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SUMMARY  

The objective of this paper is to develop a hypothesis testing procedure to determine whether a 

common source outbreak has ended.  We do not assume that the calendar date of exposure to the 

pathogen is known.  We assume an underlying parametric model for the incubation period 

distribution of a 2-paramter exponential model with a guarantee time, although the parameters 

are not assumed to be known.  The hypothesis testing procedure is based on the spacings 

between ordered calendar dates of disease onset of the cases.  A simulation study was performed 

to evaluate the robustness of the methods to a lognormal model for the incubation period of 

infectious diseases.  We investigated whether multiple testing over the course of the outbreak 

could increase the overall outbreak-wise type 1 error probability.  We derive expressions for the 

outbreak-wise type 1 error probability and show that multiple testing has minimal effect on 

inflating that error probability.   
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1.  Introduction 

During the course of a disease outbreak, public health officials may be asked by media and the 

public whether or not the outbreak is over.  For example, during the 2001 anthrax outbreak in the 

United States, the media sought reassurance for the public that the outbreak had ended and asked 

public health officials if they expected any additional cases.  In response, public health officials  

observed that  there had been no new cases in several days, and suggested  that the lull in cases 

provided some evidence that  the outbreak was waning if not completely over.  One official 

suggested that if no new cases occurred after t days had elapsed, then the epidemic was likely 

over.   However, no theoretical justification was given for that statement or for the specific value 

for t.  An objective of this paper is to investigate if there is any justification for such a 

methodology and under what conditions, and when such an approach can be misleading.  Public 

health officials need simple real time methodological tools to help address the question as to 

whether or not a common source outbreak is over.  In this paper we define a common source 

outbreak as one in which there is a single exposure that occurs at a single point in calendar time 

for all cases.  For example, the 2001 U.S. outbreak among workers in a postal facility was a 

common source outbreak because the exposure occurred during a brief period of time when a 

letter contaminated with anthrax spores was processed in the facility (Brookmeyer and Blades, 

2002).  The assumption of a common source outbreak may also apply to bioterrorism threats 

other than anthrax such as tularemia in which the agent could be aerosolized and exposure occurs 

in a brief period of time.  We are not considering in this paper outbreaks that are propagated by 

person to person transmission. 

 If both the incubation period distribution of disease and the time of exposure to the infectious 

source (the pathogen) are known, the ultimate size of an outbreak can be estimated in a very 
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straightforward way.  The incubation period of disease is the time from exposure to the pathogen 

to onset of disease.  The basic idea is that the earliest cases that occur are the ones with the 

shortest incubation period.  Thus, the observed number of cases represents only a fraction of the 

total cases that will eventually occur and the fraction is determined by the incubation period 

distribution.  For example, if the median incubation period is 10 days and 7 cases have occurred 

by day 10 following exposure then that suggests the total outbreak size (N) is about 7/0.5 =14 

cases.  This simple calculation method can be generalized to handle the more complex situation 

when the calendar date of exposure is unknown.  These more general methods have been termed 

back-calculation methods (Brookmeyer and Gail, 1994).  Back-calculation methods can account 

for situations when exposure to the pathogen occurs at multiple discrete time points or 

continuously in time.  Recently, Walden and Kaplan (2004) cast the problem in a Bayesian 

framework to the real-time estimation of the size and exposure date of an outbreak by 

incorporating a prior on the size of the outbreak (N).  However, all of these methods require 

knowledge of the incubation period distribution.    

The goal of this paper is to consider the situation when neither the incubation period 

distribution nor the time of exposure is known.  We sought to provide a statistical framework for 

addressing the question public health officials faced in the 2001 anthrax outbreak:  can a lull of 

cases provide evidence that an epidemic is over, or could the lull be misleading.  In section 2, we 

formulate the problem in terms of a hypothesis test.  In statistical terms, the lull between cases is 

described by the spacings between order statistics.  There has been considerable theoretical 

development on the spacings of order statistics (Pyke, 1965; David, 1970; Cox and Hinkley, 

1974).  We use the theory of spacings of order statistics to address the question of whether a 

common source outbreak is over.  The impact of multiple testing on the overall outbreak-wise 
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probability of a type 1 error is discussed in section 3. A simulation study to investigate the 

properties of the procedures is reported in section 4.  The results are discussed in section 5. 

