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Simultaneously Optimizing Dose and
Schedule of a New Cytotoxic Agent

Thomas M. Braun, Peter F. Thall, Hoang Nguyen, and Marcos de Lima

Abstract

Traditionally, phase I clinical trial designs determine a maximum tolerated dose
of an experimental cytotoxic agent based on a fixed schedule, usually one course
consisting of multiple administrations, while varying the dose per administration
between patients. However, in actual medical practice patients often receive sev-
eral courses of treatment, and some patients may receive one or more dose re-
ductions due to low-grade (non-dose limiting) toxicity in previous courses. As a
result, the overall risk of toxicity for each patient is a function of both the sched-
ule and the dose used at each adminstration. We propose a new paradigm for
Phase I clinical trials that allows both the dose per administration and the sched-
ule to vary, making treatment two-dimensional. We provide an outcome-adaptive
Bayesian design that simultaneously optimizes both dose and schedule in terms
of the overall risk of toxicity, based on time-to-toxicity outcomes. The method is
illustrated with a trial of an agent hypothesized to prolong cancer remission after
allogeneic bone marrow transplantation, and a simulation study in the context of
this trial is presented.
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SUMMARY. Traditionally, phase I clinical trial designs determine a maximum tol-

erated dose of an experimental cytotoxic agent based on a fixed schedule, usually

one course consisting of multiple administrations, while varying the dose per ad-

ministration between patients. However, in actual medical practice patients often

receive several courses of treatment, and some patients may receive one or more

dose reductions due to low-grade (non-dose limiting) toxicity in previous courses.

As a result, the overall risk of toxicity for each patient is a function of both the

schedule and the dose used at each adminstration. We propose a new paradigm for

Phase I clinical trials that allows both the dose per administration and the sched-

ule to vary, making treatment two-dimensional. We provide an outcome-adaptive

Bayesian design that simultaneously optimizes both dose and schedule in terms
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of the overall risk of toxicity, based on time-to-toxicity outcomes. The method is

illustrated with a trial of an agent hypothesized to prolong cancer remission after

allogeneic bone marrow transplantation, and a simulation study in the context of

this trial is presented.

KEY WORDS: Adaptive design; phase I trial; bone marrow transplantation; dose

escalation; CRM; maximum tolerated dose; hypomethylation; chromatin

1. Introduction

Conventional phase I clinical trials determine the maximum tolerated dose (MTD)

of a new agent by characterizing patient outcome as a binary indicator of whether

toxicity occurs within a short time period from the start of therapy. Generally,

the MTD is the highest dose that does not present a practical limitation to ther-

apy (Storer, 1989; Goodman et al., 1995; Babb et al., 1998). This approach has

seen widespread use largely because it facilitates adaptive dose-finding methods

that successively use the doses and outcomes of previous patients to select doses

for new patients. A limitation of these methods is that they typically base dose-

finding on a single course of therapy, whereas multiple courses typically are used

in medical practice. As a result, the MTD based on a single course of treatment

may prove to be overly toxic when given over multiple courses. For example, if

conventional dose-finding is done with a fixed schedule consisting of one course

when in fact a safe dose d∗ exists with three courses and this combination has

substantive anti-disease effect whereas d∗ with only one course does not, then the

conventional MTD of one course may lead to the erroneous conclusion in later

studies that the agent is ineffective. Similarly, if conventional dose-finding is done

with four courses and it turns out that the lowest dose is excessively toxic, then it

may be concluded erroneously that the agent is unsafe at any dose simply because

shorter schedules were not examined.

Recently, a new phase I method was proposed that determines a maximum
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tolerated schedule (MTS), rather than a conventional MTD (Braun et al., 2005).

The MTS is defined as the maximum number of courses that can be given without

causing unacceptable cumulative toxicity. The model and method account for the

patient’s sequence of administrations and allows the number of courses to vary so

that an optimal schedule may be determined. However, while this method allows

the number of courses to vary, it requires the dose used in each administration to

be fixed. Thus, if the fixed dose is ill-chosen, the MTS may be far from optimal.

One may easily imagine examples similar to those given above by switching the

roles of dose and schedule.

This paper is motivated by the problems, noted above, that arise in phase I tri-

als when either the schedule is fixed and a MTD is found, or the per-administration

dose is fixed and a MTS is found. We propose a new paradigm for Phase I clin-

ical trials that simultaneously optimizes both the dose per adminstration and the

overall schedule. The design examines a matrix of possible (dose, schedule) com-

binations. Each patient is assigned a combination using previous patients’ data,

with decision criteria based on the posterior under a Bayesian model using time-

to-toxicity as the outcome. The goal is to determine a maximum tolerated dose

and schedule (MTDS) in terms of the overall risk of toxicity. Our formulation al-

lows both the dose and the timing of each administration to vary between patients.

This accommodates settings where a patient’s dose per administration is decreased

if a low grade toxicity is observed, and we also allow a patient’s actual doses or

administration times to deviate from planned values due to logistical difficulties

or human error. Consequently, although the design examines a predetermined ma-

trix of (dose, schedule) combinations, the model allows each patient’s treatment

to consist of an arbitrary sequence of administration times and a corresponding

sequence of doses, so that the likelihood reflects the actual data in the trial.

