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Abstract

In this paper, we develop a weighted permutation (WP) method to construct con-
fidence intervals for regression parameters in relative risk regression models. The
WP method is a generalized permutation approach. It constructs a resampled his-
tory which mimics the observed history for individuals under study. Inference pro-
cedures are based on studentized score statistics that are insensitive to the forms
of the relative risk function. This makes the WP method appealing in the general
framework of the relative risk regression model. First order accuracy of the WP
method is established using the counting process approach with a partial likeli-
hood filtration. A simulation study indicates that the method typically improves
accuracy over asymptotic confidence intervals.
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Permutation Methods in Relative Risk Regression Models

Abstract

In this paper, we develop a weighted permutation (WP) method to construct confidence

intervals for regression parameters in relative risk regression models. The WP method is

a generalized permutation approach. It constructs a resampled history which mimics the

observed history for individuals under study. Inference procedures are based on studentized

score statistics that are insensitive to the forms of the relative risk function. This makes

the WP method appealing in the general framework of the relative risk regression model.

First order accuracy of the WP method is established using the counting process approach

with a partial likelihood filtration. A simulation study indicates that the method typically

improves accuracy over asymptotic confidence intervals.

1 Introduction

Suppose there are n independent individuals whose life history processes are under investiga-

tion. Let T̃i and Ci respectively be the failure and censoring time of individual i, i = 1, . . . , n.

The data for individual i consist of observations Ti = min(T̃i, Ci), δi = I(T̃i ≤ Ci) and a

p-dimensional covariate vector Zi(t) which may be time dependent. Assuming the censoring

mechanism is independent of the life history process, Cox (1972, 1975) proposed a relative

risk regression model and partial likelihood inference to assess the effect of covariates on the

failure time distribution or hazard rate.

In this paper, we consider the relative risk regression models with hazard function

λ(t|Z(t)) = λ0(t)r{βT
0 Z(t)} (1.1)

where r : R→ R is non-negative and twice differentiable, λ0(t) is a baseline hazard function

and β0 ∈ Rp is the true value of the regression parameter. The usual Cox model is a special
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case of (1.1) with r(·) = exp(·). We propose weighted permutation (WP) resampling to

construct confidence intervals for β0 in the relative risk regression model (1.1). The WP

resampling approximates studentized score statistics while making use of the failure and

censoring history and the partial likelihood formulation.

Andersen and Gill (1982) used a counting process framework to establish asymptotic

results for the continuous time Cox regression model. Prentice and Self (1983) establish

similar results for partial likelihood inference for the more general class of models (1.1). In

these papers, it is shown that the usual asymptotic properties of maximum likelihood apply.

In particular, it is shown that the maximum partial likelihood estimator β̂ is asymptotically

normal and this result is typically used to construct confidence intervals for β0. However,

the performance of the asymptotic confidence interval may not be universally satisfactory

for any choices the relative risk function.

Other than relying on asymptotic results, bootstrap or other resampling methods pro-

vide alternative approaches to inference for β0. Efron and Tibshirani (1986) propose a direct

bootstrap of the observed triplet (Ti, zi, δi) in the Cox model and comment that this approach

ignores the issue of censoring and the particular model being used. Burr (1994) reviews and

compares the proposal of Efron and Tibshirani and two other methods which resample failure

times from the estimated survival function while accounting for the censoring pattern. This

empirical study is conducted in the Cox model context and the three resampling methods

perform no better than the asymptotic method when constructing confidence intervals for

β. Other bootstrap methods for the Cox model can be found in Loughin (1995) and Zel-

terman, Le and Louis (1996). Previous work on this topic is mostly restricted to empirical

investigation.

Most resampling and asymptotic confidence intervals proceed by approximating the dis-

tribution of a pivotal statistic based on an estimator of the parameter of interest. A typical

example is the Wald-type statistic. Parzen, Wei and Ying (1994), however, propose a resam-
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pling technique which focuses on approximating pivotal estimating functions in the context

of quantile and rank based regression. In related work, Hu and Kalbfleisch (2000) introduce a

bootstrap method that is applicable with the linear estimating functions. Their approach ap-

proximates the distribution of a studentized version of the estimating function by bootstrap

resampling of its estimated terms. The WP method proposed here forms confidence intervals

for β0 by approximating distribution of the studentized score function, with similarities to

the approach of Hu and Kalbfleisch (2000).

In Section 2, we develop a partial likelihood filtration and approach that was briefly

outlined in Kalbfleisch and Prentice (2002) and that differs from the usual counting process

framework (e.g. Andersen and Gill, 1982). This filtration facilitates the methodology de-

scription in Section 2 and the asymptotic study in the Appendix for the WP resampling

method. Section 3 describes confidence interval procedures for the regression parameters

based on studentized score statistics. In Section 4, the WP method is compared to as-

ymptotic confidence intervals based on the Wald-type statistics and the studentized score

statistics. Section 5 concludes with discussion and remarks.

2 The Weighted Permutation Resampling and the Par-

tial Likelihood Filtration

Assume that failure times of individuals follow continuous distributions whose hazard func-

tions are given by (1.1). In the usual counting process development we define a right con-

tinuous “failure” process Ni(t) = I{Ti ≤ t, δi = 1}, a left continuous “at risk” process

Yi(t) = I{Ti ≥ t} and a left continuous covariate process Zi(t) for individual i, i = 1, ..., n.

The partial likelihood is the value of the following process

L(β, t) =
n∏

i=1

∏

0≤s≤t

{pi(β, s)}dNi(s) (2.1)
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at the end of study time τ , where

pi(β, s) =
Yi(s)r{βTZi(s)}∑n
l=1 Yl(s)r{βTZl(s)} . (2.2)

Let β̂ be the maximum partial likelihood of estimate of β. Given the items at risk and that a

failure occurs at time s, pi(β, s) is the probability that it is item i that fails and this quantity

forms the basis of the partial likelihood. Let t(1) < . . . < t(n) be the ordered distinct event

(failure or censoring) times in the data.

The weighted permutation (WP) method is a resampling method that imitates the ob-

served history and is applied at the times t(1), t(2), . . . in turn. If a failure is observed at time

t(j), we select individual i to fail with probability p∗i (β̂, t(j)) where p∗i is defined as in (2.2) ex-

cept using the resampled risk set at time t(j). If a censoring occurs at time t(j), we randomly

select an individual to be censored from among those in the resampled risk set. The selected

individual at t(j) is removed from the risk set for all subsequent times. Proceeding in this

manner, a resampled history is constructed, a resampled version of the partial likelihood or

the corresponding score function can be constructed.

Figure 1 depicts the WP scheme with five individuals labelled 1, . . . , 5 under study. The

corresponding failure or censoring events are observed at times t(1) < . . . < t(5). The WP

method keeps the observed failure and censoring pattern and results in permutations of

the individuals under study. A more rigorous description of the WP method is given after

introducing the partial likelihood filtration.

For convenience, we use notation similar to that introduced in Prentice and Self (1983).

