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Abstract

We propose a new class of models, transition measurement error models, to study
the effects of covariates and the past responses on the current response in longitu-
dinal studies when one of the covariates is measured with error. We show that the
response variable conditional on the error prone covariate follows a complex transi-
tion mixed effects model. The naive model obtained by ignoring the measurement
error correctly specifies the transition part of the model, but misspecifies the covari-
ate effect structure and ignores the random effects. We next study the asymptotic
bias in naive estimator obtained by ignoring the measurement error for both con-
tinuous and discrete outcomes. We show that the naive estimator of the regression
coefficient of the error-prone covariate is attenuated; while the naive estimators of
the regression coefficients of the past responses are generally inflated. We then de-
velop a structural modeling approach for parameter estimation using the maximum
likelihood estimation method. In view of the multi-dimensional integration required
by full maximum likelihood estimation, an EM algorithm is developed to calculate
maximum likelihood estimators, in which Monte-Carlo simulations are used to eval-
uate the conditional expectations in the E-step. We evaluate the performance of the
proposed method through a simulation study, and apply it to a longitudinal social
support study for elderly women with heart disease.

Key Words: Asymptotic bias; EM algorithm; Maximum likelihood estimator; Measurement

error; Structural modeling; Transitional Models.
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1 Introduction

Longitudinal data are common in health sciences research, where repeated measures are ob-

tained for each subject over time. Diggle, et al. (2002) provide a comprehensive overview of

statistical methods for analyzing longitudinal data. One class of longitudinal models is the

transitional model, where the conditional mean of an outcome at the current time point is

modeled as a function of its values at the previous time points and covariates (Diggle, et al,

2002, Chapter 10). This model is useful when one is interested in studying the effects of covari-

ates and the past responses on the current response. The within-subject correlation is easily

accounted for by conditioning on the past responses, and the model can be easily fit within the

generalized linear model framework.

A common problem in longitudinal studies is the presence of covariate measurement error.

For example, it is well known that covariates such as CD4 counts (Tsiatis, Degruttola, and

Wulfsohn, 1995) and blood pressure and nutrient intake (Carroll, Ruppert, and Stefanski, 1995)

are often measured with error. In Section 6, we consider a longitudinal study of elderly women

with heart disease. One of the study objectives was to investigate the effect of social support on

the health outcomes. However, the social support level was estimated using the average score

of several questions concerning social support in a simple questionnaire and hence measured

the true social support level with considerable error.

There is an extensive literature on measurement error for independent data (Fuller, 1987;

Carroll, et al., 1995). For longitudinal data, Tosteson, Buonaccorsi, Demidenko (1998) and

Buonaccorsi, Demidenko and Tosteson (2000), and Wang, et al (1998) considered modeling

measurement error in linear and nonlinear mixed effects models. Limited work has been done

for modeling measurement error in transition models. Schmid, Segal and Rosner (1994) and

Schmid (1996) studied measurement error in first-order autoregressive models for continuous

longitudinal outcome. It should be noted that the results in classical generalized linear models

with covariate measurement error (Carroll, et al., 1995) are not applicable in generalized tran-

sition models, since (1) the past response is included as a covariate in transition models, and
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(2) responses and unobserved covariates and their observed error prone values are measured

repeatedly over time and are likely to be correlated.

We develop in this paper a new class of models, transition measurement error models, for

continuous and discrete outcomes, to study the effects of covariates and the past responses

on the current response in longitudinal studies when one of the covariates is measured with

error (Section 2). We show in Section 3 that the response variable conditional on the error

prone covariate follows a complex transition mixed effects model. The naive model obtained

by ignoring the measurement error correctly specifies the transition part of the model, but

misspecifies the covariate effect structure and ignores the random effects. We next perform an

asymptotic bias analysis in Section 3 and show that ignoring the measurement error results in

the regression coefficients of covariates attenuated and the regression coefficients of the past

responses inflated. In contrast to the results in generalized linear mixed measurement error

models (Wang, et al., 1998), the biases in naive estimators do not depend on the cluster

size. We develop a structural modeling approach for inference in Section 4 by accounting for

measurement error by assuming the unobserved covariate follows a transition model. We study

the finite sample performance of the proposed method in a simulation study in Section 5, and

apply the method to the longitudinal study of elderly women with heart disease in Section 6,

followed by discussions in Section 7.

2 The General Transition Measurement Error Model

Suppose the data are obtained from m subjects over time from a longitudinal study. Denote by

Yij the outcome variable of the ith subject (i = 1, ..., m) at the jth time point (j = 1, ..., ni), Xij

the unobserved true covariate (for simplicity, Xij is assumed to be a scalar), Wij the observed

error-prone measure of Xij, and Zij(p × 1) the other covariates which are measured precisely.

We assume a q-order generalized linear transition model for the outcome variable Yij, where

the conditional distribution of Yij given its history {Yij−1, ..., Yi1} and the covariate history

{Xij−1, ..., Xi1} and {Zij−1, ...,Zi1} is assumed to depend on on the prior q observations of the

outcome Hy,ij = (Yij−1, ..., Yij−q)
T (q ≤ ni) and current values of the covariates {Xij,Zij}. The
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transition model of the outcome Yij can be written as

g(µij,x) = β0 + Xijβx + ZT
ijβz + HT

y,ijα, (1)

where µij,x is the conditional mean of Yij given Xij, Zij, and Hy,ij, g(·) is a monotonic differ-

entiable link function, β0, βx, βz(p × 1), and α(q × 1) are unknown regression coefficients.

Define Yi = (Yi1, ..., Yini
)T , Xi, Zi, Wi similarly, and θY = (β0, βx, β

T
z , αT )T . Then the

joint log likelihood of Yi given {Xi,Zi} for the ith subject is

`i(Yi|Xi,Zi; θY ) =
ni∑

j=q+1

`ij(Yij|Xij,Zij,Hy,ij) + `i(Yi1, ..., Yiq|Xi,Zi), (2)

where `ij(Yij|Xij,Zij,Hy,ij) belongs to the exponential family distribution (McCullagh and

Nelder, 1989) with mean µij,x and variance φa−1
ij v(u), aij is a pre-specified weight, φ is a scale

parameter, v(·) is a variance function, and `i(Yi1, ..., Yiq|Xi,Zi) is assumed free of θY .