Section 2 describes the trial that motivated this research and that will be used

for illustration. Section 3 presents notation and probability models, including
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methods for eliciting and calibrating priors. Section 4 provides criteria for eval-

uating (dose,schedule) pairs and rules for trial conduct. Section 5 illustrates the

method via simulations as applied to an allogeneic cell transplantation trial, and

we conclude with a discussion in Section 6.

2. Motivating Example

In allogeneic blood or bone marrow cell transplantation (allotx) for treatment of

leukemia, a patient (host) receives cells (the graft) from a donor who has been

matched on a number of human leukocyte antigen sites. The graft contains T-

cells and natural killer cells that coordinate a positive immune response that kills

leukemia cells, called a graft-versus-leukemia (GVL) effect. However, allotx re-

cipients who initially respond to treatment have a substantial risk of disease re-

currence due to proliferation of residual leukemia cells. As a result, investigators

continue to seek agents that can be given to allotx recipients after they achieve a

response in order to reduce the risk of disease recurrence.

Epigenetic DNA changes are reversible modifications of the DNA-histone

complex that do not require alterations in nucleotide sequences (Das and Singal,

2004). Addition of a methyl group to gene promoter areas (DNA methylation) is

associated with gene silencing, and abnormal methylation patterns are commonly

seen in cancer cells. Hypermethylation of promoter regions appears to suppress

genes involved in leukemic cell growth. Methylation is maintained by the enzyme

cytosine DNA methyltransferase, with inhibition of this enzyme leading to hy-

pomethylation and subsequent reactivation of tumor suppressor genes. Vidaza
R©

(5-azacitidine) inibits DNA methyltransferase by forming covalent adducts with

the enzyme, activating silent genes that may lead to cell death, and also may in-

duce phenotypic modification of the leukemic cells to facilitate immune recogni-

tion and potentiation of the donor cells’ GVL effect. Vidaza
R© has been approved

by the U.S. Food and Drug Administration for the treatment of myelodysplastic

syndrome (MDS), a blood cell disease that often progresses to acute myelogenous
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leukemia (AML). The recommended dose and schedule for MDS patients is 75

mg/m2 given subcutaneously, daily for seven days, with this seven-day cycle re-

peated every four weeks. No data exist, however, on what a safe dose and schedule

for AML patients might be.

The method described here was motivated by the desire to design a phase I

trial to optimize both the schedule and the dose per administration of Vidaza
R©

in AML. The trial currently is ongoing at M.D. Anderson Cancer Center. For

the purpose of determining an optimal (dose,schedule) pair, “toxicity” is defined

as any of the following adverse events (AEs): (1) severe (grade 3 or 4) toxicity

of the kidney, liver, heart or lung, or neural toxicity, as defined by standard NCI

grading criteria; (2) severe graft-versus-host disease; (3) systemic infection that

cannot be resolved by antibiotics within 2 weeks; (4) severe hematologic toxicity,

with thrombocytopenia and or neutropenia or (5) an AE of any of these types that

leads to subsequent delay or termination of therapy, or a dose reduction. Each

patient may receive up to four courses of therapy, and the dose may be reduced

up to two times for reasons other than the toxicities listed above. Thus, a patient’s

treatment may consist of an initial dose and the times at which it was adminis-

tered, a second, possibly lower dose, along with its administration times, and so

on, up to four courses. In practice, a patient’s administration times may deviate

from the planned schedule due to practical difficulties in adhering to the schedule

over several months of therapy, or intentional delay of a planned course by the

physician to allow a patient to recover from a low grade toxicity. Additionally, a

patient may receive the wrong dose due to human error. Thus, an important fea-

ture of our model is that it accommodates each patient’s actual treatment sequence

by accounting for the contribution of each dose and its time of administration to

the patient’s overall risk of toxicity.
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3. Probability Model
3.1 General Form of the Hazard and Likelihood

Suppose one wishes to evaluate J doses, d1 < d2 < · · · < dJ , and K nested

schedules, s(1), · · · , s(K). The kth schedule is a sequence of administration times,

s(k) = (s1, s2, . . . , sm(k)), with s(k) a subsequence of s(k+1) for each k = 1, . . . , K−

1, and m(1) < m(2) · · · < m(K). Here, “dose” is the amount of the agent given

at each administration. For example, a patient given d2 under schedule s(3) =

(s1, s2, . . . , sm(3)) receives the cumulative amount d2 m(3) of the agent in m(3) suc-

cessive administrations, unless therapy is terminated early due to toxicity. Thus,

a patient’s assigned treatment is indexed by the pair (j, k), representing (dj, s
(k)),

there are M = JK such pairs under consideration, and the total amount of the

agent given to the patient increases with both dose and schedule.

In the motivating study, there are three doses of interest: 8, 16 and 24 mg/m2,

and four schedules, for a total of M = 12 combinations. One course consists

of 5 consecutive daily administrations. Ideally, the first course begins 40 days

post-transplant, although this may vary since the physician may decide to delay

administration due to early complications, such as infection. We thus define the

time to toxicity from the time when the first course is actually begun, the patient’s

enrollment time. The first schedule, s(1) = (0, 1, 2, 3, 4), consists of one course.

