
UW Biostatistics Working Paper Series

3-2-2006

2^k Factorials in Blocks of Size 2, with Application
to Two-Color Microarray Experiments
Kathleen F. Kerr
University of Washington, katiek@u.washington.edu

This working paper is hosted by The Berkeley Electronic Press (bepress) and may not be commercially reproduced without the permission of the
copyright holder.
Copyright © 2011 by the authors

Suggested Citation
Kerr, Kathleen F., "2^k Factorials in Blocks of Size 2, with Application to Two-Color Microarray Experiments" (March 2006). UW
Biostatistics Working Paper Series. Working Paper 227.
http://biostats.bepress.com/uwbiostat/paper227

http://biostats.bepress.com/uwbiostat


1. Introduction

This paper investigates the problem of arranging 2k factorials in blocks of size

2. We adopt a conventional assumption of factorial design, that lower-order

factorial effects are of greater interest than higher-order effects. Specifically,

we seek minimal designs to achieve (i) independent estimates of all main

effects or (ii) independent estimates of all main effects and 2-factor interac-

tions. However, while we assume that higher-order factorial effects are not

of primary interest, we do not assume such effects are negligible.

This research was directly motivated by the problem of designing exper-

iments for two-color microarrays, which are an important tool in modern

molecular biology. Microarrays are used to quantify levels of gene tran-

scription, which can loosely be considered the level of “activity” of a gene.

Microarrays can make these measurements for thousands of genes at a time.

Two-color microarrays are small slides containing thousands of spots. Each

spot contains single-stranded DNA molecules corresponding to a particu-

lar gene in the genome of an organism under study. In a microarray as-

say, purified messenger RNA from cell populations under study are reverse-

transcribed into cDNA and labeled with one of two fluorescent dyes, “red”

or “green.” Two pools of oppositely labeled cDNA are combined and applied

to a microarray. Each dye-labeled strand of cDNA has the opportunity to

hybridize to its complementary strand, which is spotted on the microarray.

After the hybridization period, unhybridized cDNA is washed off the array.

The microarray is then scanned, and “red” and “green” intensity measure-

ments are acquired for each spot. Properly normalized, the relative intensity

of the red and green signals from a spot measures the relative abundance of
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the corresponding transcript in the two cell populations.

For more information on microarrays, Nguyen, Arpat, Wang and Carroll

(2002) give an excellent review of the technology for a statistical audience.

Previous work on experimental design for microarrays includes Kerr and

Churchill (2001a), (2001b), who argue that microarray designs can be con-

sidered as incomplete block designs for block size 2. This paper is directly

applicable to microarray studies with multiple binary factors.

There is a large literature on designs for multiple binary factors, including

several papers that discuss blocking of full factorials. An introduction to full

factorial experiments at two levels and fractional factorials can be found in

many textbooks, so we review these topics only briefly. Wu and Hamada

(2000) is an excellent reference. Three papers closely related to this one are

Sun, Wu and Chen (1997), Draper and Guttman (1997), and Wang (2004).

Sitter, Chen and Feder (1997) is a related paper on blocked fractional factorial

designs, but fractional factorials are not appropriate in our circumstances

because we do not assume higher-order factorial effects are negligible.

This paper is organized as follows. We begin with background and nota-

tion, followed by an example to illustrate the important concepts. We then

establish some basic results about the kinds of designs that arise under the

circumstances we consider. Next, we consider designs for 2 ≤ k ≤ 8 factors,

and then give a construction that produces economical designs for arbitrary

k. Finally, we consider issues that arise in the application of the general

results to the design of two-color microarray experiments, and give an exam-

ple of a specific design problem in this setting. Much of the material in the

first few sections is not really new. However, these earlier sections synthesize
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what is already known, develop our formulation of the problem, and define

some useful terms (“blocked factorial,” “estimability”).

2. Background and Notation

In this section we briefly review important concepts and established results.