The observed error prone covariate Wij is assumed to be related to the true unobserved Xij

through an additive measurement error model,

Wij = Xij + Uij, (3)

where the measurement error Uij are independent of Xij and independently follow N(0, σ2
u).

The structural transition measurement error model is completed by specifying a distribution

for the unobserved covariate Xij. In the classical measurement error literature, it is common

to assume the Xij to be independent (Carroll, et al., 1995). However, for longitudinal data, the

Xij observed from the same subject are likely to be correlated. Hence, paralleling the transition

model for Yi, we consider a r-order linear transition model for the unobserved Xij as

Xij = γ0 + ZT
ijγz + HT

x,ijγx + ex,ij, (4)

where Hx,ij = (Xij−1, ..., Xij−r)
T , θX = (γ0, γ

T
z , γT

x )T is an unknown parameter vector, and the

ex,ij are independent of Uij and independently follow N(0, σ2
x).

Assuming the measurement error is non-differential, i.e., Li(Yi|Xi,Zi,Wi) = Li(Yi|Xi,Zi),

the joint likelihood of the observed data (Yi,Wi|Zi) for the ith subject is

Li(Yi,Wi|Zi) =
∫

Li(Yi|Xi,Zi)Li(Wi|Xi,Zi)Li(Xi|Zi)dXi, (5)
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which often does not have a closed form expression and involves ni dimensional integration

except for Gaussian outcomes.

3 Asymptotic Bias Analysis in Naive Estimators

It is of interest to understand how the transition model (1) can be misspecified if the mea-

surement error is ignored and the asymptotic biases in naive estimators obtained by ignoring

the measurement error. To understand the fundamental issues, for simplicity, we focus in our

asymptotic bias analysis on the first-order transition models for both the outcome variable Yij

and the unobserved covariate Xij, i.e., set q = r = 1, Hy,ij = Yij−1 and Hx,ij = Xij−1.

3.1 Misspecification of the naive model

The naive model is defined by ignoring the measurement error by simply replacing the unob-

served true covariate Xij with its error-prone value Wij in model (1) as

g(µij,w) = β0 + Wijβx + ZT
ijβz + Yij−1α. (6)

To examine how the naive model (6) misspecifies the true (Yi|Wi,Zi) model, we first derive

the true (Yi|Wi,Zi) model under the transition models (1), (3), (4), then compare it with (6).

For simplicity, in this investigation, we assume no covariates Zi in the X model (4), i.e.,

Xij = γ0 + Xij−1γx + ex,ij, (7)

which can be rewritten as Xi = 1iγ0/(1− γx) + exi, where 1i is an ni × 1 vector of ones and exi

is an AR(1) Gaussian process with mean 0 and covariance matrix Σxi, whose (j, k)th element

is σ2
x(1 − γ2

x)
−1γ|j−k|

x . Denote by Ii an ni × ni identity matrix and by Λi = Σxi{Σxi + σ2
uIi}

−1

the reliability matrix, where Σxi and Λi depend on i only through their dimensions ni. Since

Xi and Wi are jointly normally distributed and independent of Zi, one can show that Xi

given (Wi,Zi) is also normally distributed with the conditional mean E(Xi|Wi,Zi) = γ0(1 −

4
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γx)
−1(Ii − Λi)1i + ΛiWi and the conditional covariance cov(Xi|Wi,Zi) = (Ii − Λi)Σxi, i.e.,

Xi = (Ii − Λi)(1i

γ0

1 − γx

) + ΛiWi + e∗
xi, (8)

where e∗
xi = Xi − E(Xi|Wi,Zi) = (Ii − Λi)exi − ΛiUi follows N{0, (Ii − Λi)Σxi} and is

independent of (Wi,Zi).

Plugging (8) into (1), some calculations show that the observed data (Yi|Wi,Zi) no longer

follow a transition model, but follow the complex random effects transition model as

g(µij,w) = (β0 + γ0jβx) + WT
i αwjβx + ZT

ijβz + Yij−1α + e∗xijβx, (9)

where µij,w = E(Yij|Wij,Zij, Yij−1), γ0j is the jth element of the vector (Ii − Λi)(1i
γ0

1−γx
), αwj

is the transpose of the jth row of Λi, and the random effect e∗xij is the jth element of e∗
xi

and is induced by measurement error in X. A comparison of the naive model (6) with the

true (Yi|Wi,Zi) model (9) shows that the naive model correctly specifies the structure of the

transitional part, but ignores the random effect e∗xij and misspecifies the covariate structure

by assuming it only depends on the current value Wij instead of the whole vector Wi. Hence

ignoring the measurement error could result in biased estimates of β = (β0, βx, β
T
z )T and α.

It is of substantial interest to understand the direction and the magnitude of such biases.

We investigate the asymptotic bias of the regression coefficients βx and α and the effect of

cluster size on the asymptotic bias when the measurement error is ignored. To illustrate the

fundamental impact of the measurement error, we assume the same cluster size ni = n and no

covariates Zi. Specifically the transition model in the asymptotic bias analysis is

g(µij,x) = β0 + Xijβx + Yij−1α, (10)

and the unobserved covariate Xij follows the linear transitional model (7).

The naive model simply replaces Xij in (10) with Wij as

g(µij,w) = β0,naive + Wijβx,naive + Yij−1αnaive. (11)

The naive estimators are the MLEs under model (11). We assume in our asymptotic investiga-

tion the cluster size n is fixed and the number of clusters (subjects) m → ∞, and investigate the
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asymptotic limits of the naive estimators as m → ∞. We first investigate the effect of cluster

size n on the asymptotic biases in naive estimators (Section 3.2), then study such asymptotic

biases for Gaussian outcomes (Section 3.3) and for non-Gaussian outcomes (Section 3.4).