The second schedule includes one additional course starting 28 days after the

beginning of s(1), so that s(2) = (0, 1, 2, 3, 4, 28, 29, 30, 31, 32) = (s(1), s(1) + 28).

The third and fourth schedules are defined similarly, with s(3) = (s(1), s(1) +

28, s(1) + 56) and s(4) = (s(1), s(1) + 28, s(1) + 56, s(1) + 84). Figure 1 provides a

schematic representation of the 12 (dose,schedule) combinations evaluated in the

trial. We denote the maximum length of follow-up for each patient specified by

the investigators by τ , which should be large enough to include toxicities arising

from the longest schedule, s(K). In the motivating trial, τ = 116 days, which is 28

days after the start of the fourth course.
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[Figure 1 about here.]

Our model generalizes that used by Braun et al. (2005) by extending it to

allow the dose per administration to vary and also using a new parameterization

to facilitate computation. While other models are possible, we use this model here

because it is robust (section 6.4, Table 4, below) and because our primary focus

is the new algorithm for optimizing (dose,schedule). Let t∗ denote a time, from

the start of the trial, when one evaluates the data and either assigns a particular

pair (j, k) to the next patient or terminates the trial early if no pair is acceptable.

Denote by e the study time when the patient’s therapy begins. We denote the

time to toxicity by Y and let Y o be the patient’s observed time from e to either

toxicity or last follow up at study time t∗. Thus, Y o = Y if e + Y ≤ t∗ or

Y o = t∗ − e if e + Y > t∗. Let δ = I(Y o = Y ) indicate that the patient has

toxicity by study time t∗. Let h(u | θ, d) denote the hazard of toxicity associated

with a single administration of dose d of the agent given u days previously, where

θ is a vector of model parameters; we define h(u | θ, d) = 0 for u < 0. Let

s = (s1, · · · , sk) denote the patient’s sequence of administration times and ds

= (dj(s1), · · · , dj(sk)) the corresponding doses up to study time t∗. Thus, j(s`)

indexes the dose given to the patient at time s` after entry, at study time e + s`.

The overall hazard of toxicity at study time t∗ for a patient treated with schedule

s and doses ds is λ(t∗ | θ, s,ds) =
∑k

`=1 h(t∗− e− s` | θ, dj(s`)). Consequently,

the patient’s cumulative hazard function at t∗ is Λ(t∗ | θ, s,ds) =
∑k

`=1 H(t∗ −

e − s` | θ, dj(s`)), where H(x | θ, d) =
∫ x

0
h(u | θ, d)du, with survivor function

Pr(Y > t∗ | θ, s,ds) = F̄ (t∗ | θ, s,ds) = exp{−Λ(t∗ | θ, s,ds)} and density

f(t∗ | θ, s,ds) = λ(t∗ | θ, s,ds)F̄ (t∗ | θ, s,ds). Let n∗ denote the number of

patients enrolled up to t∗. For the ith patient, ei is the entry time, the sequence

of administration times up to t∗ is ei + si = (ei + si,1, · · · , ei + si,ki
), and dsi

=

(dj(si,1), · · · , dj(si,ki
)) is the corresponding sequence of doses, i = 1, · · · , n∗. For

treatment sequences (si,dsi
) and outcome data (Y o

i , δi), patient i has likelihood
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Li(θ|Y o
i , δi, si,dsi

) = λ(Y o
i | θ, si,dsi

)δi F̄ (Y o
i | θ, si,dsi

),, and the overall

likelihood at t∗ is L(θ | datan∗) =
∏n∗

i=1 Li(θ|Y o
i , δi, si,dsi

).

This model accommodates each patient’s actual sequence of administration

times and doses, which often deviate from his/her planned treatment. For ex-

ample, suppose a patient’s planned treatment was two courses with 24 mg/m2 at

each of the 10 administrations, but the patient began the first course two days

late, was reduced to 8 mg/m2 in the second course due to a grade 2 infection,

and was given 16 mg/m2 by mistake at the tenth administration. Then the pa-

tient’s actual treatment would be s = (2, 3, 4, 5, 6, 30, 31, 32, 33, 34) and ds =

(24, 24, 24, 24, 24, 8, 8, 8, 8, 16). While this is not any of the 12 (dose, schedule)

combinations being studied in the Vidaza
R© trial (Figure 1), the model allows this

patient’s data to be included in the likelihood.

It may be unclear how to score Y for some patients. The definition of toxicity

in the Vidaza
R© trial includes grade 2 toxicities that cannot be resolved therapeu-

tically within 2 weeks from onset or that necessitate a dose reduction. We chose

to score such toxicities as occurring at the time of initial onset. For example, if a

patient has a grade 2 thrombocytopenia starting at day 10 of therapy that persists

beyond day 24 and requires a dose reduction, we define Y o = 10 and δ = 1.

However, if the thrombocytopenia is resolved by day 24, then it is not scored as

a toxicity, and at day 24 we define Y o = 24 and δ = 0, provided that no other

toxicity has occurred. This approach is conservative in that toxicity is assumed to

have occurred as soon as possible.