The reader should consult Sun, Wu and Chen (1997) or Wu and Hamada

(2000) for more background. Notation generally follows Mitchell, Morris and

Ylvisaker (1995) or Sun, Wu and Chen (1997).

The number of binary factors is k, represented by the first k letters of

the alphabet, upper-case. Denote the two levels of each factor with “1” and

“-1” or “+” and “−.” The set of experimental runs T is all k-dimensional

vectors with entries “1” and “-1.” The set of runs T can be visualized as the

vertices of a square for k = 2 and the vertices of a cube for k = 3. T is a

metric space under Hamming distance, where d(t, s) is the number of factors

for which the runs t and s differ. Define |t| = d(1, t). Also note that T

forms a group via component-wise multiplication with identity 1 and every

element self-inverse.

Subsets of factors are called words. Words can be “multiplied” as il-

lustrated by the following examples: the product of any word with itself

is the “null” word, usually denoted I ; A · A = I ; AD · BC = ABCD;

ABC · CD = ABC2D = ABD. This algebra leads to a notion of in-

dependence for words: ABC , CD, and ABD are not independent since

ABC ·CD = ABD.

Any word W partitions the set of runs in T into two sets of equal size

depending on whether
∏

i∈W ti = 1 or = −1. The factorial effect correspond-

ing to a word W is the expected contrast between the experimental outcome
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between these two sets. Thus a factorial effect is estimated by a linear com-

bination of the experimental runs. It is important to note that we can also

write each experimental run as a linear combination of the factorial effects

(see Mitchell, Morris and Ylvisaker (1995)).

We write factorial effects with lower-case letters to distinguish them from

words, e.g., bcd is the three-way factorial effect, or interaction, between fac-

tors B, C , and D. Main effects are factorial effects corresponding to a single

factor. For convenience, abbreviate “main effect” as ME and “two-factor

interaction” as 2fi. A conventional assumption in factorial design, adopted

here, is that lower-order effects are of greater interest than higher-order ef-

fects. However, as noted, we do not assume that higher-order effects are

negligible.

2.1 Fractional Factorials and Blocked Factorials

One can arrange a 2k factorial in 2p blocks of size 2k−p by identifying p

independent words. These p independent words generate a set of 2p words

when we consider all products. The 2p factorial effects corresponding to

these words will be confounded with block effects in the blocked design. The

remaining factorial effects are estimable, and in fact they are also orthogonal

so that their estimates are statistically independent.

A regular fractional factorial design is specified by p independent words

Wi, i = 1, ..., p, and the “defining relation” I = W1 = · · · = Wp. There are

2k−p runs in the fractional factorial design that satisfy the defining relations.

That is, there are 2k−p runs t such that
∏

i∈W ti = 1 for all words W in

the defining relation. Sun, Wu and Chen (1997) describe the strong corre-

spondence between 2k−p fractional factorials and full factorials arranged in
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blocks of size 2k−p. However, despite the strong correspondence, the latter

are not actually fractional factorials, and we refer to these designs as blocked

factorials. (Wang (2004) simply used the word “group” instead.) A blocked

factorial is all 2k runs arranged into blocks, whereas a fractional factorial is

a 1
2p fraction of these runs, unblocked.

This paper considers the special case of block size 2, so that p = k − 1

throughout.

3. Example: 3 Factors in Blocks of Size 2

This section gives an example for the case of k = 3 binary factors to illustrate

the important background concepts.

For three factors, the eight runs in T can be represented as the vertices

of the 3-dimensional cube (Figure 1). The vertices of the cube are identified

by a triple (A, B, C), indicating whether a run is level “−” or “+” for factors

A, B, and C, respectively.

Consider the runs (+, +, +) and (−,−,−). In terms of the factorial ef-

fects, these runs are represented as:

µ + a + b + c + ab + ac + bc + abc

µ − a − b − c + ab + ac + bc − abc. (1)

Suppose these two runs are paired in a block of size 2 in the experimental

design. Analysis of data from this block will use only “within-block” dif-

ferences in observations. This block therefore provides information on the

difference between the expressions (1). Taking half that difference, the quan-

tity a + b + c + abc is estimable from this block.