3.2 Cluster size effect on the asymptotic bias in naive estimator

We show in Theorem 1 that under some general assumptions, the biases in naive estimators do

not depend on the cluster size n. This result differs from that under generalized linear mixed

models with covariate measurement error, where the bias increases with the cluster size (Wang,

et al., 1998). The proof of Theorem 1 is given in Appendix A.1.

Theorem 1 Suppress the subject index i. Suppose that the repeated measures (Xj, Yj)(j =

1, ..., n) are observed from a stationary two-dimensional first-order Markov process. Then the

asymptotic biases in naive estimators obtained by ignoring the measurement error via fitting

the naive model (11) does not depend on the cluster size n (n ≥ 2).

Theorem 1 suggests that we can simply restrict our asymptotic bias analysis to an arbitrary

fixed cluster size n (n ≥ 2). We can easily extend the results to the case where (Xj, Yj) is a

q-order stationary process and show that the asymptotic biases in naive estimators are free of

the cluster size n ≥ q + 1. Finally, we emphasize that the stationary process assumption is

essential for Theorem 1. If this assumption is violated or the transition model is misspecified,

the result in Theorem 1 may not be true. For instance, in one numerical study where data

were generated from a non-stationary transition model, the biases in the regression coefficients

varied with maximum bias 10% when cluster sizes changed from 5 to 10.

3.3 Asymptotic biases in naive estimators under the linear transi-

tion model for Gaussian outcomes

In this section, we study the asymptotic biases in naive estimators of βx and α under the

linear transition model for normally distributed outcomes Yij and assuming an identity link

in (10. Denote the asymptotic limits of the naive estimators of the regression coefficients

6
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θY = (β0, βx, α)T by θY,naive = (β0,naive, βx,naive, αnaive)
T as m → ∞. Suppress the subject

index i and denote by Unaive(Y,W; θY,naive) the score function of the naive model (11). The

asymptotic limit of the naive estimator θY,naive solves E{Unaive(Y,W; θY,naive)} = 0, where the

expectation is taken under the true linear model (10) with g(·) = 1, (3), (7) and is a function

of the true parameter vector (θT
Y , σ2, θT

X , σ2
x)

T .

The results in Theorem 1 show the asymptotic biases of the naive estimators do not depend

on the cluster size n. Without loss of generality, we set the cluster size n = 2 in our asymptotic

bias calculations. It can be easily shown that θY,naive satisfies

E(Y2 − β0,naive − W2βx,naive − Y1αnaive) = 0

E{W2(Y2 − β0,naive − W2βx,naive − Y1αnaive)} = 0

E{Y1(Y2 − β0,naive − W2βx,naive − Y1αnaive)} = 0.

Some calculations give




1 E(X2) E(Y1)
E(X2) E(X2

2 ) + σ2
u E(X2Y1)

E(Y1) E(X2Y1) E(Y 2
1 )







β0 − β0,naive

βx − βx,naive

α − αnaive


 =




0
βxσ

2
u

0


 .

It follows that

βx,naive = λ∗βx, αnaive = α + λ∗∗, (12)

where

λ∗ =
var(X2)var(Y1) − cov2(X2, Y1)

{var(X2) + σ2
u}var(Y1) − cov2(X2, Y1)

,

λ∗∗ =
βxσ

2
ucov(X2, Y1)

{var(X2) + σ2
u}var(Y1) − cov2(X2, Y1)

,

and the expressions of var(X2), var(Y1), cov(X2, Y1) are given in Appendix A.2.

It can be shown that λ∗ and λ∗∗ are bounded, and their properties are given in Theorem 2.

The proof of Theorem 2 is given in Appendix A.2.

Theorem 2 Under the stationary condition that |α| < 1 and |γx| < 1, then

7
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(1) λ∗ satisfies

σ2
x

σ2
x + σ2

u

≤ λ∗ ≤
σ2

x

σ2
x + σ2

u(1 − γ2
x)

, (13)

(2) λ∗∗ has the same sign with γx, where γx is defined in the X model (7).

Note that the assumption |α| < 1 and |γx| < 1 in Theorem 2 guarantees both the Y and

X processes being stationary. Theorem 2 shows that if the measurement error is ignored, the

naive estimator of the regression coefficient βx of the covariate Xij is attenuated, while the

naive estimator of the regression coefficient α of the past response is inflated if γx > 0 and

underestimated if γx < 0. Since the Xij are often positively correlated within each subject,

γx > 0 in practice, the naive estimator of α is often inflated in practice. Denote by σ2
X =

σ2
x/(1 − γ2

x) the marginal variance of Xij under the X model (7). The right hand side of (13)

can be written as σ2
X/(σ2

X +σ2
u), which is the traditional attenuation factor in a standard linear

regression measurement error model (Carroll, et al, 1995). It follows that the attenuation of

the naive estimator of the regression coefficient βx in a linear transition model is usually more

severe compared to that in a standard linear regression measurement error model.

In Figure 1, we numerically evaluate the asymptotic relative biases in βx,naive and αnaive as

a function of the measurement error variance σ2
u under the linear transition measurement error

model. The parameter configurations are β0 = −1, βx = 1, α = 0.5, σ2 = 1, and γ0 = 0.4, γx =

0.6, σ2
x = 0.5. The relative bias is defined as the bias of a parameter estimator divided by its

true value. Figure 1 clearly shows that the naive estimator of βx is attenuated, while the naive

estimator of α is inflated. The biases become more severe as σ2
u increases.

3.4 Asymptotic bias in naive estimator under the generalized linear

transition model for non-Gaussian outcomes

When the response Yi is non-Gaussian, the bias analysis is much more complicated and closed

form expressions of the asymptotic limits of the naive estimators are usually unavailable. Nu-

merical calculations are hence needed. We first describe the general theoretical results under

8
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the generalized linear transition model (10). We next illustrate as an example the detailed

numerical calculations of the asymptotic biases in the logistic transition model in (10) with g(·

being the logit link.