3.2 Single Administration Hazard Function

The probability model is determined by the particular form of h, for which we

employ a reparameterized version of the triangular hazard function used by Braun

et al. (2005). In this model, for each per-administration dose j = 1, · · · , J , denote

θj = (aj, bj, cj), with θ = {θ1, . . . ,θJ} and each entry of θ positive-valued. The
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hazard of toxicity associated with a single administration of dose dj is

h(u | θj) =



2aj

bj+cj

u
bj

0 ≤ u ≤ bj

2aj

bj+cj

bj+cj−u

cj
bj < u ≤ bj + cj

0 u > bj + cj or u < 0.

(1)

This is a triangle having base of length bj +cj and area equal to aj, with the height

of the triangle, 2aj/(bj + cj), occurring at u = bj . The area of this triangle is the

cumulative single-administration hazard Hj = aj for dose dj . The constraint that

the per-administration cumulative hazard of toxicity increases with dose says that

a1 < a2 < · · · < aJ . In some applications, however, the risk of toxicity may reach

a plateau or may even decrease with a higher dose or longer schedule, such as in

studies of anti-infection agents that have adverse effects, and such an ordering

constraint is inappropriate.

3.3 Establishing Priors

To enforce the constraint a1 < a2 < . . . < aJ so that F (τ | θ, dj, s
(k)), the

probability of toxicity by τ , increases with dose, we let a∗j = aj − aj−1 for

j ≥ 2, with a∗1 = a1. We assume that (a∗1, · · · , a∗J) follows a J-variate lognor-

mal prior with all correlations equal to zero, although a posteriori the a∗j ’s may

be correlated. Denoting the marginals by a∗j ∼ LN(µa∗j
, σ2

a), this implies that

E(a∗j ) = exp(µa∗j
+ σ2

a/2) and var(a∗j ) = exp(2µa∗j
+ σ2

a){exp(σ2
a) − 1}. Simi-

larly, (b1, · · · , bJ) and (c1, · · · , cJ) each follow J-variate lognormal priors, with

marginals bj ∼ LN(µbj
, σ2

b ) and cj ∼ LN(µcj
, σ2

c ) for each j. We chose the mul-

tivariate lognormal for its generality and tractability. Denoting µj = (µa∗j
, µbj

, µcj
)

and σ2 = (σ2
a, σ

2
b , σ

2
c ), the model has 3J location hyperparameters, µ = (µ1, · · · , µJ)

and 3 scale hyperparameters, σ2 = (σ2
a, σ

2
b , σ

2
c ); we denote θ̃ = (µ,σ2). In Sec-

tion 5, we will illustrate how to determine θ̃ in the context of the application.

Appropriate values for the prior mean and variance parameters may be elicited

from the investigators in many ways (Gelman et al., 2004), although in general,

it is easiest to elicit values on domains with which the investigator is familiar
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(Tsutakawa and Lin, 1986). Thus, we elicit the expected values of the following

three quantities for each dose j = 1, · · · , J :

(1) ξj,1 = −log{1 − Fj(τ | s(1), θ)} = m(1)aj , the transformed probability of

toxicity by time τ under the shortest schedule s(1)

(2) ξj,2, the time until the maximum hazard is reached for one administration of

dose j, and

(3) ξj,3, the time from the peak of the hazard until the hazard vanishes com-

pletely or becomes negligible for a single administration of dose j .

In practice, one elicits the mean probability E{Fj(τ | s(1), θ) | θ̃} and then derives

E{ξj,1 | θ̃} ≈ − log[1 − E{Fj(τ | s(1), θ) | θ̃}]. We will use the superscript (e)

to denote elicited values, with ξ
(e)
j,` the elicited mean of ξj,`, ` = 1, 2, 3.

We derive additional functions of the hyperparameter vector θ̃ by assuming

that ξj,1 has an inverse Gamma (IG) distribution with variance (ξ
(e)
j,1 )2/(ν1 − 1),

and that ξj,2 and ξj,3 have IG distributions with respective variances (ξ
(e)
j,2 )2/(ν2−1)

and (ξ
(e)
j,3 )2/(ν2−1). We use the same value ν2 in the distributions of ξj,2 and ξj,3 as

they both describe time durations and differ in nature from ξj,1. Since ξj,1, ξj,2, and

ξj,3 correspond respectively to m(1)aj , bj , and cj , we use the following method-

of-moments approach to solve for θ̃ by equating the elicited moments of ξj,1, ξj,2,

and ξj,3 to their corresponding theoretical moments. Denoting ξ
(e)
0,1 = 0, we solve

the following set of equations for θ̃:

exp(µa∗j
+ σ2

a/2) = (ξ
(e)
j,1 − ξ

(e)
j−1,1)/m

(1) (2)

exp(2µa∗j
+ σ2

a){exp(σ2
a)− 1} = [(ξ

(e)
j,1 − ξ

(e)
j−1,1)/m

(1)]
2

/(ν1 − 1) (3)

exp(µbj
+ σ2

b/2) = ξ
(e)
j,2 (4)

exp(2µbj
+ σ2

b ){exp(σ2
b )− 1} = (ξ

(e)
j,2 )2/(ν2 − 1) (5)

exp(µcj
+ σ2

c/2) = ξ
(e)
j,3 (6)

exp(2µcj
+ σ2

c ){exp(σ2
c )− 1} = (ξ

(e)
j,3 )2/(ν2 − 1). (7)
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Comparing Equations (2) and (3) shows that exp(σ2
a)− 1 = (ν1− 1)−1, hence