This block can be represented by a diagonal line through the cube in
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Figure 1. Consider another such diagonal “block,” say the diagonal between

run (−,−, +) and run (+, +,−). In terms of the factorial effects, the expected

difference between these runs is proportional to the difference between

µ + a + b − c + ab− ac − bc− abc

and

µ − a − b + c + ab− ac − bc + abc,

or a + b − c − abc. The other two diagonals of the cube allow estimation

of a − b + c − abc and a − b − c + abc. We see that data from any one,

two, or three of these blocks would not allow estimation of any factorial

effect (without further assumptions that some factorial effects are zero). On

the other hand, data from all four blocks (the full “blocked factorial”) allow

independent estimates of all four factorial effects a, b, c, and abc. The four

diagonal lines through the cube in Figure 2 represent the blocked factorial.

The runs in the block {(−,−,−), (+, +, +)} are the runs in the 23−2

fractional factorial design with defining relation I = AB = AC = BC . The

other three blocks described above are simply the variants of this fractional

factorial, e.g., the block {(−,−, +), (+, +,−)} corresponds to the defining

relation I = AB = −AC = −BC . Considering the group structure of the

design space T , the block {(−,−,−), (+, +, +)} is a subgroup of T and the

other three “diagonal” blocks are the cosets of this subgroup. With the

block size fixed at 2, it is more convenient to think of the blocks directly, in

terms of a subgroup of T and its cosets, rather than considering the set of

defining relations. However, notice that the words in the defining relations
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correspond exactly to the factorial effects that are not estimable from the

complete blocked factorial (comprised of all four “diagonal” blocks).

4. k Factors in Blocks of Size 2

The example in the previous section illustrates the key features of arranging

a 2k factorial experiments in blocks of size 2. Representing the runs in terms

of the factorial effects, any two runs have the same sign for exactly half

the factorial effects and have opposite sign for the other half. Therefore,

the difference between two runs in a block estimates a linear combination of

the effects for which the two runs have opposite sign. It follows, then, that

estimating these 2k−1 effects requires 2k−1 blocks. A design with fewer blocks

is not useful without further assumptions about negligible effects. A blocked

factorial contains 2k−1 blocks of size 2 and allows unbiased, independent

estimates of half of the factorial effects.

The following observations follow from these preliminary results. Recall

that we consider only block size 2.

Observation 1. We can concisely represent a blocked factorial by a single

generator. If we say t is the generator of a blocked factorial, we mean that

{1, t} is one block in the design. The other blocks in the design are cosets,

i.e., any other block can be written {s, st} for some run s. There are 2k − 1

possible generators, so there are 2k − 1 blocked factorials.

Observation 2. Let t = (t1, . . . , tk) be the generator of a blocked factorial.

The factorial effect corresponding to a word W is estimable in this blocked

factorial if and only if
∏

i∈W ti = −1. Otherwise, the effect is confounded with
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block effects. Consequently, the main effect for the ith factor is estimable if

and only if ti = −1. The two-way interaction between the ith and jth factors

is estimable if and only if titj = −1.

Observation 3. As a consequence of Observation 2, we see that the design

generated by −1 = (−,−, . . . ,−) allows estimation of all main effects. Fur-

ther, we see that this is the unique blocked factorial that allows estimation

of all main effects. If the goal of an experiment is limited to estimating main

effects, this can therefore be achieved with 2k−1 blocks and one full replica-

tion (Box et al. (1978), Draper and Guttman (1997)). The example at the

beginning of the paper illustrated this design for three factors. In that de-

sign, the three-way interaction was also estimable but none of the two-factor

interactions were estimable. For general k, all odd-order factorial effects will

be estimable with this design but none of the even-order effects.