The naive estimator θ̂Y,naive maximizes the naive log likelihood m−1 ∑m
i=1 `naive(Yi,Wi; θY,naive),

where `naive(Yi,Wi; θY,naive) is the log likelihood function of the ith subject under the naive

model (11), and is given in (2) with Xij replaced by Wij. Suppressing the subscript i, the asymp-

totic limit of the naive estimator θY,naive maximizes the asymptotic limit (as m → ∞) of the

naive log likelihood, which is its expectation E{`naive(Y,W; θY,naive)}, where the expectation

is taken with respect to (Y,W,X) under the true model (10), (3), (7). We have

E(Y,W,X){`naive(Y,W; θY,naive)} = EX(EY [EU{`naive(Y,W = X + U; θY,naive)|X}]), (14)

which is a function of θY,naive and the true value (θY , θX , σ2
x). Hence θY,naive maximizes (14)

with respect to θY,naive as a function of the true value (θT
Y , θT

X , σ2
x)

T . In evaluation of the

logistic transition measurement error model, the conditional expectation for binary outcome

Y is simply a discrete summation, and the expectation for X can be calculated using Gauss-

Hermite quadrature or Monte-Carlo method.

As an example, we numerically calculate the asymptotic biases of βx,naive and αnaive in the

logistic transition model. The results are presented in Figure 2, where the relative asymptotic

biases of βx,naive and αnaive are plotted against the measurement error variance σ2
u. The pa-

rameter configurations are the same as those in the linear transition model case. Similar to the

results in the linear transition model, the naive estimator of βx is attenuated, while the naive

estimator of α is inflated. As σ2
u increases, the biases become larger.

4 Estimation in Generalized Linear Transition Measure-

ment Error Models

The asymptotic bias analysis results in Section 3 show that the naive estimator ignoring the

measurement error is asymptotically biased. Valid statistical inference hence requires properly

9
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accounting for the measurement error. We propose in this section maximum likelihood estima-

tion by jointly modeling the outcome using the transition model (1) and the measurement error

using the structural model (3) and (4). In view of the multi-dimensional integration required

by maximizing the likelihood (5), we develop an EM algorithm to calculate the MLEs. We

first discuss in Section 4.1 the EM algorithm for linear transition measurement error models

for Gaussian outcomes, and extend in Section 4.2 the results to generalized linear transition

measurement error models for non-Gaussian outcomes.

4.1 EM algorithm for linear transition measurement error models

In this section, we derive an EM algorithm to compute the maximum likelihood estimator when

the response Yij is normal and follows a linear transition model

Yij = β0 + Xijβx + ZT
ijβz + HT

y,ijα + εij, (15)

where the εij are independent and follow N(0, σ2). We assume the error-prone covariate Wij

follows (3) and the unobserved covariate Xij follows the linear transition model (4).

The complete data are (Y,W,X,Z) and the observed data are (Y,W,Z). It is easy to

write out the complete data log likelihood function `(Y,W,X|Z) as

`(Y,W,X|Z) =
m∑

i=1

{
−

ni − q

2
ln(2πσ2) −

1

2σ2
(Y

(R)
i − CYi

θY )T (Y
(R)
i − CYi

θY )

−
ni

2
ln(2πσ2

u) −
1

2σ2
u

(Wi − Xi)
T (Wi − Xi)

−
ni − r

2
log(2πσ2

x) −
1

2σ2
x

(X
(R)
i − CXi

θX)T (X
(R)
i − CXi

θX)
}
,

where Y
(R)
i = (Yi,q+1, ..., Yini

)T , and 1
(Y )
i , X

(Y )
i and Z

(Y )
i are defined similarly, Y

(H)
i denotes

the history outcomes Y
(H)
i = (Hy,i(q+1), ...,Hy,ini

)T , and X
(H)
i is defined similarly, CYi

=

{1
(Y )
i ,X

(Y )
i ,Z

(Y )
i ,Y

(H)
i } and θY = (β0, βx, β

T
z , αT )T denote the design matrix and the regression

coefficient vector in the response model (15), and X
(R)
i = (Xi,r+1, ..., Xini

)T , and 1
(X)
i and Z

(X)
i

are defined similarly, and CXi
= {1

(X)
i ,Z

(X)
i ,X

(H)
i } and θX = (γ0, γ

T
z , γT

x )T denote the design

matrix and the regression coefficient vector in the X model (4).

10
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Denote by θ = (θT
Y , σ2, θT

X , σ2
x)

T and its MLE by θ̂. Assume the measurement error variance

σ2
u is known. Let θ̂

(k)
be the estimator of θ at the kth iteration, the M-step updates θ̂

(k)
by

θ̂
(k+1)

Y =

[
m∑

i=1

EX

{
CT

Yi
CYi

∣∣∣Y,W,Z; θ̂
(k)

}]−1 [
m∑

i=1

EX

{
CT

Yi

∣∣∣Y,W,Z; θ̂
(k)

}
Y

(R)
i

]
;

σ̂2
(k+1)

=

{
m∑

i=1

(ni − q)

}−1 m∑

i=1

EX

[{
Y

(R)
i − CYi

θ̂
(k+1)

Y

}T {
Y

(R)
i − CYi

θ̂
(k+1)

Y

}∣∣∣∣∣ Y,W,Z; θ̂
(k)

]
;

θ̂
(k+1)

X =

[
m∑

i=1

EX

{
CT

Xi
CXi

∣∣∣ Y,W,Z; θ̂
(k)

}]−1 [
m∑

i=1

EX

{
CT

Xi

∣∣∣Y,W,Z; θ̂
(k)

}
X

(R)
i

]
;

σ̂2
x

(k+1)
=

{
m∑

i=1

(ni − r)

}−1 m∑

i=1

EX

[{
X

(R)
i − CXi

θ̂
(k+1)

X

}T {
X

(R)
i − CXi

θ̂
(k+1)

X

}∣∣∣∣∣Y,W,Z; θ̂
(k)

]
.