σ2
a = log{ν1/(ν1−1)}, which is a function solely of ν1. Comparing Equations (4)-

(5) and Equations (6)-(7), shows that σ2
b = σ2

c = log{ν2/(ν2 − 1)}. Thus, ν1 and

ν2 are tuning parameters that determine the informativeness of the prior. Solving

for the prior location parameters gives µa∗j
= log([ξ

(e)
j,1 − ξ

(e)
j−1,1]/m

(1))−σ2
a/2, µbj

= log(ξ
(e)
j,2 )−σ2

b/2 and µcj
= log(ξ

(e)
j,3 )−σ2

c/2. Thus, σ2 is determined by the tuning

parameters ν1 and ν2, and given σ2, the elicited quantities are used to determine

the prior location parameters µ.

4. Choosing (Dose, Schedule) Combinations

Because trial conduct uses decision criteria based on the most recent posterior

computed when a new patient is accrued, the data must be monitored continu-

ously, making the design computationally intensive. We compute the posterior of

θ using Markov Chain Monte Carlo methods as described in the Appendix. For

each (j, k), we base decisions on Fjk(θ) = F (τ | θ, dj, s
(k)), the cumulative prob-

ability of toxicity within τ days after enrollment for a patient treated with dose j

and schedule k. We will say that the pair (j, k) is acceptable if:

Pr{Fjk(θ) > Fmax | datan∗} < pu, (8)

where Fmax is a fixed upper bound on the probability of toxicity by τ specified

by the physician and pu is a fixed decision cut-off, typically set to 0.80 or larger.

This is similar to the criterion used for defining acceptable toxicity used by Thall

and Cook (2004), in the context of dose-finding based on efficacy and toxicity.

We denote the set of acceptable (dose, schedule) combinations by O∗. If O∗ is the

empty set, then all (j, k) combinations are unacceptable and the trial is terminated.

If O∗ has two or more elements, then we compute the distance measure

d∗jk = |E{Fjk(θ) | datan∗} − πo | , (9)

for each (j, k) ∈ O∗, where πo is a desired target for Pr(Y < τ) specified by the

physician. We assign patient n∗ + 1 to the element of O∗ having smallest d∗jk.
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To protect patient safety, we constrain O∗ to include only (j, k) pairs with

doses that are at most one dose above and/or one schedule longer than those com-

binations already assigned to previous patients. If (j∗, k∗) is the pair that was

assigned to the previous subject, and no pair with higher dose or longer schedule

has previously been tried, then the next patient may be assigned any pair (j, k) for

which j ≤ j∗ + 1 and k ≤ k∗ + 1; we call this the ”do not skip” rule. Thus, one

may de-escalate, stay at (j∗, k∗), increase either dose or schedule by one level,

or increase both dose and schedule by one level, as shown by Figure 1. These

restrictions only apply to untried (j, k) pairs when escalating, and we place no

restriction on de-escalation of either dose or schedule. Combining all of the above

criteria and rules, our algorithm for trial conduct is as follows:

TRIAL CONDUCT

1. Treat the first patient at the lowest (dose, schedule) pair, (j, k) = (1, 1).

2. For each patient after the first, based on the current posterior of θ, determine

the set, O∗, of acceptable (j, k) combinations.

3. If O∗ is empty, then stop the trial and conclude that no (j, k) combination is

acceptable.

4. If O∗ is not empty, then assign the next patient to the element of O∗ with

smallest d∗jk, i.e., the combination whose posterior mean cumulative probability

of toxicity by τ is closest to πo.

5. If the study is not terminated before N patients have been enrolled and fully

evaluated with follow-up to τ , select the pair (j∗, k∗) that minimizes d∗jk as the

optimal (dose, schedule) combination.

For example, suppose that the first patient has been assigned to combination

(1, 1) and has not experienced toxicity. Due to the ”do not skip” rule, there are four

possible (dose,schedule) combinations for the next patient: O∗= {(1, 1), (1, 2),
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(2, 1), (2, 2)}. If we assign the second patient to combination (2, 1), and both

enrolled patients have not experienced toxicity when the third patient is enrolled,

then there are now six possible (dose,schedule) combinations for the third patient:

O∗= {(1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2)}. This process is repeated with all

successively enrolled patients. Note that if (j, k) is determined to be unsafe by

Equation (8), then all pairs (j′, k′) with j′ ≥ j and k′ ≥ k must be unsafe.