For a column vector a, denote aaT by a⊗2 and let r(1)(x) = dr(x)/dx, r(2)(x) = dr(1)(x)/dx,

u(x) = log r(x), u(1)(x) = du(x)/dx = r(1)(x)/r(x) and u(2)(x) = du(1)(x)/dx = r(2)(x)/r(x)−
{r(1)(x)/r(x)}2. Additional notation includes

S(0)(β, t) =
1

n

n∑

l=1

Yl(t)r{βTZl(t)},
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Figure 1: Illustration of weighted permutation (WP) resampling scheme. Failure or censoring
events of individuals 1, . . . , 5 are observed at time t(1) < . . . < t(5). Each run of WP
resampling inherits the failure or censoring pattern from the observed history and leads to
a permutation of all the individuals under study.

S(1)(β, t) =
1

n

n∑

l=1

Yl(t)Zl(t)r
(1){βTZl(t)},

S(2)(β, t) =
1

n

n∑

l=1

Yl(t)[Zl(t)u
(1){βTZl(t)}]⊗2r{βTZl(t)},

S(3)(β, t) =
1

n

n∑

l=1

Yl(t)Zl(t)
⊗2r(2){βTZl(t)}.

Finally, let

E(β, t) =
n∑

l=1

Zl(t)u
(1){βTZl(t)}pl(β, t) =

S(1)(β, t)

S(0)(β, t)
.

With this notation, the score function from (2.1) can be written as

S(β, t) =
n∑

i=1

∫ t

0

[
Zi(s)u

(1){βTZi(s)} − E(β, s)
]
dNi(s),

Since we will develop methods based on a studentized version of S(β, t), we consider two

widely used variance estimators for S(β, t). One is the information matrix

I(β, t) =
∫ t

0

n∑

i=1

[
U(β, s)− Zi(s)

⊗2u(2){βTZi(s)}
]
dNi(s) (2.3)
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where U(β, s) = S(3)(β, s)/S(0)(β, s)− E(β, s)⊗2 and the other is

V (β, t) =
∫ t

0

n∑

i=1

[
Zi(s)u

(1){βTZi(s)} − E(β, s)
]⊗2

dNi(s). (2.4)

The usual filtration is Ft = σ{Ni(s), Yi(s+), Zi(s+), i = 1, . . . , n. 0 ≤ s ≤ t} which

contains the histories of all the n individuals up to time t. This filtration and the counting

process framework are introduced by Andersen and Gill (1982) and are commonly used in

asymptotic studies for the relative risk regression models. Andersen et al. (1993) give an in-

depth discussion of the application of counting processes in this context; see also Kalbfleisch

and Prentice (2002). Note that V (β0, t) is the optional variation process of S(β0, t) under

the usual filtration.

The partial likelihood filtration is directly related to the partial likelihood (2.1) and is

briefly introduced by Kalbfleisch and Prentice (2002). In the present context, it gives a more

convenient basis for the development of the WP resampling methods and the predictable

variation of the score function under this filtration provides another useful variance estimator

for the score statistic.

The partial likelihood filtration is {F̆t, 0 ≤ t ≤ τ} where

F̆t = σ{Ni(u), Yi(u+), Zi(u+), i = 1, .., n, 0 ≤ u ≤ t,D(t+), K(t+)}.

In this, D(t) = inf{u : Y.(u) < Y.(t)} is the time of the next event, either failure or

censoring, and K(t) = ∆N.(D(t)) is the number of failures at that point. If there are no

events after time t, we take K(t) = 0 and D(t) = ∞. It is easily verified that F̆t is nested

and right continuous. Further, it can be seen that N.(t) =
∑n

i=1 Ni(t) is a predictable process

with respect to F̆t. This follows immediately from the fact that N.(t) is determined by F̆t−.

Under the continuous failure time and independent censoring assumptions, ∆N.(t) ≤ 1

and the partial likelihood at β = β0 is the product of

P{dNi(t) = 1|F̆t−} = pi(β0, t)

7
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across all failure times. The compensator of the counting process Ni(t) is
∫ t
0 pi(β0, s)dN.(s)

and

M̆i(t) = Ni(t)−
∫ t

0
pi(β0, s)dN.(s)

is a martingale with respect to the filtration F̆t. Under the partial likelihood filtration, the

martingales M̆i and M̆j are not orthogonal for i 6= j. The predictable variation process of

M̆i is

〈M̆i〉(t) =
∫ t

0
{1− pi(β0, s)∆N.(s)}pi(β0, s)dN.(s), i = 1, . . . , n (2.5)

and, for i 6= j, the predictable covariation process is

〈M̆i, M̆j〉(t) = −
∫ t

0
pi(β0, s)∆N.(s)pj(β0, s)dN.(s). (2.6)

The score function can be written as

S(β0, t) =
n∑

i=1

∫ t

0
Zi(s)u

(1){βT
0 Zi(s)}dM̆i(s),

and is a martingale with respect to the partial likelihood filtration. The corresponding

predictable variation process is

〈S〉(β0, t) =
n∑

i=1

∫ t

0

[
Zi(s)u

(1){βT
0 Zi(s)}

]⊗2
d〈M̆i〉(s)

+
∑

i6=j

∫ t

0
Zi(s)u

(1){βT
0 Zi(s)}Zj(s)

Tu(1){βT
0 Zj(s)}d〈M̆i, M̆j〉(s).

Substitution of (2.5) and (2.6), and letting J = 〈S〉, gives

J(β0, t) =
∫ t

0

n∑

i=1

[
Zi(s)u

(1){βT
0 Zi(s)} − E(β0, s)

]⊗2
pi(β0, s)dN.(s). (2.7)

For the special case of the Cox model (r(·) = exp(·)), the process J(β, t) coincides with

the information process I(β, t), but this is not true for general r. The process J(β, t) gives

another variance estimator for S(β, t).

Define a studentized score statistic as

StJ (β, t) = J−1/2(β, t)S(β, t).
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with similar studentized statistics StV and StI using V (β, t) and I(β, t) respectively. For the

rest of the paper, we suppress the dependence on time when a process is evaluated at the end

of study time τ so that S(β, τ) is denoted by S(β), for example. For a positive definite matrix

Σ defined as in Prentice and Self (1983), it can be shown that n−1/2S(β0) → Np(0, Σ) in

distribution and n−1I(β0), n−1V (β0), n−1J(β0) → Σ in probability as n →∞. Jiang (2004)

shows these results using the partial likelihood filtration framework, and demonstrates that

to be a useful alternative formulation in developing the asymptotic theories in relative risk

regression models. As a direct consequence, for any specific choice St = StJ , StV or StI ,

St(β0) → Np(0,1) in distribution as n →∞, where 1 is a p× p identity matrix.

A confidence interval for β0 can be obtained through approximating the distribution of

the statistic St. One approach is to use the established large sample theory. An alternative

approach is to approximate the distribution of St using the weighted permutation resampling

as outlined at the beginning of this section. We now formulate the method more formally.

For this, we assume that the covariates are either time independent or completely known

functions of time (external) and for the moment, we assume that the censoring times are

independent of the covariates. The WP approach in effect builds a resampled partial likeli-

hood filtration F̆∗
t that reproduces the aggregate failure and censoring patterns at all failure

and censoring times.

Procedure 2.1. The Weighted Permutation (WP) Resampling for StJ (β)

We proceed sequentially and define the changes at the event times.