The conditional expectations in the above expressions are calculated at the E-step. Specifically,

at the E-step, we calculate the conditional expectation of X
(Y )
i ,X

(Y )
i

T
X

(Y )
i ,X

(H)
i ,

X
(H)
i

T
X

(H)
i ,X

(R)
i ,X

(R)
i

T
X

(R)
i ,X

(H)
i

T
X

(R)
i given the observed data (Yi,Wi,Zi), i = 1, ..., m. Since

the joint distribution of (Yi,Wi) is multivariate normal, these conditional expectations are easy

to calculate and have closed forms, Their detailed expressions are given in Appendix A.3.

The covariance of the MLE θ̂ is calculated using the observed information

Jobs(θ̂) = −
∂2`(Y,W|Z)

∂θθT

∣∣∣∣∣
θ=

ˆθ
= EX

[{
Jc(θ̂) − Uc(θ̂)Uc(θ̂)T

}∣∣∣Y,W,Z
]
, (16)

where Jc(θ̂) and Uc(θ̂) denote the observed information matrix and the score function of the

complete data (Y,W,X,Z) (Louis, 1982). Since (Y,W,X|Z) is multivariate normal, (16) has

a closed form and can be easily calculated.

4.2 The EM algorithm for generalized linear transition measure-

ment error models

In this section, we discuss the EM algorithm for the generalized linear transition measurement

error model (1) for non-Gaussian outcomes. We still assume W and X follow (3) and (4).

Examination of equation (5) suggests that the likelihood function L(Y,W|Z) does not have a

closed form anymore and requires numerical integration. One can easily see that the estimators
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of θX and σ2
x in the M-step can be updated in the same way as in Section 4.1. Estimation of

θY in the M-step needs to be modified and requires solving the conditional score equation

m∑

i=1

EXi

[
CT

Yi
∆iV

−1
i

{
Y

(R)
i − µi,x

}
|Y,W,Z; θ̂

(k)
]

= 0, (17)

where CYi
is defined at the beginning of Section 4, µi,x = E

{
Y

(R)
i |X

(Y )
i ,Z

(Y )
i ,Y

(H)
i

}
with the

jth component µij,x given in (1), Vi = diag{var(Yij|Xij,Zij,Hy,ij)}, and ∆i = diag{µ
(1)
ij,x(·)}

and µ
(1)
ij,x(·) denotes the first derivative of µij,x. The Fisher scoring method is used to solve (17).

At the E-step, one needs to calculate the conditional expectations of the form

EXi
{Ti(Yi,Wi,Xi,Zi; θ)} for some function T (·), which can be written as

∫
Ti(Yi,Wi,Xi,Zi; θ)f(Yi|Xi,Zi; θ̂

(k)
)f(Wi|Xi; θ̂

(k)
)f(Xi|Zi; θ̂

(k)
)dXi

∫
f(Yi|Xi,Zi; θ

(k))f(Wi|Xi; θ̂
(k)

)f(Xi|Zi; θ̂
(k)

)dXi

,

where f(·) denotes a density function. Both the numerator and the denominator can be

evaluated using Monte Carlo simulations by generating Xi from the conditional distribution

Xi|(Wi,Zi), which is multivariate normal.

We found that calculations of the covariance of θ̂ using (16) are not stable for non-Gaussian

cases. In particular, the information matrix calculated using (16) may not be positive defi-

nite. We hence estimate the observed information using Jobs(θ̂) = m−1 ∑m
i=1 Ui,obs(θ̂)Ui,obs(θ̂)T ,

where Ui,obs(θ̂) is the score of the observed data (Yi,Wi,Zi) for the ith subject.

5 Simulation Study

We conducted two simulation studies to evaluate the finite sample performance of the MLEs,

one for normal outcomes under linear transition measurement error models (15) and one for

binary outcomes under logistic transition measurement error models. We compared the MLEs

with the estimates obtained using the true X and the naive estimates obtained by ignoring the

the measurement error with X replaced by W. We set the number of subjects m = 100 and

the cluster size n = 5. The covariate Zij was assumed to be a treatment indicator, with half
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subjects being treated and half subjects not being treated. The W and X were generated under

(3) and (4). For simplicity, to evaluate the performance of the MLE estimates, we assumed in

the simulation studies first-order transition models for both the outcome variable Yij and the

unobserved covariate Xij, i.e. q = r = 1.

The true parameter values were: (1) β0 = −1, βx = 1, βz = 0.8, α = 0.5, (σ2 = 1 for the

normal case); (2) γ0 = 0.4, γz = 0.5, γx = 0.6, σ2
x = 0.5; (3) σ2

u = 0.5 (assumed to be known).

A total of 1000 replications were used for the normal case; and 500 replications for the binary

case. The results are presented in Table 1. “True X” indicates that the results using the

true covariate X (unobserved in practice) by fitting model (1). ”Naive” corresponds to the

results when the measurement error is ignored by fitting (1) with X replaced by W; ”MLE”

corresponds to the MLEs using the observed data W calculated using the EM algorithm in

Section 4 to account for the measurement error. Programming was done in SAS/IML.

Our simulation results show that the estimates using the unobserved ”true” X performs the

best both in terms of biases and standard errors. The MLEs using the correct measurement

error structure perform very well and have little bias, while the naive estimators are biased. In

particular, the coefficient βx of the unobserved covariate Xij is attenuated; while the coefficient

α of the past response Yij−1 is inflated when measurement error is ignored. This result is

consistent with our asymptotic bias analysis result in Section 3. We also noticed the trade-off

between the bias and the variance. The MLEs effectively correct the biases in naive estimators,

but have larger SEs. Using mean square errors (MSEs) as a measure of overall performance,

the MLEs perform substantially better than the naive estimates and have substantially smaller

MSEs. The estimated SEs and empirical SEs agree well.

The orders q and r in both the transition model of Yij and the transition model of Xij

are important, and their misspecification could induce considerable bias in the parameter esti-

mates. To see this, we conducted an additional simulation study, where the outcome Y and the

true covariate X were generated from a third-order and a second-order linear transition model

respectively (q = 3, r = 2). The parameter setting was the same as in the previous simulation,
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except for the coefficients of the historical observations: α1 = 0.4, α2 = 0.6, α3 = −0.5, γx1 =

0.1, γx2 = 0.5. The sample size was 100 or 200. In the simulation study, we misspecified the

transition models by assuming q = r = 1 and ran 1000 simulations. The average estimates of

the regression coefficients of Xij and Zij in the outcome model had relative biases as much as

15% and 20% respectively.