2.  A Hypothesis Test to Determine if a Common Source Outbreak is Over 

2.1  Formulation  

Let yi be the ordered calendar dates of disease onset of the ith case; that is y1 is the earliest onset 

date, y2 is the second earliest and so on.  Suppose we have observed n cases and their calendar 

dates of onset  are y1,…yn.   Further, suppose that t days have passed since the last case (yn) 

occurred.  We wish to address the question as to whether there is any evidence that the outbreak 

is over from this limited data. 

   The objective is to develop a hypothesis testing procedure if neither the exposure date to the 

pathogen nor the incubation period distribution is known.   Suppose the ultimate size of the 

common source outbreak is  N which is considered an unknown parameter; that is, N  cases of 

disease would eventually occur.  At a point in time, suppose we have observed n of the N cases.  

The question is, are there more cases still to come?  We want to control the type 1 error of falsely 

declaring the epidemic is over and communicating a false sense of security.  Thus, we consider 

the null hypothesis that the epidemic is not over, that is, N>n versus the alternative hypothesis 

that the epidemic is over, that is, N = n.  Thus, 

H0:  N > n 

H1:  N = n 

 One tempting approach is to obtain the maximum likelihood estimator of N from a full 

likelihood.  However, the difficulties with this approach become immediately apparent even with 

the simple exponential model for the incubation period.  Suppose the probability density of the 

incubation period, f(u), is exponential  f(u) =  λ exp(-λu)  with hazard rate λ and mean µ =  λ-1.  
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Then, it can be shown that if both the calendar date of exposure to the pathogen (E) and the size 

of the outbreak (N) are unknown parameters, then the maximum likelihood estimator of  N is 

.  Thus, the maximum likelihood estimator of N  is always the number of cases observed 

to date.   Similar difficulties with the likelihood based approach for the lognormal distribution 

have been reported by Hill (1963), Giesbrecht and Kempthorne (1976), and other investigators.  

In the next section, we develop an approach based on the spacings or lags between the 

occurrences of cases.  

N̂ n=

2.2  Hypothesis Test Based on Spacings 

We use an approach based on the spacings between calendar dates of disease onset. We define 

the spacings as the difference between the successive ordered calendar dates of onset.  

Specifically, the jth spacing is s j = yj  - yj-1.   Thus, from the first n calendar dates of disease onset 

we can obtain the first n-1 spacings.    

 The calendar date of disease onset y is related to the incubation period u and the calendar 

date of exposure (E) through y = E + u.  Thus, the jth  spacing of the calendar dates of disease 

onset  is sj =  yj - yj-1  = uj  + E - uj-1 - E  =  uj - uj-1  which is also the j th  spacing of the incubation 

periods.  Accordingly, the probability distribution of the spacings depends on the incubation 

period distribution and N but does not depend on the calendar date of exposure E.   

 We begin by assuming that the incubation period distribution follows a two parameter 

exponential model with a guarantee time, that is, the incubation period density is  

f(u) =  λ exp(-λu) for u > G, and 0 for u < G.  The guarantee time parameter requires that all 

incubation periods are greater than G days, and introduction of the guarantee times leads to a 

much more flexible family to describe the incubation period of infectious diseases than the one 

parameter exponential model.  We will not assume that the parameters λ or G  are known.  The 
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exponential model has been found to be useful to describe the incubation period of anthrax based 

both on mechanistic and empirical considerations (Brookmeyer, Johnson and Bollinger, 2003; 

Brookmeyer, Johnson and Barry, 2004). 