5. Application
5.1 Design and Priors

The Vidaza
R© trial has three doses, d1 = 8, d2 = 16, and d3 = 24 mg/m2 and

four schedules with m(1) = 5, m(2) = 10, m(3) = 15, or m(4) = 20 admin-

istrations. The trial will enroll a maximum of N = 60 patients, with each pa-

tient followed for up to τ = 116 days. Using the trial conduct algorithm given

above, a (dose, schedule) combination is assigned to each new patient at the time

of his/her enrollment. The goal is to find a (dose,schedule) combination with

mean probability of toxicity by τ closest to πo = 0.30. The investigators believed

that the single-administration hazards for the three doses have expected peaks at

ξ
(e)
1,2 = 18, ξ

(e)
2,2 = 14, and ξ

(e)
3,2 = 10 days, respectively, with expected remain-

ing durations of ξ
(e)
1,3 = 10, ξ

(e)
2,3 = 14, and ξ

(e)
3,3 = 18 days. They also believed

that the expected probabilities of toxicity by 116 days for the three doses under

the shortest schedule are 0.20, 0.25, and 0.30, so that ξ
(e)
1,1 = −log(1 − 0.20),

ξ
(e)
2,1 = −log(1 − 0.25), and ξ

(e)
3,1 = −log(1 − 0.30). We derived θ̃ using this

elicited information as described in Section 3.3. The prior is characterized by

σ2
a = σ2

b = σ2
c = 1.1, µ1 = (−3.66, 2.34, 1.75), µ2 = (−4.90, 2.09, 2.09),

µ3 = (−4.83, 1.75, 2.34). The safety criterion parameters for applying Equation

(4) were defined to be Fmax = 0.30 and pu = 0.80, so that a pair (j, k) is deemed

acceptable if less than 80% of the posterior mass of Fjk(θ) is above 0.30.
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5.2 Simulation Design

For the simulation study, we specified seven scenarios in terms of fixed true prob-

abilities of toxicity by day τ = 116, F true
jk , for each (j, k). These scenarios are

summarized in Table 1 and illustrated by Figure 2. In Scenario 1, all 12 combina-

tions are safe, with F true
jk ≤ 0.30, and the pairs (2, 4) and (3, 4) have F true

jk closest

to 0.30. Scenarios 2 and 3 have several combinations with F true
jk > 0.30, and all

12 combinations are toxic in scenario 4. In each of scenarios 5-7, combination

(2, 2) has F true
22 = 0.30, but the scenarios differ in terms of how the F true

jk values

of the other combinations vary around combination (2, 2).

[Table 1 about here.]

[Figure 2 about here.]

Based on input from the principal investigator, patient inter-arrival times were

simulated from an exponential distribution with mean of 2 weeks, reflecting an

accrual rate of about 2 patients per month, and we simulated 10% of all toxicities

to be low-grade, which are classified as dose-limiting at their onset if they fail to

resolve within two weeks. Thus, there is a two-week delay in the recording of

toxicities that began as low-grade toxicities.

We determined the values ν1, ν2 and pu used for the actual trial by first running

an extensive series of preliminary simulations using candidate values 1.1 ≤ ν1 ≤

3, 1.1 ≤ ν2 ≤ 14, and pu ∈ {0.70, 0.75, 0.80, 0.85, 0.90}. Initially, we examined

multiple combinations of the three parameters under scenario 4, our “worst-case”

scenario, and we selected a set of (ν1, ν2, pu) combinations to ensure a high prob-

ability (≥ 90%) of stopping early, to ensure a safe design. Once we found a subset

of safe (ν1, ν2, pu) combinations, we ran additional simulations using those com-

binations under each of the other scenarios to identify final values giving a design

with good properties under all scenarios. We found that ν1 = 1.5, ν2 = 1.5 and

pu = 0.80 reliably chooses (j, k) pairs with F true
jk close to the targeted πo = 0.30
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in each of the non-worst case scenarios, while forcing early termination of the

study with at least 90% probability under scenario 4.

To examine the design’s robustness, we generated the Yi’s from each of sev-

eral different parameterizations of Weibull, exponential, and lognormal distribu-

tions under each scenario. In Tables 2 and 3, we report simulation results for an

exponential distribution with scale parameter chosen so that each F true
jk equalled

the value specified in Table 1. Table 4 summarizes results under scenario 5 when

the Yi’s are generated from a Weibull distribution with shape parameter 0.4 and

a lognormal distribution with variance equal to that of the exponential. The scale

parameters of the Weibull and lognormal distributions were chosen so that F true
jk

equalled the value specified in Table 1.

5.3 Simulation Results

Table 2 gives the selection frequency and the mean number of patients assigned to

each (dose, schedule) pair under each of the scenarios using the proposed design,

referred to as “MTDS.” As a basis for comparison, we also include results for a

conventional Phase I dose-finding design using the CRM (O’Quigley et al. (1990))

with the schedule fixed at schedule 4, assuming Pr(Yi ≤ 116 | dj, schedule 4) =

p
exp(α)
j for j = 1, 2, 3, with (p1, p2, p3) = (0.10, 0.30, 0.50), and α following a

normal prior with mean 0 and variance 2. Table 3 displays summary statistics for

both the MTDS and CRM designs under all seven scenarios. We consider (dose,

schedule) combinations with .20 ≤ F true
jk ≤ .40 to be acceptable choices, with

boldfaced values in Table 2 corresponding to such combinations.

[Table 2 about here.]

[Table 3 about here.]

[Table 4 about here.]