These results show that selection of the orders of the transition models is important in

practice. We considered the AIC and the BIC. To examine different model selection methods

to choose (q, r), for each of the above simulation data set, we further analyzed the data assuming

different order transition models by varying (q, r) between 0 and 3 and maximized the AIC and

the BIC to select the best model. The AIC is the twice log-likelihood function minus twice the

number of parameters, and the BIC is the difference between twice the log-likelihood function

and log(sample size) times the number of parameters. The AIC and BIC model selection results

are summarized in Table 2. We considered the sample size n = 100 and n = 200. Our results

show that the BIC works much better than the AIC and has a very high chance (93.4%) of

choosing the correct model in 1000 simulations. We hence will use the BIC in the data example.

6 Application to the Women Take Pride Study

We apply the proposed transition measurement error model to the analysis of the ”Women

Take PRIDE” study (Janevic, et al., 2002). The study involved 570 women who were aged

60 or older and had cardiac disease. One study objective was to explore the effects of social

support on health outcomes. Since the social support level was measured using the average of

a few questions in the questionnaire, it was subject to considerable measurement error.

After a telephone baseline interview, the participants were randomly assigned to either a

control group or a 4-week intervention group designed to improve self-care ability. Subsequent

telephone interviews were conducted at 4, 12, and 18 months. The social support level was

calculated using the average of the scores of several questions concerning social support in the

questionnaire and hence measured the true social support level with considerable error. The

14

Hosted by The Berkeley Electronic Press



social support questions were asked at each followup time. The range of the social support level

is continuous from 1 to 5 with a higher level indicating less support. A log-transformation was

performed to make the normality assumption more plausible.

Due to the repeated measure nature of the data, examination of (4) and (3) shows that we

can estimate σ2
u by fitting a linear mixed model for W on Z with the random effect following the

AR(1) correlation structure. The estimated residual variance thus estimates the measurement

error variance. For our data, σ2
u was estimated as 0.053, which was about one-fourth of the

variation of W and indicated moderate measurement error.

Note that one could treat measurement error in social support as a misclassification problem

(Espeland et al., 1987). However, since social support is an average of multiple questions, it is

continuous. Treating it as a misclassified covariate, it would have many categories and model

parameters would be difficult to interpret. Further, by treating it as a continuous variable, one

could also estimate σ2
u from the data.

The health outcome is symptom bothersomeness. This score assesses the bothersomeness

of 14 symptoms common to patients with heart disease. For each symptom, bothersomeness

is assessed with the question ”How much would you say this symptom bothers you?” with a

response scale from 1=”not at all” to 5=”a lot”. A symptom bothersomeness score was then

calculated by summing the responses of the 14 symptoms. The resulting possible total score

ranged from 0 to 70, with higher scores indicating greater symptom bothersomeness. A log

transformation was performed to make the normality assumption more plausible.

We fit the data using different orders of the proposed transition measurement error models.

The covariates Z included an intervention indicator, age, race(white/nonwhite), and education

level(lower than high school, high school, higher than high school). In view of our simulation

results, the BIC was used to choose the best model. The BIC chose the first-order transition

models for both the outcome Y and the error-prone covariate X. The results obtained from the

best model are presented in Table 3. The results show that women with more social support

have less symptom bothersomeness. The intervention reduces symptom bothersomeness. None
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of the demographics has significant effects. A comparison of the naive estimates with the

MLEs shows that the naive estimate of the social support effect is severely attenuated, while

the naive estimate of the past outcome effect is inflated. These results are consistent with

our theoretical findings in Section 3. The naive estimates and the MLEs of the coefficients

of the other covariates were similar, indicating the measurement error in social support had

little effects on the coefficients of the other covariates. This might be due to the small residual

variance of e∗xi in equation (9).

To examine the effect of σ2
u, we refit the model to the data by assuming σ2

u = 0.025 andσ2
u =

0.1. The BIC still chose the first order transition models as the best model and the estimates

of the coefficients are similar to what is presented in Table 3.

7 Discussion

This paper focuses on structural modelling for transition model with measurement errors. In the

measurement error literature, an alternative method is called functional modelling. Structural

modeling assumes a distribution for the unobserved covariate X and functional modeling does

not assume a distribution for X. In principle, compared with the functional modeling approach,

the structural modeling approach is likely to yield more efficient estimators when the X model

is correctly specified but less robust estimators when the X model is misspecified. We focus

in this paper on the structural modeling approach by specifying a linear transition model for

X and the consistency of the MLEs requires the X model is correctly specified. We have also

developed a functional approach for transition measurement error models, e.g., using SIMEX

(Carroll, et al., 1995). The results will be reported elsewhere. Although we consider in this

paper a scalar unobserved covariate Xij, our results can be easily extended to vector unobserved

covariates Xij in higher-order transition models.

We use the AIC and BIC to choose appropriate orders in the transition models. Our

finite sample study indicates that the BIC outperforms the AIC and the BIC shows superior

performance in our model. Other model selection methods might be used, such the FIC (focused
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information criterion) recently proposed by (Hjort and Claeskens, 2003) and the cross-validation

method. For future research, it would be interesting to compare the performance of all these

methods when applied to our model. It should be noted that when the number of repeated

measures is small, there might not be sufficient information in the data to estimate the orders

of transition models. For high order transition models, high-dimensional numerical methods

will have to be used for the calculations in the E-step and computation complexity will increase

dramatically for non-Gaussian data.
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Appendix

A.1 Proof of Theorem 1

Under the transition structure of the naive model, the expectation E{`naive(Y,W; θY,naive)} is

E{`naive(Y,W; θY,naive)} =
n∑

j=2

E{`naive(Yj|Wj, Yj−1; θY,naive)}

=
n∑

j=2

EX{EY,U{`naive(Yj|Wi = Xj + Uj, Yj−1; θY,naive)]}

=
n∑

j=2

∫
`naive(Yj|Wj = Xj + Uj, Yj−1; θY,naive) ×

f(Yj, Xj, Yj−1)f(Uj)dYjdXjdYj−1dUj,

where f(Yj, Xj, Yj−1) is the density of (Yj, Xj, Yj−1) under the true model (10) and (7), f(Uj) is

the density of the measurement error following N(0, σ2
u). Since both Uj and (Xj, Yj) are both

stationary processes, f(Yj, Xj, Yj−1) and f(Uj) do not depend on j. It follows that

E{`naive(Y,W; θY,naive)} = (n − 1)E{`naive(Yj|Wj = Xj + Uj, Yj−1; θY,naive)}.