Observation 4. Two blocked factorials are isomorphic if they are iso-

morphic as fractional factorials. That is, the defining relations of design

1 can be gotten from design 2 simply by re-labeling factors. For block size

2, consider two blocked factorials generated by t1 and t2 respectively. If

d(1, t1) = d(1, t2), then the blocked factorials are isomorphic. Therefore,

there are k − 1 non-isomorphic blocked factorials.

The next two sections address the question of finding designs to estimate

all ME’s and 2fi’s. Achieving this must involve combining multiple blocked

factorials (another consequence of Observation 3). Toward this end, we make

one last definition. In any given blocked factorial, an effect is either estimable
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or it is confounded with block effects. Therefore, in a design that is the

union of m blocked factorials, a given effect is estimable by 0, 1, 2, or . . . m

of the component blocked factorials. We define the estimability of an effect

to be this integer. Clearly, effects with higher estimability are estimated

with greater precision than effects with lower estimability. By definition,

“estimable” effects have estimability ≥ 1.

5. Combining Blocked Factorials to Estimate Main Effects and

Two-Factor Interactions

There is a unique 2k−(k−1) blocked factorial that allows estimation of all main

effects (Box et al. (1978), Draper and Guttman (1997)), but this design

does not allow estimation of any two-factor interactions. We now consider

the problem of identifying designs that allow estimation of all main effects

(ME’s) and two-factor interactions (2fi’s).

In combining blocked factorials to acquire estimability of additional ef-

fects, it is clearly pointless to use the same blocked factorial more than once.

On the other hand, it is sometimes useful to combine non-identical but iso-

morphic blocked factorials.

5.1 Two Factors (k = 2)

A 22 factorial can be represented by the vertices of a square; a block is

an edge or a diagonal of the square. A 22−1 blocked factorial is either the

pair of diagonals of the square, or a pair of parallel edges. It is easy to

see by inspection or via a simple counting argument that no single blocked

factorial gives estimability of both main effects and the two-factor interaction.

Therefore, in order to estimate all three effects, it is necessary to combine
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two blocked factorials. Using four blocks, the two non-isomorphic options are

combining the blocked factorials generated by (Option 1) (−,−) and (+,−)

or (Option 2) (−, +) and (+,−), as illustrated in Figure 3 (see also Draper

and Guttman (1997)). Option 1 produces a design in which one ME has

estimability 2 and the other ME and the 2fi have estimability 1. Option

2 produces a design in which the main effects have estimability 1 and the

2-factor interaction has estimability 2. Option 2 is clearly preferable if the

2fi is of primary interest; otherwise, Option 1 is probably preferable.

5.2 Three Factors (k = 3)

As illustrated, a 23 factorial can be represented by the vertices of a cube.

There are 23 − 1 blocked factorials and therefore
(
7
2

)
= 21 unions of two

different blocked factorials.

One class of blocked factorial is generated by one of (+,−,−), (−, +,−),

or (−,−, +). Such a blocked factorial can be represented as a pair of X’s on

opposing faces of the cube in Figure 1. By inspection, it turns out that any

pair of non-identical (although isomorphic) blocked factorials of this type

allow estimation of all ME’s and 2fi’s. With such a design, two 2fi’s and one

ME have estimability 2 and the other effects have estimability 1.

5.3 Four Factors (k = 4)

For k = 4 binary factors there are 4 ME’s and 6 2fi’s for a total of

ten effects of interest. Since a single blocked factorial allows estimation of

8 factorial effects, one might hope that the union of some pair of blocked

factorials would give estimability for all 10 effects of interest. This turns out

not to be possible. To achieve estimability of all 10 effects of interest, one
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must combine three blocked factorials.

A computer search over all 455 triples of blocked factorials reveals 140

triples that allow estimation of all 4 ME’s and all 6 2fi’s. However, many

of these triples are isomorphic. Grouping designs into classes of isomorphic

designs, there are twelve such classes.

Table 1 characterizes these twelve classes of designs. Each column in the

table represents one class. The entries in the table give the estimability of the

corresponding factorial effect for a representative design in the class. Notice

that no combination of three blocked factorials can estimate all 15 factorial

effects.