 The jth spacing arising from a sample of size N from a one parameter exponential model with 

hazard rate λ is known to have an exponential distribution with hazard rate λ(N-j) and 

furthermore, the spacings are independent (David, 1970; Cox and Hinkely, 1974).  It follows 

immediately that the  j th spacing arising  from a sample of size N from the two parameter 

exponential model (with guarantee time G and hazard rate λ) also has an exponential distribution 

with parameter λ(N-j), that is, the pdf of the jth spacing is  

f(sj) =λ(N-j) exp(- λ(N-j)sj)    (1)  

 Suppose n cases have occurred.  We propose a hypothesis test in which the  basic idea is to 

reject H0  if  the number of days that have elapsed since the occurrence of the nth case, called T,  

is sufficiently large, say greater than t.  We choose t to control the type 1 error probability based 

on the nth spacing. The probability that the nth spacing is greater than t is  

                                    P( sn > t) = exp(-λ(N-n)t)              (2) 

We can use equation (1) to perform a significance test at level α. We choose t such that (2) is 

equal to α at the particular null hypothesis when N = n+1.  Then, it follows from (2) that we   

reject H0  when the elapsed time since the  occurrence of the last case, T,   is such that                                            

           ( )lnT µ α≥−                                           (3)                               

where µ=λ-1.  At other values of N under the null hypothesis, that is if   N>n+1, we can be 

assured that (2) will be less than α, and that is because the right side of (2) decreases as N 

increases.  Thus, as is generally done with one-sided composite null hypotheses we focus on the 

boundary point between the null and alternative hypotheses, which in this case is N=n+1 (Cox 
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and Hinkley, 1974).   In general for any N>n, it follows from using (1) and (2) that the 

probability of rejecting H0 is  

                                                 ( )( )nnP s µ α≥ − = ( )
n

.e N n
N n αµ µ α

⎛ ⎞
⎜ ⎟
⎝ ⎠ −

−
=      (4) 

 

 In practice, since we do not know the value of µ, we propose inserting an estimate µ̂  for µ 

in (3).  For example, under the exponential model from a sample of size N, the spacings are 

independent, and the maximum likelihood estimator based on the first n-1 spacings can be shown 

to be: 

 ( )1

1

1
j

n

j
s N j

n
µ

−

∧
=
∑ −

=
−

                        (5)                        

and   This estimator 
  involves the unknown N.   In practice, we propose replacing N by 

the particular value under H0 when N = n+1.  When n+1 is substituted for N in (5), we call the 

resulting estimator 

1ˆˆ .µ λ −=

0ˆ .µ   The proposed hypothesis test procedure is to reject H0 if the duration of 

time that has elapsed since the last case, T, is sufficiently large, specifically, we reject H0 if 

( )0ˆ nT µ α≥ −  .    (6)   

However, the probability of a type 1 error-based on (6) will now be greater than α because µ is 

being replaced by an estimate.  Let the probability of a type 1 error when µ is replaced by an 

estimator be 0ˆ(  nP S n ).α µ α= > −   We now show how to estimate α  under H0 as follows.  The 

approach is to condition on a fixed value for 0µ̂  and, second, to integrate over its sampling 

distribution 0ˆ( )g .µ  That conditional probability is 

0 0
0 0

ˆ( ) /ˆ ( )ˆ ˆ( | ) exp( )n
N nN n n

P S n .µ µµ α
µ α µ α

µ
−−

> − = =   Thus 
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      0
0

ˆ( ) / ˆ ˆ( )N n g dµ µ
0α α µ−= µ∫    (7) 

We approximate the first factor in the integrand of (7) by a second order Taylor series expansion 

about 0µ̂ µ=  and obtain, 

  0

2
ˆ( ) / 20

0
ˆ( ) ( ) ( ) ˆ( )

2

N n N n
N n N n N n n N n nµ µ α α µ µ α αα α µ

µ µ

− −
− − ⎛ ⎞− − −

≈ + + −⎜ ⎟
⎝ ⎠

µ . 