Hence, the asymptotic limit of the naive estimator θY,naive, which maximizes E{`naive(Y,W; θY,naive)},

does not depend on cluster size n (n ≥ 2).

A.2 Proof of Theorem 2

Suppress subscript i. We first note the inequality (a + c)/(b + c) ≥ a/b for c > 0, b ≥ a > 0.

Let a = var(X2)var(Y1) − cov2(X2, Y1), b = {var(X2) + σ2
u}var(Y1) − cov2(X2, Y1) and c =

cov2(X2, Y1). Noting all three quantities are positive, simple calculations give

0 ≤ λ∗ ≤
var(X2)

var(X2) + σ2
u

≤ 1.

Some calculations show that

var(Xj) =
σ2

x

1 − γ2
x

, var(Yj) =
σ2 + β2

x
σ2

x

1−γ2
x

+ 2αβ2
xγxσ2

x

(1−αγx)(1−γ2
x)

1 − α2
, cov(Xj, Yj−1) =

βxγxσ
2
x

(1 − αγx)(1 − γ2
x)

.
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It follows that λ∗ can be written as

λ∗ =
σ2

xvar(Y1) + σ2
xγ2

x

1−γ2
x

var(Y1) − cov2(X2, Y1)

(σ2
x + σ2

u)var(Y1) + σ2
xγ2

x

1−γ2
x

var(Y1) − cov2(X2, Y1)
.

Let

c =
σ2

xγ
2
x

1 − γ2
x

var(Y1) − cov2(X2, Y1) =
σ2

xγ
2
x(σ

2 + α2β2
xσ2

x

(1−αγx)2
)

(1 − α2)(1 − γ2
x)

≥ 0,

and a and b be the numerator and the denominator of λ∗, application of the (a, b, c) inequality

at the beginning of this section gives λ∗ ≥ σ2
x(σ

2
x + σ2

u)
−1. Using the above expression of

cov(X2, Y1), one can easily see that λ∗∗γx ≥ 0. Hence λ∗∗ has the same sign with γx.

A.3 The E-step for calculating the MLEs in linear transition mea-

surement error models

The conditional expectations of X
(Y )
i ,X

(Y )
i

T
X

(Y )
i ,X

(H)
i ,X

(H)
i

T
X

(H)
i ,X

(R)
i ,X

(R)
i

T
X

(R)
i ,X

(H)
i

T
X

(R)
i

given the observed data (Yi,Wi,Zi) (i = 1, ..., m) need to be calculated in the E-step. Note that

X
(Y )
i = L

(Y )
i Xi, X

(R)
i = L

(R)
i Xi, where L

(Y )
i = ( 0(ni−q)×q I(ni−q) ) and L

(R)
i = ( 0(ni−r)×r I(ni−r) ) .

Let Q
(s)
i = ( 0r×(s−1) Ĩr 0r×(ni−r−s+1) ) for s = r +1, ..., ni, where Ĩr is an r× r matrix whose

(l, r − l + 1)th elements (l = 1, .., r) are 1’s but 0’s elsewhere, then

X
(H)
i = (Hx,i(r+1), ...,Hx,ini

) =




(Q
(r+1)
i Xi)

T

...
(Q

(ni)
i Xi)

T


 .

Therefore, the components concerning Xi in `(Yi,Wi,Xi|Zi) are given by

−
1

2σ2
(Y

(R)
i − 1

(Y )
i β0 − Z

(Y )
i βz − Y

(H)
i α − βxL

(Y )
i Xi)

T (Y
(R)
i − 1

(Y )
i β0 − Z

(Y )
i βz − Y

(H)
i α − βxL

(Y )
i Xi)

−
1

2σ2
u

(Wi − Xi)
T (Wi − Xi)

−
1

2σ2
x

(L
(R)
i Xi − 1

(X)
i γ0 − Z

(X)
i γz − γT

x QiXi)
T (L

(R)
i Xi − 1

(X)
i γ0 − Z

(X)
i γz − γT

x QiXi),

where Qi = (Q
(r+1)
i

T
, · · · ,Q

(ni)
i

T
)T . Thus, it is easy to see that given (Yi,Wi,Zi), Xi follows

a multivariate-normal distribution with mean −A−1
i bi and covariance matrix A−1

i , where

Ai((Yi,Wi,Zi); θ) =

{
β2

x

σ2
L

(Y )
i

T
L

(Y )
i +

1

σ2
u

I(ni)

20

Hosted by The Berkeley Electronic Press



+
1

σ2
x

(
L

(R)
i −




γT
x Q

(r+1)
i
...

γT
x Q

(ni)
i




)T (
L

(R)
i −




γT
x Q

(r+1)
i
...

γT
x Q

(ni)
i




)




,

bi(Yi,Wi,Zi; θ) = −
1

σ2
βxL

(Y )
i

T
(Y

(R)
i − 1

(Y )
i β0 − Z

(Y )
i βz − Y

(H)
i α) −

1

σ2
u

Wi

−
1

σ2
x

(L
(R)
i −




γT
x Q

(r+1)
i
...

γT
x Q

(ni)
i


)T (γ0 + Z

(X)
i γz).