The first two designs in Table 1 are noteworthy. Table 2 gives generators

of the blocked factorials comprising these designs. Design 1 is the only design

in Table 1 for which every main effect has estimability of at least 2. There-

fore, when main effects are primarily important this design is a good choice.

Design 2 is the only design in Table 1 for which every 2fi has estimability

at least 2. When these effects are of primary interest this design is a good

choice. Notice, however, that this design is not as good as other designs in

Table 1 for estimating main effects.

5.4 Five, Six, Seven, and Eight Factors (5 ≤ k ≤ 8)

For k = 5, 6, or 7 factors, a comprehensive computational search over all

possible designs that are the union of two blocked factorials confirms that

no such design gives estimability for all ME’s and 2fi’s. However, for these

numbers of factors there are multiple designs that achieve this goal that are

unions of three blocked factorials.

For k = 8 factors, a computational search reveals that no union of two
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or three blocked factorials gives estimability for all ME’s and 2fi’s. The next

section demonstrates that four blocked factorials can be used to achieve this

goal.

Table 3 summarizes the results of this section.

6. A General Construction and an Upper Bound

A simple construction yields an upper bound on the number of blocked fac-

torials that are necessary to estimate all ME’s and 2fi’s for k factors. The

construction is easy to illustrate by example, so we first show the construction

for k = 8 factors. We then explain the construction for general k.

For k = 8, one of the blocked factorials comprising the design is generated

by −1 = (−1,−1,−1,−1,−1,−1,−1,−1). All other generators t have |t| =

4 and are pairwise orthogonal. The four runs at expression (2) each generate

a blocked factorial that is part of the composite design.

(−1,−1,−1,−1,−1,−1,−1,−1)

(−1,−1,−1,−1, 1, 1, 1, 1)

(−1,−1, 1, 1,−1,−1, 1, 1)

(−1, 1,−1, 1,−1, 1,−1, 1) (2)

Recall (Observation 2) that a ME is estimable in a design if and only if at

least one generating run is ‘-1’ for the corresponding factor. A 2fi is estimable

in a design if and only if at least one generating run is discordant on the two

factors (i.e., titj = −1). In the design generated by the runs at expression

(2), the last three generators give estimability for all 2fi’s among the eight

factors. In fact, the last three generators give estimability for all ME’s except

12

http://biostats.bepress.com/uwbiostat/paper227



for the 8th ME. In this sense, the only purpose of the first generator is to

provide estimability of the “last” ME.

This construction generalizes naturally to any number of factors k where

k is a power of two. When k is not a power of two, we can simply construct

the design for the smallest power of two greater than k and then project

the design onto any k factors. This construction therefore proves an upper

bound for the number of necessary blocked factorials to estimate all ME’s

and 2fi’s:

{# required blocked factorials} ≤ �log2 k� + 1. (3)

For k = 8, this upper bound is 4 and a computer search confirms that there is

no combination of three blocked factorials that allows estimation of all ME’s

and 2fi’s.

This upper bound can be tightened for values of k that are not a power

of 2. As explained above, there is a sense in which the only purpose of the

generator −1 is to achieve estimability of a single ME. When k is not a

power of 2, the generator −1 is no longer necessary if we make sure to use

a projection of the other generators that eliminates the single non-estimable

ME. This proves the tighter upper bound:

{# required blocked factorials} ≤ �log2 k� + 1. (4)

The results in this paper show this bound is sharp for k ≤ 8.

Wang (2004) gave a construction of designs for estimating all ME’s and

2fi’s that requires k− 1 blocked factorials. �log2 k�+1 ≤ k− 1 for k > 2 and

our construction gives much smaller designs for large k. For example, for

seven factors the construction here requires three blocked factorials instead

of six as required by Wang’s construction.

13

Hosted by The Berkeley Electronic Press



7. Design of Two-Color Microarray Experiments

Here we consider the application of our results to the problem of the design

of two-color microarray experiments, described in the Introduction. Early

papers on experimental design for microarrays include Kerr and Churchill

(2001a) and (2001b), but these do not consider multifactorial experiments.