1. Let F̆∗
t(1)− = F̆t(1)−. Thus, all individuals are at risk at t(1)− so that Y ∗

i (t(1)) = 1, i =

1, . . . , n and the risk set is R∗(t(1)) = {1, . . . , n}.

2. For given j, 1 ≤ j ≤ n, R∗(t(j)) comprises all individuals who have not been selected

at event times t(1), . . . , t(j−1) and Y ∗
` (t(j)) = I{` ∈ R∗(t(j))}.

9
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(a) If t(j) is a failure time, select individual ` to fail with probability

p∗l (β̂, t(j)) = P ∗{dN∗
l (t(j)) = 1|F̆∗

t(j)−}

where

p∗l (β, t) =
Y ∗

l (t)r{βTZl(t)}∑n
i=1 Y ∗

i (t)r{βTZi(t)} .

(b) If t(j) is a censoring time, draw individual l to be censored with probability n−1
j

where nj is the number of individuals at risk at time t(j)−.

3. If individual `j is resampled at time t(j), then R∗(t(j+1)) = R∗(t(j))−{`j}, dN∗
`j

(t(j)) =

dN.(t(j)) and dN∗
i (t(j)) = 0 for i 6= `j. The at risk processes at time t(j+1) are

Y ∗
l (t(j+1)) = I{l ∈ R∗(t(j+1))}.

4. The resampled version of StJ (β0) is given by S∗tJ = J∗(β̂)−1/2S∗(β̂) where

S∗(β̂) =
n∑

j=1

n∑

i=1

[
Zi(t(j))u

(1){β̂TZi(t(j))} − E∗(β̂, t(j))
]
dN∗

i (t(j)), (2.8)

E∗(β, t) =
n∑

i=1

Zi(t)u
(1){βTZi(t)}p∗i (β, t),

and

J∗(β̂) =
n∑

j=1

n∑

i=1

[
Zi(t(j))u

(1){β̂TZi(t(j))} − E∗(β̂, t(j))
]⊗2

p∗l (β̂, t(j))dN.(t(j)). (2.9)

These steps are repeated a large number of times and the empirical distribution of S∗tJ

provides a bootstrap estimate of the distribution of StJ (β0).

To analyze the resampled process, we define the WP filtration, {F̆∗
t , 0 ≤ t ≤ τ} where

F̆∗
t = σ{F̆τ ∪ {N∗

i (u), Y ∗
i (u+), Zi(u+), i = 1, . . . , n, 0 ≤ u ≤ t}}

where F̆τ represents the history of the observed data up to and including the end of study

time τ and, in particular, specifies β̂ as well as the processes {D(t), t < τ} and {K(t), t < τ}
defined above.
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Analogous to the earlier expressions, let

S(0)∗(β, t) =
1

n

n∑

l=1

Y ∗
l (t)r{βTZl(t)},

S(1)∗(β, t) =
1

n

n∑

l=1

Y ∗
l (t)Zl(t)r

(1){βTZl(t)},

S(2)∗(β, t) =
1

n

n∑

l=1

Y ∗
l (t)[Zl(t)u

(1){βTZl(t)}]⊗2r{βTZl(t)},

S(3)∗(β, t) =
1

n

n∑

l=1

Y ∗
l (t)Zl(t)

⊗2r(2){βTZl(t)}.

In addition, let E∗(β, t) = S(1)∗(β, t)/S(0)∗(β, t) and

V∗(β, t) =
S(2)∗(β, t)

S(0)∗(β, t)
− E∗(β, t)⊗2.

We use P ∗ to denote probabilities computed under the resampling process.

Since P ∗{dN∗
l (t(j)) = 1|F̆∗

t(j)−} = p∗l (β̂, t(j)) for j = 1, . . . , n, it follows that

M̆∗
i (t) = N∗

i (t)−
∫ t

0
p∗i (β̂, s)dN.(s)

is a martingale with respect to the filtration F̆∗
t . Calculations now parallel closely to those

in equations (2.5), (2.6) and the following material. For example, the resampled version of

S(β0, t) can be expressed as a martingale with respect to F̆∗
t ,

S∗(β̂, t) =
∫ t

0

n∑

i=1

[
Zi(s)u

(1){β̂TZi(s)} − E∗(β̂, s)
]
dM∗

i (s) (2.10)

which is equivalent to (2.8) when t = τ . Thus, the predictable variation process of (2.10)

under F̆∗
t is

J∗(β̂, t) =
∫ t

0

n∑

i=1

[
Zi(s)u

(1){β̂TZi(s)} − E∗(β̂, s)
]⊗2

p∗l (β̂, s)dN.(s),

which is an equivalent expression to (2.9) with t = τ . Similarly, resampled versions of

I∗(β̂, t) and V ∗(β̂, t) are exactly parallel to the formulas in (2.3) and (2.4) and give rise to

WP resampling approximations to StV (β0) or StI (β0).

11
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The following asymptotic properties hold for the weighted permutation method.

Theorem 2.1 Suppose Conditions A*-F* hold. Then n−1/2S∗(β̂) → Np(0, Σ
∗) in distribu-

tion and n−1V ∗(β̂), n−1I∗(β̂), n−1J∗(β̂) → Σ∗ in probability as n →∞ where S∗,V ∗, I∗ and

J∗ are computed through the weighted permutation resampling.

Conditions A*-F*, the expression of Σ∗ and the proof of Theorem 2.1 are given in the

Appendix. In view of the asymptotic result for St(β0) and Theorem 2.1, the WP methods

give at least first order accurate approximations to St(β0). As the simulation studies in

Section 4 show, the WP method often outperforms the usual asymptotic approximations.

3 Confidence intervals for β or components of β

Hu and Kalbfleisch (2000) suggest the following approaches to define confidence intervals

through studentized estimating functions.

3.1 Simultaneous estimation of β

Suppose first that β is a scalar and the studentized score St(β) is monotone decreasing over

a sufficiently wide region including β0. Suppose Ŝt(α) is an estimator of the α quantile of

St. This could be obtained as the asymptotic standard normal quantile, zα, or as S∗t(α), the

empirical α quantile of S∗t obtained from the WP resampling. The 100(1 − α)% confidence

interval of β is given by (−∞, β̂(1−α)), where β̂(1−α) is the value such that St(β̂(1−α)) = Ŝt(α).

When β is a vector in Rp, define Q = ST
t St. Suppose Q̂(α) is an estimate of the α quantile

of Q. Again this estimated quantile may come from the asymptotic Chi-square distribution

or from the WP approximation to Q∗ = S∗
T

t S∗t . An approximate 100(1− α)% simultaneous

confidence region for β is given by the region {β : Q(β) < Q̂(1−α)}.

12
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3.2 Estimating a component of β

In many situations, we are only interested in a subset of the parameter vector and the rest are

regarded as nuisance parameters. In the context of estimating functions with independent

terms, Boos (1992) summarizes the use of generalized score statistics in which the nuisance

parameters are handled through profiling. Based on this approach, Hu and Kalbfleisch

(2000) develop estimating function bootstrap procedures to obtain confidence intervals for

parameters of interest.