It follows that

E
{
X

(Y )
i |Yi,Wi,Zi, θ

(k)
}

= −
{
A

(k)
i

}−1
b

(k)
i L

(Y )
i

T
,

E
{
X

(Y )
i

T
X

(Y )
i |Yi,Wi,Zi, θ

(k)
}

= trace
{
L

(Y )
i

{
A

(k)
i

}−1
L

(Y )
i

T
}

+E
{
X

(Y )
i |Yi,Wi,Zi, θ

(k)
}T

E
{
X

(Y )
i |Yi,Wi,Zi, θ

(k)
}

,

E
{
X

(R)
i |Yi,Wi,Zi, θ

(k)
}

= −
{
A

(k)
i

}−1
b

(k)
i L

(R)
i

T
,

E
{
X

(R)T

i X
(R)
i

∣∣∣∣Yi,Wi,Zi, θ
(k)

}
= trace

{
L

(R)
i

{
A

(k)
i

}−1
L

(R)
i

T
}

+E
{
X

(R)
i |Yi,Wi,Zi, θ

(k)
}T

E
{
X

(R)
i |Yi,Wi,Zi, θ

(k)
}

,

E
{
X

(H)
i

∣∣∣Yi,Wi,Zi, θ
(k)

}
= −




(Q
(r+1)
i

{
A

(k)
i

}−1
b

(k)
i )T

...
(Q

(ni)
i

{
A

(k)
i

}−1
b

(k)
i )T


 ,

E
{
X

(H)T

i X
(H)
i

∣∣∣∣Yi,Wi,Zi, θ
(k)

}
=

ni∑

s=r+1

Q
(s)
i

{
A

(k)
i

}−1
Q

(s)
i

T

+E
{
X

(H)
i

∣∣∣ Yi,Wi,Zi, θ
(k)

}T
E

{
X

(H)
i

∣∣∣Yi,Wi,Zi, θ
(k)

}
,

E
{
X

(H)T

i X
(R)
i

∣∣∣∣Yi,Wi,Zi, θ
(k)

}
=

ni∑

s=r+1

Q
(s)
i

{
A

(k)
i

}−1
L

(R)
i,s−r

T

+E
{
X

(H)
i

∣∣∣ Yi,Wi,Zi, θ
(k)

}T
E

{
X

(R)
i

∣∣∣Yi,Wi,Zi, θ
(k)

}
,

where A
(k)
i = Ai(Yi,Wi,Zi, θ

(k)), b
(k)
i = bi(Yi,Wi,Zi, θ

(k)), and L
(R)
i,s−r is the (s− r)th row of

L
(R)
i .
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Table 1: Simulation results of the linear and logistic transition measurement error models based
on 1000 replicates (linear) and 500 replicates (logistic) with the number of subjects m = 100
and cluster size n = 5, measurement error variance σ2

u = 0.5

Model Parameter True Value Method Mean Est. SE Emp. SE MSE
Linear βx 1 True X 1.000 0.063 0.062 0.004

Naive 0.559 0.053 0.054 0.198
MLE 0.959 0.099 0.096 0.011

βz 0.8 True X 0.817 0.153 0.153 0.024
Naive 1.006 0.172 0.167 0.071
MLE 0.782 0.187 0.181 0.033

α 0.5 True X 0.496 0.030 0.030 0.001
Naive 0.584 0.033 0.031 0.008
MLE 0.517 0.038 0.036 0.002

Logistic βx 1 True X 1.027 0.177 0.178 0.032
Naive 0.579 0.126 0.123 0.193
MLE 1.022 0.263 0.239 0.058

βz 0.8 True X 0.799 0.334 0.331 0.110
Naive 1.199 0.315 0.326 0.265
MLE 0.803 0.395 0.380 0.144

α 0.5 True X 0.466 0.289 0.280 0.080
Naive 0.602 0.279 0.271 0.084
MLE 0.495 0.322 0.290 0.084

Est. SE: Estimated SE; Emp. SE: Empirical SE.
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Table 2: Frequencies of Selecting (q, r)-models from 1000 Samples
Sample size Method Frequency table

n = 100 AIC r = 1 r = 2 r = 3 r = 4
q = 1 0 0 0 0
q = 2 0 0 0 0
q = 3 0 645 134 58
q = 4 0 130 20 13

BIC r = 1 r = 2 r = 3 r = 4
q = 1 0 0 0 0
q = 2 0 0 0 0
q = 3 0 934 39 1
q = 4 0 25 1 0

n = 200 AIC r = 1 r = 2 r = 3 r = 4
q = 1 0 0 0 0
q = 2 0 0 0 0
q = 3 0 672 115 65
q = 4 0 119 15 14

BIC r = 1 r = 2 r = 3 r = 4
q = 1 0 0 0 0
q = 2 0 0 0 0
q = 3 0 945 29 5
q = 4 0 19 2 0

Table 3: Parameter estimates for the Women take PRIDE study under a first-order linear
transition model for X and Y with σ2

u = 0.053

MLE Naive
Parameter Estimate SE Estimate SE

Social support (βx) 0.213 0.063 0.147 0.052
Intervention -0.08 0.044 -0.085 0.044

Age 0.004 0.0040 0.004 0.0039
Race 0.006 0.073 -0.006 0.073

Education (HS vs. <HS) -0.01 0.058 -0.005 0.058
Education (>HS vs. <HS) -0.09 0.059 -0.083 0.059

Past symptom bothersome (α) 0.552 0.031 0.559 0.030
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Figure 1: Asymptotic relative biases in naive estimators of βx and α by ignoring measurement error in
the first order linear transition measurement error model for Gaussian outcomes. The true parameter
values are β0 = −1, βx = 1, α = 0.5, σ2 = 1, and γ0 = 0.4, γx = 0.6, σ2

x = 0.5. The two plots correspond
to (a) the relative bias in βx,naive; (b) the relative bias in αnaive.
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Figure 2: Asymptotic relative biases in naive estimates of βx and α by ignoring measurement error in
the first-order logistic transition measurement error model for binary outcomes. The true parameter
values are β0 = −1, βx = 1, α = 0.5, and γ0 = 0.4, γx = 0.6, σ2

x = 0.5. The two plots correspond to (a)
relative bias in βx,naive; (b) relative bias in αnaive.
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