Yang and Speed (2002) and Glonek and Solomon (2004) specifically consider

studies of 2×2 factorials with two-color microarrays. However, these papers

take interest in a different set of contrasts than the classical factorial effects

considered in this paper. We return to this issue shortly.

There is great importance in finding economical designs for microarray

studies. The high cost of the “blocks” (the arrays), is a primary limitation

for many scientists conducting these experiments. Note also that the com-

mon assumption that higher-order interactions are negligible is not generally

reasonable for microarray experiments due to the complexity of biology.

7.1 Dye balance

In assigning the runs in a microarray experiment to blocks, there is the

additional issue of dye assignment. More specifically, the block of size two –

the microarray – has two different channels, “red” and “green.” That is, one

red-labeled RNA and one green-labeled RNA are assayed on an array. In any

experiment one prefers the effects of interest to be orthogonal to ancillary

sources of variation. As noted by Kerr and Churchill (2001a), one prefers

a microarray experiment to be balanced such that the effects of interest are

orthogonal to dye effects.

One way to achieve dye-balance is to replicate the design, swapping the

dye-orientation in the replicate (dye-swap). While this strategy guarantees
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dye-balance, it is very expensive because it doubles the number of arrays. It

would be preferable to identify a suitable dye assignment without adding to

the cost of the experiment.

The proposed methodology is as follows. For each blocked factorial,

choose a single factorial effect that is not confounded with blocks and con-

found this factorial effect with the dye effect. This strategy is effective be-

cause any factorial effect that is estimable in a blocked factorial is orthogonal

to the other estimable factorial effects and to the blocks. Therefore, con-

founding one estimable factorial effect with the dye effect ensures that the

dye effect is orthogonal to the remaining estimable factorial effects.

We illustrate this method on our early example of a blocked factorial

for k = 3 factors. This design has generator (−,−,−). As discussed with

the example for 3 factors in blocks of size 2, the design can be pictured

as the four diagonals of the 3-dimensional cube (Figure 1). The factorial

effects confounded with blocks are ab, ac, and bc. The main effects and the

three-factor interaction abc are orthogonal to block effects and to each other.

We choose to confound abc with the dye-effect, which produces the design

illustrated in Figure 2. With this dye assignment, the estimability of the

main effects is not affected.

7.2 Example

This example is a fictionalized version of an actual microarray experiment.

An interesting type of mutant mice has increased lifespan compared to the

non-mutant, or wild-type, mice. Investigators are interested in studying the

effects of the genetic mutation in young and old mice and male and female

mice. Mice will be studied from two different founder lines. Therefore,
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there are four binary factors: MUTATION, AGE, SEX, and FOUNDER.

From the results presented here, the investigators must combine three blocked

factorials to study all ME’s and 2fi’s of their factors. Because 2fi’s are of

particular interest, the investigators choose to use the second design in Table

1, whose generators are given in Table 2. They note from Table 1 that one

main effect (D) can be estimated with better precision than the others, and

they choose to assign MUTATION to this factor. AGE is then assigned to

factor C for best precision in estimating the interaction between AGE and

MUTATION. SEX is assigned to factor A and FOUNDER is assigned to

factor B. In each blocked factorial, the thee-way interaction between SEX,

FOUNDER, and AGE is used to determine the dye-assignment, as described

above. Therefore, in the final design every factorial effect is estimable except

for this three-factor interaction and the four-factor interaction.

7.3 Parameterization

Glonek and Solomon (2004) examine microarray designs in the 2×2 fac-

torial case. The authors use a different definition for the factorial effects

than used here or in the general literature on factorial design. Specifically,

these authors use “baseline” constraints to define the factorial effects. For

example, the main effect of factor A is defined to be the contrast between

(−,−) and (+,−), i.e. the contrast between runs differing in ‘A’ within a

single level of the factor B.