For the relative risk regression model, we develop a generalized partial score statistic

using the same idea. Suppose the regression parameter is β = (βT
1 , βT

2 )T where β1 and β2

are p1 and p2 = p − p1 dimensional vectors respectively. Suppose that β2 is of interest and

denote its true value by β20. The score vector is denoted by S(β, t) = (S1(β, t)T, S2(β, t)T)T

where Si contains score components with respect to βi, i = 1, 2. Let β̃1(β2) be the solution

to S1(β) = 0. Let β̃ = (β̃1(β2)
T, βT

2 )T. The p × p matrices J , V and I in (2.7), (2.4) and

(2.3) can be written as

J =

(
J11 J12

J21 J22

)
, V =

(
V11 V12

V21 V22

)
and I =

(
I11 I12

I21 I22

)

such that the dimension of each matrix on the upper left is p1 × p1.

From the derivation in Section 4.2 in Hu and Kalbfleisch (2000), the profiled function is

S2(β̃) = S2(β)− q(β)S1(β) + Op(n
− 1

2 )

where q(β) = I21(β)I−1
11 (β). If J(β) is taken as the variance estimator of S(β), the covariance

matrix of S2(β̃) can be estimated by UJ22(β) = J22 − qJ12 − J21q
T + qJ11q

T. Consequently,

Q̃J22(β2) = S2(β̃)TU−1
J22(β̃)S2(β̃),

is an approximate pivotal which can be used for inference about β2. Note that Q̃J22(β2) =

QJ22(β) + Op(n
− 1

2 ) where

QJ22(β) = {S2(β)− q(β)S1(β)}TU−1
J22(β){S2(β)− q(β)S1(β)},
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and this result is used in the method below.

Procedure 3.1. The Weighted Permutation (WP) Resampling based on Q̃J22(β2)

1. Resample in the same way as in Procedure 2.1.

2. The bootstrap version of Q̃J22(β20) is

Q∗
J22 = (S∗2 − q∗S∗1)

TU∗−1
J22 (S∗2 − q∗S∗1)

where S∗ = S∗(β̂), I∗ = I∗(β̂), J∗ = J∗(β̂) are defined as in Section 2, q∗ = I∗21I
∗−1
11 ,

U∗
J22 = J∗22 − q∗J∗12 − J∗21q

∗T + q∗J∗11q
∗T and S∗ = (S∗

T

1 , S∗
T

2 )T. In this, I∗ and J∗ are

partitioned in the same manner as I and J .

3. Repeat the steps 1 and 2 many times and the empirical distribution of Q∗
J22 approxi-

mates the distribution of Q̃J22(β20).

Similar procedures are available if we take V (β) or I(β) as the variance estimator of

S(β), so that approximations are obtained to the distribution of the approximate pivotal

statistics Q̃V 22(β20) and Q̃I22(β20) using the empirical distributions of Q∗
V 22 or Q∗

I22. Denote

Q̃J22, Q̃V 22 or Q̃I22 by Q̃22 and Q∗
J22, Q∗

V 22 or Q∗
I22 by Q∗

22. Under fairly general conditions,

the statistic Q̃22(β20) is asymptotic χ2 variate with p2 degrees of freedom. Let Q̂22(α) be an

estimate of the α quantile of Q̃22. The 100(1−α)% confidence region of β2 can be defined as

{β2 : Q̃22(β2) < Q̂22(1−α)} where Q̂22(α) can be specified according to the asymptotic result

or the resampled distribution of Q∗
22 using the WP method.

4 Simulation Study

In this section, simulation studies are used to compare the finite sample properties of as-

ymptotic confidence intervals to those of the WP methods. In all examples, the bootstrap

sample size is B = 1, 000 with N = 10, 000 simulation runs so that the standard errors of
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the estimated coverage probabilities are less than .5%. We consider Wald-type statistics

WI = I1/2(β̂)(β̂ − β0), WV = V 1/2(β̂)(β̂ − β0) and WJ = J1/2(β̂)(β̂ − β0), each of which is

asymptotically Np(0,1). The Norm1 method produces asymptotic confidence intervals based

on the normal approximation to these Wald-type statistics. The Norm2 method constructs

confidence intervals based on the normal approximation to St where St stands for StV , StI

or StJ . These asymptotic results are compared with the WP resampling approach. For each

case, the reported simulation results include the empirical coverage percentage of a one sided

confidence interval along with the mean and standard deviation of the endpoint.

Example 1 The Cox model. The failure times, T̃i, i = 1, . . . , n, are taken to be independent

exponentials with hazard function

λi(t) = λ0 exp(β0Zi). (4.1)

We consider λ0 = 1, β0 = log 2 and Zi = 0 for i = 1, ..., 3n/4 and Zi = 1 otherwise. We

consider sample sizes n = 60 and n = 100.

a) Censoring independent of the covariates. For this we take the censoring time Ci to be

exponential with rate λC = 0.5 yielding censoring probabilities of 0.33 if Zi = 0 and 0.20

if Zi = 1. Tables 1 and 2 present the results for upper confidence limits using respectively

V (β) and I(β) in studentization. For the Cox model, recall that the variance estimators J

and I are identical.

b) Censoring dependent on the covariates. For this, we generate an event time from the

exponential distribution with hazard function (4.1) and assign it as failure or censoring ac-

cording to a Bernoulli trial with censoring probability θ. Thus, the failure time T̃i is an

exponential variate with rate (1−θ)λ0 exp(βZi) and the censoring time Ci is an independent

exponential with rate θλ0 exp(βZi). In the simulation reported, we take θ = 0.3. Tables 3

and 4 present the results.
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For the Cox model in Example 1, Norm1 methods based on the Wald-statistics and Norm2

methods based on St have fairly good coverage. The WP method has the best coverage

property in both a) and b). For the smaller sample size considered in Example 1, the WP

method studentized by I(β) is slightly more accurate than the WP method studentized by

V (β). But the gain in accuracy is reduced when the sample size increases. The censoring

distribution in part b) depends on the covariates and so the sampling proposed in the WP

method for censored individuals would not be optimum. Nonetheless, the WP method is

quite satisfactory in this and in similar situations we have investigated.

Example 2 Linear relative risk regression model. The independent failure times, T̃i, i =

1, . . . , n, are taken to be exponential variates with hazard function

λi(t) = λ0(1 + β0Zi). (4.2)

We report simulations with λ0 = 1, β0 = −0.5 and studentization with V (β), I(β) and J(β).

a) The censoring distribution is exponential with rate λC = 0.25, giving censoring percent-

ages of 20% and 33% for individuals with Zi = 0 and Zi = 1 respectively. Table 5 reports

results for n = 50 where 0.4n of the Zis equal to 0 and 0.6n equal to 1. Table 6 has n = 100

with 3n/4 of the Zis equal to 0 and n/4 equal to 1.

b) Take the covariate vector to be n/5 replications of −0.5,−0.3,−0.2, 0.3, 0.5. The censor-

ing distribution is exponential with rate 1/3 giving 25% censoring overall. Table 7 gives the

results.

In Example 2 a), the shape of the log likelihood function is quite asymmetrical and the

Norm1 methods based on the Wald-statistics have the worst coverage properties with all

three types of studentization. Norm2 methods perform fairly well except when studentized

with I(β). The weighted permutation when studentized J(β) gives the best results overall.