Now, consider the particular null hypothesis when N=n+1.  Substituting the above expression 

into (7), using a large sample approximation that µ̂ 0 is nearly unbiased estimator of µ  when 

N=n+1 and that  we obtain 2
0ˆVar( ) /( 1),nµ µ≈ −

2 2( ) ( )1
2( 1)

N n N n n
n

αα α − ⎡ ⎤−
≈ +⎢ ⎥−⎣ ⎦

    (8) 

It follows that α  is always greater than .α   It can also be shown that (8) is a good approximation 

for other values of N under H0, that is when N > n+1.  Furthermore, the right hand side of (8) 

decreases as N increases.  Thus, the right hand side of equation (8) with n+1 substituted for N 

would be conservative in that it overestimates the probability of a type 1 error for all values of N 

under H0.    

 To see how to use equation (8) in practice, suppose we want the probability of a type 1 

error to be no greater than  .05 for all values of N under H0 and we have observed n cases.  Then 

we can set equation (8) equal to .05 with N  = n + 1and solve for ,.05nα α=  (where we have 

added subscripts to emphasize that the solution for α depends on n): 

( )2
,.05

,.05.05 1
2( 1)

n
n

n
n
α

α
⎡ ⎤
⎢ ⎥= +

−⎢ ⎥
⎣ ⎦

    (9) 
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Figure 1 shows the values ,.05nα   to be substituted for α in (3) to insure that the type 1 error 

probability is no greater than .05.  For example, if n = 20 cases have occurred and we wish the 

type 1 error probability to be .05, then ,.05nα  =.039, and thus we should set α = .039 in equation 

(3).  Figure 1 also shows values for  ,.10nα . 

2.3 Comments on the Hypothesis Test  

 Let’s consider first the special situation when µ is known.  In that situation, equation 3 

implies that we should reject the null hypothesis at level α if the spacing between cases becomes 

greater than –µlnα.  Thus, we reject H0 at the .05 level if the elapsed time since the last case is at 

least a factor of -ln(.05)≈3  times greater than the mean incubation period. For example, if the 

mean incubation period is 10 days, then at level  .05 we would reject the null hypothesis  if the 

spacing between cases became greater than t= 30 days.  If µ is unknown, then the specific value 

of t depends on n.  For example for n = 20 and 40, we would reject H0 at the .05 level if the 

elapsed time since the last case is at least a factor of 3.1 and 3.2 times greater than the estimated 

mean incubation period, respectively (these factors are –ln( ,.05nα ) where αn,.05  is calculated from 

equation 9 and displayed in Figure 1).   

 The calculations in the previous paragraph suggest that the elapsed time necessary to 

declare the end of an epidemic is surprisingly long.  However, the outbreak can be declared 

“almost” over with considerably shorter periods of time.  To make this notion concrete, consider 

the hypothesis that there will be no more then r additional cases.  The null and alternative 

hypotheses are then: 

                                              H0:  N > n + r 

                                                H1:  N ≤  n + r 
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The approach is to reject H0 if the elapsed time since the last case, T, is sufficiently large, say c 

times greater than µ.  Then for an α-level test, c is chosen such that P(Sn>cµ) =α.  It follows from 

equation 4, that P(Sn>cµ) =exp(-c(N-n))  which is set equal to α with N=n+r+1 and we solve for 

c.  We find we reject H0 if  

 ln
1

T
r
µ α

≥ −
+

 

Thus, if we wanted to test the  hypothesis that there will be no more than r = 1, 2 or 3  additional 

cases, then we would reject H0 at the .05 level if the elapsed time since the last case was  

respectively at least a factor of 1.5, 1.0 and 0.75  greater than µ.  If µ is unknown and is 

estimated from the data, similar findings also apply.  Specifically, we can solve for c by setting 

equation 8 equal to the desired level of significance, say for example .05, and we solve for αn,.05 

with N=n+r+1. Then, c=-ln αn,.05 .  For example, if n=20 and we wanted to test the hypothesis 

that there will be no more than r = 1, 2 or 3 additional cases, we calculate that we reject H0 at the 

.05 level if the elapsed time since the last case was respectively at least a factor of 1.62, 1.08 and 

0.81 times greater than the estimated mean incubation period. 