In experiments in which there is clearly a “null” state of all the factors,

the “baseline” parameterization is clearly more natural. For example, in a

toxicological study each binary factor may be the presence or absence of

a particular toxin. Scientists may consider the absence of all toxins to be
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the natural reference group for all comparisons, which leads naturally to

the “baseline” parameterization. In contrast, in situations in which at least

one experimental factor does not have a natural “null” or “baseline” level,

this parameterization is unappealing because one factor level must be ar-

bitrarily singled out. Examples of such factors are sex, genetic strain, and

age group (see Rocke (2004)). A statistical disadvantage of the baseline pa-

rameterization is that none of the effects are orthogonal (in contrast to the

traditional parameterization wherein all factorial effects are orthogonal). Wu

and Hamada (2000) describe further disadvantages of the “one-factor-at-a-

time” approach to factorial studies. One argument is that results have a more

general interpretation if effects are defined in terms of averages over other

factor combinations. In any case, Glonek and Solomon (2004) make the in-

controvertible point that experimental design problems should be formulated

to correspond as closely as possible to the underlying scientific questions of

interest, and that one cannot expect any single design to be optimal for

answering all formulations of all questions.

7.4 Reference Designs

An alternative experimental strategy used in many microarray experi-

ments is the so-called “reference design” (Kerr and Churchill (2001a)). In

this design, every sample is compared to a reference sample. Employing this

strategy for the 2k full factorial requires 2k microarrays (blocks), the same

number as a design that is the union of 2 blocked factorials. However, we

have seen that for 3 ≤ k ≤ 8 at least three blocked factorials are required to

estimate all ME’s and 2fi’s. In contrast, the reference design strategy gives

estimability for all factorial effects. From this perspective, the reference de-
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sign strategy is a practical choice when it is crucial to minimize the number

of blocks.

However, if more than the minimum number of blocks is affordable, there

are severe disadvantages to the reference design in terms of efficiency. For

k = 4 factors, compare the reference design with a design from Table 1

that is the union of three blocked factorials. In the reference design, every

factorial effect is estimated with the same precision. Let σ2 be the variance

of a within-block difference. If data come from a reference design, then the

variance of any estimated factorial effect is 1
4
σ2. Next, consider a design that

is the union of three blocked factorials. A factorial effect with estimability

1 has variance 1
8
σ2, a factorial effect with estimability 2 has variance 1

16
σ2,

and a factorial effect with estimability 3 has variance 1
24

σ2. Suppose an

experimentalist chose Design 1 from Table 1 instead of a reference design.

This achieves twice the precision of the reference design for three 2fi’s, four

times the precision of the reference design for 3 ME’s and 3 2fi’s, and six

times the precision of the reference design for 1 ME. These are large gains in

precision relative to the additional resources used (50% more blocks).

In summary, the reference design is a good choice if array resources must

be kept to an absolute minimum. However, a relatively large gain in efficiency

can be achieved by using unions of blocked factorials as described in this

paper.

7.5 Biological replication

As noted by many authors (Dobbin and Simon (2002), Yang and Speed

(2002), Kerr (2003)), it is important to distinguish biological and technical

replicates in microarray experiments. Only biological replication can reduce
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the uncertainty associated with biological variability. As presented, the re-

sults in this paper pertain to experiments with a single replicate of any given

factorial combination. However, if there are n biological replicates of each

factorial combination, then one replicate of each type can be used in multiple

implementations of the chosen design.

8. Discussion

This paper considered designs to organize the runs of a full 2k factorial into

blocks of size 2. It is well-established that a unique single blocked factorial

gives estimability of all ME’s. We sought combinations of blocked factorials

to achieve estimability for all ME’s and 2fi’s.

Table 3 can be considered a compilation of many of the findings of this

paper, including both theoretical results and results from computational

searches. The results, as given in Table 3, show the upper bound at ex-

pression (4) for the number of blocked factorials required to estimate all

ME’s and 2fi’s is sharp for k ≤ 8. This upper bound is better than the one

given by Wang (2004).