In Example 2 b), Norm2 method studentized by J(β) works the best among all asymptotic
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normal methods. The Norm2 and WP methods studentized by J(β) perform similarly and

are better than other methods under investigation. Despite their popularity, the Norm1

methods are the least satisfactory in the relative risk regression models. In these and many

other simulations we performed, the WP method studentized by J(β) performs at least as

well and often significantly better than normal approximation methods in the linear relative

risk models.

The standard deviations of endpoints are comparable for all the methods we consider.

Longer two-sided confidence intervals tend to have higher coverage percentages. Therefore,

it is fair to take the coverage property as the primary standard when comparing the methods.

Example 3 The Cox model with two parameters.

Suppose the failure times T̃i, i = 1, . . . , n, are independent with time-dependent hazard

function

λi(t) = λ0(t) exp{β1Z1i + β2Z2i(t)}

where Z1i is a treatment indicator (0 or 1) and Z2i(t) = Z1it. Cox (1972) and Kalbfleisch

and Prentice (2002, Section 4.2.5) discuss the use of this type of model for evaluating the

proportional hazards assumption. A test of H0 : β2 = 0 checks the assumption of a constant

relative risk versus natural alternatives of increasing (β2 > 0) or decreasing (β2 < 0) relative

risk functions. In the simulations reported here, we take λ0(t) = 1, β0 = (log 2,−0.2)T and

assign the same numbers of individuals in treatment and control groups (n0 = n1 = n/2).

The censoring time follows an exponential distribution with rate 0.5 so the probability of

censoring is about 27%. Table 8 gives coverage percentages of confidence regions for β

based on the statistics W 2 = WTW and Q using V (β) and I(β) = J(β) for studentization.

Finally, Table 9 compares competing methods for estimating β2. The results reported utilize

the asymptotic Chi-squared approximation and the WP resampling approach based on the

statistics QV 22 and QI22 = QJ22.

17

Hosted by The Berkeley Electronic Press



In Example 3, the WP method studentized by I(β) = J(β) have the best coverage

property for simultaneous intervals and for intervals for β2 only. Methods involving V (β)

result in noticeable overcoverage for all the methods examined.

5 Discussion

The WP method generates a resampled history that closely resembles the observed history

and the resulting confidence intervals often outperform the asymptotic confidence intervals

in the general framework of the relatively risk regression model. In the WP approach, in-

ference procedures are based on studentized score statistics. This differs from the existing

bootstrap and asymptotic approaches which rely on the Wald-type statistics and may pro-

duce inaccurate results for some relative risk functions. Hu and Kalbfleisch (2000) discuss

the advantages of making inference through studentized estimating functions instead of the

traditional Wald-type statistics. Asymptotic properties of the WP method can be obtained

through counting process arguments. This capability of asymptotic study is an additional

advantage of the WP method; most resampling methods previously proposed are limited to

empirical study in the literature.

Noting that J(β) and I(β) agree in the Cox models, we find that the weighted permu-

tation method studentized by J(β) outperforms all other methods in the examples reported

here and in our more extensive simulation study. It yields accurate confidence intervals both

in the case of the Cox model with exponential relative risk and in the linear relative risk

model where normal approximations tend to be less accurate. The WP resampling technique

is natural and appealing since it follows very closely the true sampling process.

In our approach, the censored individuals are chosen at random from the risk set, which

would be optimum if the censoring distribution is independent of the covariates. If the

censoring times depend on the covariates in the model in some known or estimable way, the
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resampling could be revised to reflect that dependence with some potential gain in efficiency.

The WP method we propose, however, will still give rise to asymptotically correct confidence

intervals. Example 1 b) considers this situation, and the WP method does well. We expect

that there would be a modest loss in asymptotic efficiency through use of this procedure,

but from our simulations, that loss appears to be small.

The WP methods can handle covariates that are either time-independent (as in Ex-

amples 1 and 2) or dependent on time through a known function(as in Example 3). The

approach, however, will not handle internal covariates (Kalbfleisch and Prentice, 2002) where

the covariate process is generated by the individual under study. In WP resampling, each

individual is randomly “assigned ” to an event time, but the values of the internal covariates

for the individual are not available after it has failed or is censored.

Appendix

The following conditions are needed for Theorem 2.1.

A*. There exists a function λ∗0(t) such that
∫ t
0

dN.(u)

nS(0)∗ (β̂,u)

P−→ ∫ t
0 λ∗0(u)du < ∞, t ∈ [0, τ ].

B*. There exist scalar, vector and matrix functions s(0)∗ , . . . , s(3)∗ and a neighborhood B
of β0 such that supt∈[0,τ ],β∈B ||S(j)∗(β, t)− s(j)∗(β, t)|| P−→ 0 for j = 0, . . . , 3.

C*. For any ε > 0 and for i = 1, . . . , p,

∫ τ

0

n∑

l=1

Hli(β̂, t)2I{|Hli(β̂, t)| > ε}p∗l (β̂, t)dN.(t)
P−→ 0

where Hli(β, t) =
(
n−1/2Zl(t)u

(1){βTZl(t)}
)

i
.

D*. The functions s(0)∗ , . . . , s(3)∗ are bounded on B× [0, τ ] and are continuous functions of

β ∈ B, uniformly in t ∈ [0, τ ]; s(0)∗ is bounded away from zero on B × [0, τ ]. Define
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e∗ = s(1)∗/s(0)∗ and v∗ = s(2)∗/s(0)∗ − e∗
⊗2

. The matrix

Σ∗ =
∫ τ

0
v∗(β0, t)s

(0)∗(β0, t)λ
∗
0(t)dt

is positive definite.

E*.

1

n2

∫ τ

0

n∑

l=1

||Zl(t)||4u(1){β̂TZl(t)}4p∗l (β̂, s)dN.(s)
P−→ 0 (A.1)

and

1

n2

∫ τ

0

n∑

l=1

||Zl(t)||4u(2){β̂TZl(t)}2p∗l (β̂, s)dN.(s)
P−→ 0. (A.2)

F*. When β ∈ B, r{βTZl(t)} is locally bounded away from zero for all l = 1, . . . , n.

Remarks:

1. These conditions follow closely those of Prentice and Self (1983) in establishing the

asymptotic properties of the original processes.

2. The additional conditions (A.1) and (A.2) are needed for the asymptotic stability of

n−1V ∗(β̂) and n−1I∗(β̂) respectively. Note that (A.2) is vacuous in the case r(·) = exp(·)
and (A.1) and (A.2) become identical in the case r(·) = 1 + (·).

Proof of Theorem 2.1: Let

S∗ε,i(β̂, t) = n1/2
∫ t

0

n∑

l=1

Hli(β̂, s)I{Hli(β̂, s) > ε}dM̆∗
l (s), i = 1, . . . , p.

From Rebolledo’s theorem (e.g. Andersen and Gill, 1982, Theorem I.2), the asymptotic

normality of n−1/2S∗(β̂) follows if, as n −→∞,

〈n−1/2S∗〉i,j(β̂, t)
P−→ Σ∗

i,j(t), i, j = 1, . . . , p; t ∈ [0, τ ] (A.3)

where Σ∗
i,j(t) is a positive definite matrix and

〈n−1/2S∗ε,i〉(β̂, τ)
P−→ 0 (A.4)
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for all i = 1, . . . , p and ε > 0.