3.  Outbreak-wise Error Rates 

As an outbreak unfolds in real time, public health officials may wish to repeatedly test whether 

the outbreak has ended after successive cases.  The overall outbreak-wise error rate should be 

larger than that of a single hypothesis test at a single point in time because of the multiple 

hypothesis testing.  We investigated the impact of multiple hypotheses testing on the overall 

outbreak-wise type 1 error rate.  

 Suppose a hypothesis test is performed on each spacing beginning with the kth spacing with 

type 1 error of no greater than α on each individual test.  Then, the overall probability of 

prematurely declaring the outbreak has ended is  
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     ( )1
1 1

n

N

n k
ρ α

−
∏= − −
=

 

where nα  is the probability of a type 1 error from a hypothesis test based on the nth spacing (we 

have added a subscript n to emphasize  that nα  depends on the number of observed cases.) First, 

consider the special case, when µ is known.  From equation (4) we have .  Inserting 

this expression for 

( N n
nα α −= )

nα  into the expression for ρ, we find that the outbreak-wise error rate is 

 ρ ≤ α + α2 for all N and all values of k.  This is a surprising result because it says that the 

additional penalty for multiple testing with respect to the overall type 1 error is quite small 

because α2 is negligible compared to α.  For example, if each individual hypothesis test is 

performed at level α=.05, then the outbreak-wise error rate is .0525 regardless of the size of the 

outbreak.  The intuition for this result is that even though more tests are performed with larger N, 

the actual type 1 error probability on the nth test ( nα ) decreases as N increases with n fixed.  The 

source of most of the type 1 errors occurs at the hypothesis test for the last spacing; tests on 

earlier spacings contribute relatively few additional type 1 errors.  

    We then investigated the outbreak-wise error rate when µ is unknown and is estimated from 

the data on spacings.  For example, inserting α n,.05  for α in equation (6)  guarantees that the type 

1 error probability is no greater that .05 on the test of the nth spacing  for all values of N under the 

null hypothesis (that is, N>n).  In order to compute the type 1 error probability from the test on 

the nth spacing, we insert α n,.05  for α  in equation 8, and obtain 

   ( ) ( ) ( )
( )

2 2
ln ,.05

,.05
 1 .

2 1

N n n
nn

N n
n

α
α α

− ⎡ ⎤−
⎢ ⎥= +

−⎢ ⎥⎣ ⎦

 

Table 1 shows the outbreak-wise error rates ρ that were calculated using the above expression for 

nα  when tests are performed on all spacings beginning with the k=5th spacing.    For example, 
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suppose N = 30 and  each individual test is performed using α n,.05  to insure that the  type 1 error 

probability is not greater than .05 on each individual test;  then,  as shown in Table 1 the 

outbreak-wise type 1 error rate is .053.  Thus, multiple hypotheses testing throughout the course 

of an outbreak have a very minor effect on inflating the overall outbreak-wise type 1 error rates 

even in the case when µ is estimated. 

[Table 1 here] 

4.  Simulation Study 

A simulation study was performed to evaluate the performance of the hypothesis testing 

procedures described in section 2.  The methods in section (2) are based on an underlying 

exponential distribution with a guarantee time.  Furthermore, equation (9) is based on a large 

sample approximation.  The simulation study allows us to evaluate the robustness of the methods 

to violations of the exponential assumption and their performance in small or moderate sample 

sizes.  Outbreaks of size N = 15, 20, 40 and 60 were generated using various incubation period 

distributions.  We performed 1000 simulated outbreaks for each set of conditions.  The cases of 

disease were ordered by their dates of occurrences, the mean incubation time was estimated and 

hypothesis tests were performed.  We calculated the empirical error rate of falsely declaring the 

epidemic is over based on the (N-1)st spacing using equation (6) with  α= αn, .05.  We also 

calculated the outbreak-wise error rates when testing begins at the 5th spacing and continues to 

the last spacing. 