In scenario 1, the MTDS design identifies one of the four acceptable combi-

nations as optimal 87% of the time, with on average about 38 patients assigned to
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one of these four combinations. The CRM assigns all 60 patients to an acceptable

combination, because in this case the CRM design fortuitously only examines

schedule 4. In scenario 2, one of the five acceptable combinations is identified as

optimal by the MTDS design in 81% of the simulations, with an average of nearly

42 patients assigned to one of these five combinations and around 7 patients as-

signed to combinations with F true
jk > 0.40. Because the CRM design is limited

to doses with schedule 4, it can possibly find only the one acceptable combina-

tion (1,4) in scenario 2, which it identifies as the MTD 66% of the time, with 41

patients assigned to that combination. The CRM terminates early with no dose se-

lected 16% of the time, in contrast to 0% for the MTDS design, because the other

two doses are extremely toxic under schedule 4. That is, there is a probability 0.16

that a truly safe agent, when appropriately administered, will be abandoned based

on a conventional Phase I trial using the CRM. The limitations of fixing schedule

and only varying dose are further illustrated by Table 3. In particular, the CRM

has probability 0 of selecting an acceptable dose under each of scenarios 3, 6 and

7, where all of the acceptable doses are at schedules below schedule 4.

In scenario 3, the MTDS design identifies one of the four acceptable combina-

tions as optimal 88% of the time, with about 43 patients assigned to one of these

four combinations and 13 patients assigned to combinations with F true
jk > 0.40.

Because all three doses are unacceptably toxic under schedule 4 in scenario 3,

the CRM is unable to find an acceptable dose simply because it never examines

a lower schedule. In scenario 3, the CRM exposes on average nearly 17 patients

to toxic combinations with 55% of them experiencing toxicity, and nearly always

terminates early with all combinations deemed unacceptable. In scenario 4, where

no combination is acceptable, 29 patients on average are enrolled under the MTDS

design before the study terminates, in contrast to only 14 patients under the CRM.

However, in the scenario where all combinations are overly toxic the MTDS de-

sign assigns a majority of patients only to combination (1,1) and its closest neigh-
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bors, with the overall incidence of toxicities similar between the MTDS and CRM

designs.

Scenarios 5-7 illustrate the MTDS method for different distributions of accept-

able (dose,schedule) pairs over the matrix of 12 pairs studied. Tables 2 and 3 show

that the MTDS reliably identifies acceptable pairs in all of these scenarios. The

conclusions reached from scenarios 1-4 are re-emphasized: because it does not

allow schedule to vary, a conventional CRM dose-finding design is likely to as-

sign a majority of patients to sub-optimal doses and is often unable to identify an

optimal (dose,schedule) pair. In contrast, the MTDS design assigns more patients

to acceptable combinations and often has a much greater likelihood of selecting a

combination suitable for further study.

A critical issue illustrated by the simulations is that the MTDS method is su-

perior to the CRM, or any method that searches for an optimal dose but does not

allow schedule to vary. The point is simply that, if the optimal (dose,schedule)

combination occurs at a schedule different from the fixed schedule assumed by

a method that only varies dose, such a method will have probability 0 of find-

ing the optimal combination, as was the case with CRM under scenarios 3, 6 and

7. Similarly, the MTDS method also is superior to the MTS method of Braun

et al. (2005), which fixes dose while only varying schedule. If the fixed dose is

suboptimal for all schedules, the MTS method will have probability 0 of finding

the optimal combination. We ran additional simulations (not shown) under each

scenario in Table 2 using an MTS design that examined all four schedules but

assigned all subjects to the same dose of 24 mg/m2 (final column of Table 1). In

scenario 3, in which 24 mg/m2 is toxic with all four schedules, the MTS design

identified the slightly toxic combination (3, 1) as optimal in 41% of simulations

and treated an average of 29 subjects with that combination, compared to 29% of

simulations and 12 subjects with the MTDS design (see Table 2). More strikingly,

in scenarios 5 and 7, where the MTS design is restricted to excessively toxic com-
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binations, this design terminated the trial 83% and 96% of the time, respectively,

with the false negative conclusion that no optimal combination existed and thus

the agent should not be studied in further clinical trials.

5.4 Robustness

Table 4 gives results for the MTDS design under scenario 5 with toxicity times

generated from Weibull, exponential, and lognormal distributions, described ear-

lier. The first four rows replicate the values displayed in Table 2. Table 4 indicates

that the performance of the MTDS method varies very little with the time-to-event

distribution, in terms of selection of acceptable (dose, schedule) pairs and num-

bers of patients assigned. Results for other time-to-event distributions and other

scenarios, not shown, were very similar to those presented in Table 4.

[Table 5 about here.]

To study the effects of maximum sample size, we simulated the trial using

the MTDS method with N = 40, 60 or 80. In scenario 1, the MTDS method

identified combination (3, 4) as optimal 32%, 44%, and 44% of the time with N

= 40, 60, and 80, respectively. In scenario 4, where no combination is safe, the

trial was terminated early 80%, 90%, and 96% of the time. In scenario 5, the four

acceptable combinations were identified as optimal in 64%, 71%, and 79% of the

time. Thus, although the design performs best with N = 80, our selected sample

size of N = 60 provides very desirable operating characteristics and improves

substantively upon N = 40.