Let Gli(β, s) = Hli(β, s)I{|Hli(β, s)| > ε}. We see that

〈n−1/2S∗ε,i〉(β̂, t) =
n∑

l=1

∫ t

0
[Gli(β̂, s)]2d〈M̆∗

l 〉(s)

+
∑

j 6=l

∫ t

0
Gli(β̂, s)Gji(β̂, s)d〈M̆∗

l , M̆∗
j 〉(s)

=
n∑

l=1

∫ t

0
[Gli(β̂, s)− E∗

i (β̂, s)]2p∗l (β̂, s)dN.(s)

≤
n∑

l=1

∫ t

0
[Gli(β̂, s)]2p∗l (β̂, s)dN.(s) (A.5)

where E∗
i (β̂, s) =

∑n
l=1 Gli(β̂, s)p∗l (β̂, s). Hence (A.4) follows from Condition C* and (A.5).

Let Σ∗(t) =
∫ t
0 v∗(β0, u)s(0)∗(β0, u)λ∗0(u)du. Note that

〈n−1/2S∗〉i,j(β̂, t) = n−1J∗(β̂, t) =
(∫ t

0
n−1V∗(β̂, u)dN.(u)

)

ij
.

For any t ∈ [0, τ ],

∫ t

0
n−1V∗(β̂, u)dN.(u) =

∫ t

0
V∗(β̂, u)S(0)∗(β̂, u)

dN.(u)

nS(0)∗(β̂, u)

P−→ Σ∗(t)

by Conditions A*, B* and D*. Thus (A.3) is also verified and it follows that n−1/2S∗(β̂)

converges to Np(0, Σ
∗) in distribution. Moreover, n−1J∗(β̂) → Σ∗ in probability.

Now we show the asymptotic stability of n−1V ∗(β̂). The predictable compensator of

n−1V ∗(β̂, t) under the resampled filtration is n−1J∗(β̂, t) and the corresponding martingale

is given by

D∗(β̂, t) =
1

n

∫ t

0

n∑

l=1

[
Zl(s)u

(1){β̂TZl(s)} − E∗(β̂, s)
]⊗2

dM̆∗
l (s).

The predictable variation process of D∗(β, t) is

〈D∗〉(β̂, t) =
1

n2

∫ t

0

n∑

l=1

ξ∗l (β̂, s)2d〈M̆∗
l 〉(s)

+
1

n2

∫ t

0

∑

l 6=m

ξ∗l (β̂, s)ξ∗m(β̂, s)d〈M̆∗
l , M̆∗

m〉(s)
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=
1

n2

∫ t

0

n∑

l=1

[
ξ∗l (β̂, s)−

n∑

m=1

ξ∗m(β̂, s)p∗m(β̂, s)

]2

p∗l (β̂, s)dN.(s)

≤ 1

n2

∫ t

0

n∑

l=1

[ξ∗l (β̂, s)]2p∗l (β̂, s)dN.(s)

where ξ∗l (β, s) =
[
Zl(s)u

(1){β̂TZl(s)} − E∗(β̂, s)
]⊗2

for l = 1, . . . , n. By Conditions B* and

D*, E∗(β̂, t) → e∗(β0, t) in probability. The boundedness of e∗(β0, t) uniformly in t along

with (A.1) in Condition E* imply 〈D∗〉(β, τ) converges in probability to a zero matrix.

Lenglart’s inequality implies the matrix n−1V ∗(β̂) and its compensator n−1J∗(β̂) converge

in probability to the same matrix Σ∗.

It now remains to show the asymptotic stability of n−1I∗(β̂). Similar to the arguments for

the process n−1V ∗(β̂), we can see that n−1I∗(β̂) and its compensator converge in probability

to the same matrix. The predictable compensator of n−1I∗(β̂, t) is

C∗
0(β̂, t) =

1

n

∫ t

0

n∑

l=1

[
U∗(β̂, s)− Zl(s)

⊗2u(2){β̂TZl(s)}
]
p∗l (β̂, s)dN.(s).

According to Conditions A*, B* and D*,

C∗
0(β̂)

P−→
∫ τ

0

{
−s(1)∗(β0, t)

⊗2

s(0)∗(β0, t)
+ s(2)∗(β0, t)

}
λ∗0(t)dt = Σ∗.

Consequently, n−1I∗(β̂) → Σ∗ in probability.
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Table 1: Upper confidence intervals for β in the Cox model of Example 1 a) with λ0 = 1,

β0 = log 2, 3n/4 and n/4 individuals having Z = 0 and 1 and Ci ∼ Exp(0.5). Coverage

percentage (CP), mean (Avg.CL) and standard deviation (SD.CL) of the upper confidence

limits are based on 10,000 replications of 1,000 bootstrap samples. Methods are studentized

by V (β).

n = 60

Nominal level 2.5% 5.0% 10.0% 90.0% 95.0% 97.5%

Norm1:CP(%) 3.2 6.0 11.1 91.4 96.1 98.3

Avg.CL 0.01 0.12 0.25 1.19 1.32 1.44

SD.CL 0.36 0.37 0.37 0.38 0.38 0.38

Norm2:CP(%) 1.5 4.1 9.3 89.5 94.5 97.1

Avg.CL -0.18 0.01 0.20 1.17 1.29 1.41

SD.CL 0.40 0.39 0.38 0.39 0.40 0.41

WP:CP(%) 1.7 3.7 9.2 90.5 95.2 98.0

Avg.CL -0.09 0.05 0.21 1.17 1.31 1.43

SD.CL 0.37 0.37 0.36 0.38 0.39 0.40

n = 100

Nominal level 2.5% 5.0% 10.0% 90.0% 95.0% 97.5%

Norm1:CP(%) 3.0 5.5 10.3 91.1 95.9 98.2

Avg.CL 0.16 0.25 0.35 1.06 1.17 1.25

SD.CL 0.28 0.28 0.28 0.28 0.28 0.28

Norm2:CP(%) 1.9 4.1 9.1 89.5 94.8 97.1

Avg.CL 0.07 0.20 0.32 1.05 1.14 1.22

SD.CL 0.29 0.28 0.28 0.29 0.29 0.30

WP:CP(%) 2.2 4.7 9.5 90.5 95.6 97.8

Avg.CL 0.12 0.22 0.33 1.05 1.15 1.24

SD.CL 0.28 0.28 0.28 0.28 0.29 0.29
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Table 2: Upper confidence intervals for β in the Cox model of Example 1 b) with λ0 = 1,

β0 = log 2, 3n/4 and n/4 individuals having Z = 0 and 1 and Ci ∼ Exp(0.5). Coverage

percentage (CP), mean (Avg.CL) and standard deviation (SD.CL) of upper confidence limits

are based on 10,000 replications of 1,000 bootstrap samples. Methods are studentized by

I(β).