 The underlying incubation period distributions that we used in the simulation study included 

the exponential model and the lognormal model. The lognormal model for the incubation period 

of infectious diseases has been widely used.  Sartwell (1950) for example, applied the lognormal 

model to 18 data sets representing 13 different infectious diseases including measles and 
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salmonelliosis.  Sartwell defined the dispersion parameter in the lognormal model as d= exp(σ) 

where σ is the standard deviation of the logarithm of the incubation periods.  The interpretation 

of the dispersion parameter is that the probability is .69 that the incubation period will fall 

between the median incubation period divided by d and the median multiplied by d.  Sartwell 

found that although the median incubation periods were very different across a wide variety of 

diseases the dispersion parameters were similar ranging between 1.1 and 2.1.   Motivated by this 

work, we used a low dispersion factor of 1.1 (σ =.1), moderate dispersion of 1.6 (σ =.6), and a 

high dispersion of 2.2 (σ=0.8). 

 The simulation results are shown in Table 2.  The empirical error rates for the (N-1)st spacing 

should be approximately .05.  The outbreak wise error rates should be just slightly larger than .05 

as previously shown in Table 1.  We found that when the underlying model is exponential, the 

empirical error rates are close to the nominal levels for outbreaks as small as N=20 and 

regardless of the value of µ.  When the underlying model is lognormal, the empirical error rates 

depend critically on the value of the dispersion parameter d.  Generally, the empirical error rates 

are smaller than predicted for small and moderate values of the dispersion parameter.  However, 

in the case of high dispersion, we found that the empirical error rates are greater than expected 

and the methods are anticonservative.   

[Table 2 here] 

5.  Discussion  

The objective of this paper was to develop a hypothesis test for the end of a common source 

outbreak if neither the date of exposure to the pathogen nor the specific incubation period 

distribution of disease is known.  The proposed test is based on the spacings between cases 

which help circumvent the difficulty of not knowing the date of exposure.  The method provides 
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a theoretical framework for understanding ad-hoc methods used by public health practitioners 

based on the elapsed time since the occurrence of the latest case.   

 One surprising implication of our methodology is that the elapsed time since the latest case 

must be quite long before one can confidently declare that an outbreak has ended.  As discussed 

in section 2.3, the elapsed time since the latest case must be at least a factor of 3 times greater 

than the mean incubation period to declare the outbreak over at the .05 level of significance.  In 

the 2001 U.S. anthrax outbreak some public health officials had suggested that if 7 days had 

elapsed with no new cases, then that was good evidence that the outbreak has ended.  However, 

the mean incubation period of anthrax has been estimated to be 14 days, and thus a 7 day period 

in which no new cases have been reported is too short to confidently declare the end of an 

outbreak.  Our analysis serves as a cautionary note about prematurely declaring an outbreak over 

based on spacings of moderate length.  However, as discussed in section.2.3, our analysis also 

shows that periods of moderate duration in which no new cases have occurred (e.g. about equal 

to the mean incubation period) can signal the outbreak is “almost” over, that is, there are only a 

few remaining cases still to occur.  Our analysis also shows that the penalty on the type 1 error 

probability for multiple testing during the course of an outbreak is very minor. 

 The methods we derived in section 2 assumed a two parameter exponential model with 

guarantee time for the incubation period distribution.  The performance of the methods with 

respect to type 1 error rates was good when the underlying incubation distribution was 

exponential.  We evaluated the robustness of the methods to the lognormal model for the 

incubation period distribution.  We found that the performance depends critically on the 

dispersion parameter of the lognormal model.  Generally, the empirical type 1 error rates were 

equal or smaller than the nominal levels for the range of dispersion parameters typically found in 

 15
Hosted by The Berkeley Electronic Press



infectious diseases (d< 2.1) (Sartwell, 1950).  However, if the dispersion parameter was greater, 

the methods will no longer be conservative, and one could certainly not rule out the possibility 

that new and emerging pathogens might exhibit dispersion greater than seen in other infectious 

diseases.   One area of future work is semi-parametric methods that could take advantage of the 

fact that spacings are asymptotically exponentially distributed regardless of the parametric model 

(Cox and Hinkley, 1974); however estimation of the mean of that exponential distribution would 

require density estimation, and some critical assumptions would still need to be made about the 

tail of the incubation distribution.  

