
0.01 0.016 0.007 0.007 0.356 0.305 0.311
0.05 0.065 0.041 0.043 0.447 0.414 0.420
0.1 0.125 0.083 0.089 0.486 0.462 0.467
0.2 0.242 0.170 0.185 0.540 0.510 0.517
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