n = 60

Nominal level 2.5% 5.0% 10.0% 90.0% 95.0% 97.5%

Norm1:CP(%) 3.4 6.3 11.5 91.1 95.9 98.2

Avg.CL 0.02 0.13 0.26 1.19 1.32 1.43

SD.CL 0.36 0.36 0.37 0.38 0.38 0.38

Norm2:CP(%) 3.6 6.5 11.6 90.9 95.7 98.0

Avg.CL 0.03 0.14 0.26 1.18 1.31 1.42

SD.CL 0.36 0.36 0.37 0.38 0.38 0.38

WP:CP(%) 2.7 5.0 10.1 90.1 94.8 97.5

Avg.CL -0.03 0.09 0.23 1.16 1.28 1.39

SD.CL 0.37 0.37 0.37 0.38 0.36 0.38

n = 100

Nominal level 2.5% 5.0% 10.0% 90.0% 95.0% 97.5%

Norm1:CP(%) 3.1 5.6 10.5 90.9 95.8 98.1

Avg.CL 0.17 0.25 0.35 1.06 1.16 1.25

SD.CL 0.27 0.28 0.28 0.28 0.28 0.28

Norm2:CP(%) 3.2 5.8 10.7 90.8 95.7 98.0

Avg.CL 0.17 0.26 0.36 1.06 1.16 1.24

SD.CL 0.27 0.28 0.28 0.28 0.28 0.28

WP:CP(%) 2.0 5.0 10.3 90.2 95.1 97.7

Avg.CL 0.14 0.23 0.34 1.05 1.14 1.22

SD.CL 0.28 0.28 0.28 0.28 0.29 0.29
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Table 3: Upper confidence intervals for β in the Cox model of Example 1 b) with λ0 = 1,

β0 = log 2, 3n/4 and n/4 individuals having Z = 0 and 1 and Ci ∼ Bin(0.3). Coverage

percentage (CP), mean (Avg.CL) and standard deviation (SD.CL) of endpoint are based on

10,000 replications of 1,000 bootstrap samples. Methods are studentized by V (β).

n = 60

Nominal level 2.5% 5.0% 10.0% 90.0% 95.0% 97.5%

Norm1:CP(%) 3.4 6.0 11.2 91.7 96.2 98.3

Avg.CL -0.03 0.09 0.23 1.22 1.36 1.48

SD.CL 0.39 0.39 0.39 0.40 0.40 0.40

Norm2:CP(%) 1.5 3.8 9.0 89.5 94.2 96.7

Avg.CL -0.29 -0.06 0.16 1.19 1.32 1.44

SD.CL 0.48 0.43 0.41 0.41 0.43 0.44

WP:CP(%) 1.5 3.8 8.8 90.8 95.4 97.6

Avg.CL -0.18 -0.01 0.17 1.19 1.33 1.46

SD.CL 0.42 0.40 0.40 0.40 0.41 0.42

n = 100

Nominal level 2.5% 5.0% 10.0% 90.0% 95.0% 97.5%

Norm1:CP(%) 3.1 5.6 11.0 91.1 95.9 98.1

Avg.CL 0.13 0.23 0.33 1.08 1.19 1.28

SD.CL 0.30 0.30 0.30 0.30 0.30 0.30

Norm2:CP(%) 1.4 4.1 9.3 89.3 94.3 97.0

Avg.CL 0.02 0.15 0.30 1.06 1.16 1.25

SD.CL 0.32 0.31 0.30 0.30 0.30 0.31

WP:CP(%) 2.2 4.6 9.5 90.0 95.1 97.6

Avg.CL 0.06 0.18 0.30 1.07 1.17 1.27

SD.CL 0.30 0.30 0.30 0.30 0.30 0.30
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Table 4: Upper confidence intervals for β in the Cox model of Example 1 b) with λ0 = 1,

β0 = log 2, 3n/4 and n/4 individuals having Z = 0 and 1 and Ci ∼ Bin(0.3). Coverage

percentage (CP), mean (Avg.CL) and standard deviation (SD.CL) of endpoint are based on

10,000 replications of 1,000 bootstrap samples. Methods are studentized by I(β).

n = 60

Nominal level 2.5% 5.0% 10.0% 90.0% 95.0% 97.5%

Norm1:CP(%) 3.3 6.3 11.4 91.3 96.1 98.1

Avg.CL -0.03 0.09 0.23 1.21 1.35 1.47

SD.CL 0.39 0.39 0.39 0.40 0.40 0.40

Norm2:CP(%) 3.6 6.5 11.6 91.1 95.7 97.9

Avg.CL -0.01 0.10 0.24 1.21 1.34 1.46

SD.CL 0.39 0.39 0.39 0.40 0.40 0.40

WP:CP(%) 2.8 5.2 9.9 90.6 95.2 97.3

Avg.CL -0.07 0.05 0.20 1.18 1.31 1.42

SD.CL 0.40 0.40 0.39 0.39 0.39 0.40

n = 100

Nominal level 2.5% 5.0% 10.0% 90.0% 95.0% 97.5%

Norm1:CP(%) 3.1 5.7 10.9 91.1 95.8 98.0

Avg.CL 0.14 0.23 0.33 1.08 1.19 1.28

SD.CL 0.30 0.30 0.29 0.30 0.30 0.30

Norm2:CP(%) 3.2 6.0 11.0 90.9 95.6 97.9

Avg.CL 0.14 0.23 0.34 1.08 1.18 1.27

SD.CL 0.30 0.29 0.29 0.30 0.30 0.30

WP:CP(%) 2.9 5.3 10.1 89.9 95.0 97.5

Avg.CL 0.11 0.20 0.32 1.07 1.17 1.25

SD.CL 0.30 0.30 0.30 0.30 0.30 0.30
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Table 5: Upper confidence intervals for β in the linear relative risk model of Example 2 a)

with λ0 = 1, β0 = −0.5, n = 50, 0.4n and 0.6n individuals having Z = 0 and 1 and Ci ∼
Exp(0.25). Coverage percentage (CP) , mean (Avg.CL) and standard deviation (SD.CL) of

the upper confidence limits are based on 10,000 replications of 1,000 bootstrap samples.

Studentized by V (β)
Nominal level 2.5% 5.0% 10.0% 90.0% 95.0% 97.5%
Norm1:CP(%) 0.0 0.6 3.9 84.5 89.2 92.2

Avg.CL -0.85 -0.79 -0.72 -0.24 -0.17 -0.11
SD.CL 0.07 0.09 0.11 0.28 0.30 0.32

Norm2:CP(%) 2.1 4.6 9.7 88.9 94.3 97.6
Avg.CL -0.75 -0.72 -0.67 -0.16 -0.02 0.14
SD.CL 0.10 0.12 0.13 0.31 0.37 0.45

WP:CP(%) 1.7 4.3 9.2 90.8 95.5 98.2
Avg.CL -0.75 -0.72 -0.67 -0.16 -0.03 0.11
SD.CL 0.10 0.11 0.12 0.30 0.34 0.39

Studentized by I(β)
Nominal level 2.5% 5.0% 10.0% 90.0% 95.0% 97.5%
Norm1:CP(%) 0.0 0.7 4.3 84.1 89.1 92.2

Avg.CL -0.84 -0.78 -0.72 -0.24 -0.17 -0.11
SD.CL 0.07 0.09 0.11 0.28 0.30 0.32

Norm2:CP(%) 1.3 2.4 6.1 83.8 88.6 90.9
Avg.CL -0.80 -0.75 -0.70 -0.25 -0.20 -0.15
SD.CL 0.11 0.12 0.13 0.26 0.28 0.30