 Considerable caution is required if the incubation period distribution deviates substantially 

from either the exponential or lognormal models, and in particular if the incubation period 

distribution is not unimodal.  For example, suppose the incubation period distribution was 

bimodal arising from a mixture of 2 lognormal distributions corresponding to one subpopulation 

with a small median incubation period and one subpopulation with a large median incubation 

period.  Then, a long period of time in which no new cases occur could mistakenly signal the end 

of the outbreak when instead it signals the end of cases from the first subpopulation, with no 

indication that a second wave of cases is about to occur from the second subpopulation.   A 

multi-modal distribution could also arise if there was not a single calendar date of exposure.  For 

example, outbreaks such as those associated with contaminated food may have multiple dates of 

exposure if the food had been distributed to multiple locations.  Such phenomena could create 

multiple waves of an outbreak. 

  The methods may provide useful guidance to public health practitioners facing the challenge 

of making forecasts about the course of a common source outbreak from dates of occurrence of 

cases with no additional epidemiological information.  However, as additional epidemiological 
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information becomes available during the course of an outbreak, such as the dates of exposure or 

the incubation period distribution, such information could and should be incorporated into the 

methods to provide more reliable forecasts.  
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Figure 1. Values of ,.05 ,.10  and ,n nα α  versus n.  Rejecting H0 when 0ˆ nT n ,αµ α> − insures  

 that the type 1 error probability will be no greater than α. 
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Table 1 

Outbreak-wise error rates versus N and type 1 error rate ( )α on each individual test.  Outbreak-
wise probabilities of  type 1 error are based on testing each  spacing in an outbreak beginning 

with the 5th spacing. 
 

N α  

 .01 .05 .10 

10 .0101 .0530 .1134 

20 .0101 .0533 .1127 

40 .0101 .0530 .1115 

100 .0101 .0527 .1106 
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Table 2 

Simulation results of type 1 error rates for hypothesis test of the end of a common-source 
outbreak (each based on 1000 simulations; each hypothesis test performed with α in equation (6) 
set to ,.05nα ).  Outbreak-wise empirical error rate based on testing each spacing beginning with 

the 5th spacing and ending with (N-1)st spacing. 
  Empirical error rates 

Distribution N (N-1)st Outbreak-wise 

Exponential (µ = 5) 15 .061 .086 

Exponential (µ = 10) 15 .039 .067 

Exponential (µ = 5) 20 .055 .077 

Exponential (µ = 10) 20 .056 .075 

Exponential (µ = 5) 40 .058 .065 

Exponential (µ = 10) 40 .043 .051 

Exponential (µ = 5) 60 .047 .052 

Exponential (µ =10) 60 .053 .059 

 

Lognormal (d = 1.1) 15 .000 .001 

Lognormal (d = 1.8) 15 .036 .043 

Lognormal (d = 2.2) 15 .107 .133 

Lognormal1 (d = 1.1) 20 .000 .000 

Lognormal  (d = 1.8) 20 .044 .049 

Lognormal  (d = 2.2) 20 .105 .122 

Lognormal  (d = 1.1) 40 .000 .001 

Lognormal (d = 1.8) 40 .047 .051 

Lognormal (d = 2.2) 40 .127 .146 

Lognormal (d = 1.1) 60 .000 .000 

Lognormal (d = 1.8) 60 .059 .064 

Lognormal (d = 2.2) 60 .151 .182 

 
1 Median incubation time for lognormal models was exp(2.5) = 12.2 
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