The concrete results we have presented consider up to 8 binary factors.

The number of blocks required for k = 8 factors is 512. (see Table 3). In

many applications, this number is already prohibitively large, indicating that

there are practical limits on the number of experimental factors that can be

considered simultaneously. Table 3 can additionally guide investigators in

deciding the number of experimental factors they should consider given the

resources at their disposal.
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Design

Effect 1 2 3 4 5 6 7 8 9 10 11 12

a 2 1 1 1 1 1 1 1 1 1 2 2

b 2 1 1 1 1 1 1 2 2 2 2 2

c 2 1 2 2 2 2 2 2 2 2 1 1

d 3 3 1 2 3 2 3 2 3 3 1 3

ab 2 2 2 2 2 2 2 1 1 1 2 2

ac 2 2 1 1 1 1 1 1 1 3 1 1

ad 1 2 2 1 2 3 2 3 2 2 3 1

bc 2 2 1 1 1 3 3 2 2 2 3 3

bd 1 2 2 3 2 1 2 2 1 1 1 1

cd 1 2 3 2 1 2 1 2 1 1 2 2

abc 0 3 0 0 0 2 2 3 3 1 1 1

abd 1 1 3 2 1 2 1 1 2 2 1 1

acd 1 1 2 3 2 1 2 1 2 0 2 2

bcd 1 1 2 1 2 1 0 0 1 1 2 0

abcd 3 0 1 2 3 0 1 1 0 2 0 2

Table 1

Estimability of factorial effects for triples of blocked factorials, k = 4. Each

design represented in the table is the union of three blocked factorials for

block size 2 and has the property that all ME’s and 2fi’s are estimable.

Pairs of designs in the table are not isomorphic. The number in each row

indicates the estimability of the corresponding factorial effect for the given

design. The table shows that no combination of three blocked factorials for

k = 4 gives estimability for all factorial effects. Table 2 gives the generators

of the blocked factorials comprising Designs 1 and 2.
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Design 1 Design 2

(1, -1, -1, -1) (1, 1, -1, -1)

(-1, 1, -1, -1) (1, -1, 1, -1)

(-1, -1, 1, -1) (-1, 1, 1, -1)

Table 2

The designs in Table 1 are each comprised of three blocked factorials. The

generating runs for the first two designs are given here.

Number of factors k 2 3 4 5 6 7 8

# blocked factorials 2k − 1 3 7 15 31 63 127 255

# pairs of blocked factorials
(
2k−1

2

)
3 21 105 465 1953 8001 32385

# triples of blocked factorials
(2k−1

3

)
1 35 455 4495 3971 333375 2731135

Min # blocked factorials to

estimate all ME’s and 2fi’s m 2 2 3 3 3 3 4

Min # blocks to

estimate all ME’s and 2fi’s m2k−1 4 8 24 48 96 192 512

Table 3

Summary of design requirements for 2k factorials in blocks of size 2,

2 ≤ k ≤ 8. The number of factors is k and m = mk denotes the minimum

number of blocked factorials to estimate all main effects and two-factor

interactions.
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Figure Captions.

Figure 1. The design space T for k = 3 binary factors can be represented

as the vertices of the cube. Blocks of size 2 can be represented by lines

connecting vertices, as in Figure 2.

Figure 2. Pictorial representation of the design for estimating all main

effects with 3 binary factors and a single blocked factorial. The eight runs

are paired into blocks represented by the diagonal lines through the cube. For

a microarray experiment, the dye assignment depicted in the figure produces

a design in which the main effects are orthogonal to block effects and the

dye effect, the two-factor interactions are confounded with blocks, and the

three-factor interaction is confounded with the dye effect (but orthogonal to

blocks).

Figure 3. Pictorial representation of the two designs for estimating all

main effects and two-factor interactions for k = 2 factors. Option 1 favors

estimability of the main effect for factor B. This can be seen because every

hybridization is “across” factor B. Option 2 favors estimability of the two-

factor interaction.
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