WP:CP(%) 4.8 7.4 12.8 85.0 89.8 94.3
Avg.CL -0.72 -0.69 -0.64 -0.20 -0.09 0.02
SD.CL 0.15 0.15 0.16 0.31 0.34 0.35

Studentized by J(β)
Nominal level 2.5% 5.0% 10.0% 90.0% 95.0% 97.5%
Norm1:CP(%) 0.0 0.7 4.2 84.1 89.1 92.0

Avg.CL -0.84 -0.78 -0.72 -0.24 -0.17 -0.11
SD.CL 0.07 0.09 0.11 0.28 0.30 0.32

Norm2:CP(%) 2.5 4.9 9.7 88.5 93.7 96.8
Avg.CL -0.74 -0.71 -0.67 -0.18 -0.07 0.03
SD.CL 0.10 0.11 0.13 0.30 0.34 0.37

WP:CP(%) 2.5 4.9 9.8 90.2 95.0 97.4
Avg.CL -0.74 -0.71 -0.67 -0.17 -0.05 0.06
SD.CL 0.10 0.11 0.13 0.30 0.34 0.38
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Table 6: Upper confidence intervals for β in the linear relative risk model of Example 2

a) with λ0 = 1, β0 = −0.5, n = 100, 3n/4 and n/4 individuals having Z = 0 and 1 and

Ci ∼ Exp(0.25). Coverage percentage (CP), mean (Avg.CL) and standard deviation (SD.CL)

of upper confidence limits are based on 10,000 replications of 1,000 bootstrap samples.

Studentized by V (β)
Nominal level 2.5% 5.0% 10.0% 90.0% 95.0% 97.5%
Norm1:CP(%) 0.5 1.8 6.0 87.0 91.5 94.3

Avg.CL -0.78 -0.73 -0.68 -0.29 -0.23 -0.19
SD.CL 0.08 0.09 0.11 0.20 0.22 0.23

Norm2:CP(%) 1.3 3.3 8.1 88.5 93.2 96.1
Avg.CL -0.75 -0.71 -0.66 -0.27 -0.20 -0.14
SD.CL 0.09 0.10 0.11 0.21 0.23 0.24

WP:CP(%) 2.0 4.3 9.4 90.0 94.9 97.5
Avg.CL -0.72 -0.69 -0.65 -0.26 -0.18 -0.10
SD.CL 0.09 0.10 0.11 0.21 0.23 0.25

Studentized by I(β)
Nominal level 2.5% 5.0% 10.0% 90.0% 95.0% 97.5%
Norm1:CP(%) 0.6 2.1 6.4 86.5 91.4 94.2

Avg.CL -0.78 -0.73 -0.67 -0.29 -0.24 -0.19
SD.CL 0.08 0.09 0.11 0.21 0.22 0.23

Norm2:CP(%) 0.8 2.4 6.9 86.2 91.0 93.7
Avg.CL -0.76 -0.72 -0.67 -0.29 -0.24 -0.20
SD.CL 0.09 0.10 0.11 0.20 0.22 0.23

WP:CP(%) 2.3 4.7 9.9 90.5 95.5 98.1
Avg.CL -0.72 -0.69 -0.65 -0.25 -0.17 -0.10
SD.CL 0.10 0.10 0.11 0.21 0.23 0.24

Studentized by J(β)
Nominal level 2.5% 5.0% 10.0% 90.0% 95.0% 97.5%
Norm1:CP(%) 0.5 2.0 6.4 86.4 91.7 94.6

Avg.CL -0.78 -0.73 -0.67 -0.29 -0.24 -0.19
SD.CL 0.08 0.09 0.11 0.20 0.22 0.23

Norm2:CP(%) 3.2 5.9 10.8 90.7 95.7 98.0
Avg.CL -0.70 -0.68 -0.64 -0.25 -0.17 -0.09
SD.CL 0.10 0.10 0.11 0.21 0.23 0.25

WP:CP(%) 2.5 5.1 9.8 90.0 94.8 97.5
Avg.CL -0.72 -0.69 -0.65 -0.26 -0.18 -0.11
SD.CL 0.09 0.10 0.11 0.21 0.23 0.25
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Table 7: Upper confidence intervals for β in the linear relative risk model of Example 2

b) with λ0 = 1, β0 = −0.5, n = 100, Ci ∼ Exp(1/3) and Z = n/5 replications of −
0.5,−0.3,−0.2, 0.3, 0.5. Coverage percentage is based on 10,000 replications of 1,000 boot-

strap samples.

Studentized by V (β)
Nominal level 2.5% 5.0% 10.0% 90.0% 95.0% 97.5%
Norm1 2.7 4.9 9.7 88.8 93.6 96.2
Norm2 1.9 4.4 9.4 89.3 94.3 97.1
WP 2.2 4.6 9.7 90.4 95.4 97.9

Studentized by I(β)
Nominal level 2.5% 5.0% 10.0% 90.0% 95.0% 97.5%
Norm1 2.2 4.6 9.2 88.7 93.7 96.2
Norm2 1.9 4.1 8.9 89.1 94.0 96.8
WP 1.4 3.7 8.6 90.8 96.0 98.6

Studentized by J(β)
Nominal level 2.5% 5.0% 10.0% 90.0% 95.0% 97.5%
Norm1 2.2 4.5 9.4 88.8 93.3 96.1
Norm2 2.6 5.0 10.2 90.0 95.1 97.7
WP 2.3 4.6 9.8 89.9 94.6 97.3

Table 8: Confidence regions for β in the Cox model of Example 3 with λ0 = 1, β0 =

(log 2,−0.2)T, Ci ∼ Exp(0.5), Z1 = n/2 replications of 0, 1 and Z2(t) = Z1t. Coverage

percentage is based on 10,000 replications of 1,000 bootstrap samples.

Studentized by V (β)
n = 40 n = 60

Nominal level 90% 95% 97.5% 90% 95% 97.5%
Chi2-W 2 93.6 97.3 98.9 92.4 96.8 98.6
Chi2-Q 92.5 97.0 98.9 92.1 96.7 98.7
WP 94.3 98.6 99.7 91.5 96.9 99.0

Studentized by I(β)
n = 40 n = 60

Nominal level 90% 95% 97.5% 90% 95% 97.5%
Chi2-W 2 92.1 97.1 99.1 90.3 95.5 98.2
Chi2-Q 87.9 93.8 96.9 87.7 93.4 96.5
WP 89.1 95.0 97.7 89.2 94.3 97.3
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Table 9: Confidence intervals for β2 in the Cox model of Example 3 with λ0 = 1, β0 =

(log 2,−0.2)T, Ci ∼ Exp(0.5), Z1 = n/2 replications of 0, 1 and Z2(t) = Z1t. Coverage

percentage is based on 10,000 replications of 1,000 bootstrap samples.

Studentized by V (β)
n = 40 n = 60

Nominal level 90% 95% 97.5% 90% 95% 97.5%
Chi2-Q22 89.9 95.8 98.5 89.9 95.5 98.3
WP 91.7 98.3 99.9 90.5 96.5 99.2

Studentized by I(β)
n = 40 n = 60

Nominal level 90% 95% 97.5% 90% 95% 97.5%
Chi2-Q22 87.7 93.8 96.8 88.0 93.8 96.9
WP 89.0 94.7 97.7 89.4 94.9 97.5
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