6. Discussion

We have proposed a new paradigm for phase I clinical trials aiming to identify a

best (dose, schedule) combination. The specific model and parameterization used

here were selected for tractability and robustness, although other models certainly

are possible. We also examined a version of our design that does not allow “di-

agonal” escalation, that is, increasing both dose and schedule simultaneously, in
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order to protect patient safety when escalating. However, this restriction slowed

escalation so severely that far too many patients were assigned to sub-optimal

combinations and too few were assigned to optimal combinations. One also may

impose the safety constraint that escalation from the current combination (j∗, k∗)

cannot occur until a cohort of at least M patients have been assigned to (j∗, k∗),

analogous to the usual approach in conventional Phase I designs. However, we

found that M = 1 yielded a safe design with good operating characteristics.
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Appendix

We used Markov Chain Monte Carlo (MCMC) with Gibbs sampling for integrat-

ing posterior quantities over the parameter space. For each integral, we generated

a series of random vectors of model parameters distributed proportionally to the

posterior integrand (likelihood times prior), with each series initialized by using

the mode. At the start of the trial, we initialized the posterior integrand mode to be

the same as the prior mode. When a new patient enrolled, the mode was updated

by random sampling around the previous mode. We worked in terms of the log of

the model parameters in order to generate all random values from normal distribu-

tions. We used two levels of sampling around the previous mode to ensure a good

approximation. The first level generates 10,000 normally distributed samples us-

ing a large variance for each parameter, roughly two orders of magnitude larger

than that parameter’s prior variance. In the rare case that this procedure failed to

find a mode, we increased the variance and the number of samples and repeated.

The second level takes 5000 more samples around the best mode approximation
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found at the first level, using the same variance. For the Gibbs sampling, the sub-

step of drawing from the conditional distribution uses importance sampling with

a symmetric normal proposal distribution. For each parameter θi, i = 1, 2, . . . 9,

we generated θ̃i ∼ N(θi, si), in which si is approximately the prior standard devi-

ation. Denoting θ̃ = (θ1, ..., θi−1, θ̃i, ..., θ9), we computed A = min{1, q(θ̃|data)/

q(θ|data)}, in which q(·) is the posterior integrand, and accepted θ̃i as the new θi

with probability A. MCMC convergence was monitored by comparing the Monte

Carlo standard error (MCSE) to the standard deviation of the decision variables

(i.e., the posterior cumulative probabilities of toxicity.) We began with 4000 sam-

ples and gradually reduced this to a minimum of 1000 samples until the MCSE

was ≤ 3% of the posterior standard deviation. Using the batch-means method to

estimate the MCSE (with batch size 50), we observed that 1000 random samples

were enough to keep the error ratio below 3%. We also used these samples to

construct the posterior marginal distribution of each model parameter and confirm

that each was a proper distribution with a unimodal shape.
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Figure 1. Schematic representation of study.
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Figure 2. The fixed toxicity probabilities of each (dose, schedule) pair under
each of scenario in the simulation study. The dashed horizontal line represents the
target toxicity probability 0.30.
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Table 1
The fixed toxicity probabilities of each (dose, schedule) pair under each of

scenario in the simulation study.

Dose (mg/m2)
Scenario Schedule 8 16 24

1 4 0.22 0.26 0.30
3 0.16 0.18 0.23
2 0.09 0.12 0.18
1 0.05 0.07 0.11

2 4 0.31 0.45 0.62
3 0.18 0.32 0.54
2 0.09 0.21 0.40
1 0.03 0.14 0.28

3 4 0.55 0.62 0.72
3 0.45 0.50 0.62
2 0.30 0.32 0.50
1 0.10 0.26 0.35

4 4 0.57 0.73 0.78
3 0.55 0.65 0.75
2 0.53 0.60 0.65
1 0.50 0.54 0.58

5 4 0.30 0.48 0.70
3 0.14 0.32 0.55
2 0.12 0.30 0.48
1 0.10 0.28 0.45

6 4 0.50 0.60 0.75
3 0.30 0.50 0.60
2 0.12 0.30 0.50
1 0.03 0.15 0.30

7 4 0.10 0.60 0.70
3 0.05 0.50 0.60
2 0.03 0.30 0.55
1 0.01 0.10 0.50
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Table 2
Simulation results for the MTDS method and the CRM used within schedule 4.
For each (dose,schedule) pair, column (a) gives the selection percentage and
column (b) gives the mean number of patients assigned to the pair. Boldface
values correspond to pairs with toxicity probability between 0.20 and 0.40.

Dose (mg/m2)
8 16 24

Scenario Method Schedule (a) (b) (a) (b) (a) (b)
1 MTDS 4 0.02 3.5 0.16 10.1 0.44 13.1

3 0.01 2.6 0.06 6.4 0.25 11.4
2 0.00 1.6 0.00 3.5 0.05 6.5
1 0.00 1.0 0.00 0.1 0.00 0.3

CRM 4 0.47 30.6 0.31 17.8 0.19 10.3

2 MTDS 4 0.17 8.6 0.08 5.7 0.00 0.2
3 0.10 6.7 0.29 11.7 0.01 1.3
2 0.00 2.8 0.19 10.6 0.13 8.7
1 0.00 1.1 0.00 0.5 0.03 2.2

CRM 4 0.66 41.2 0.18 12.1 0.00 0.4

3 MTDS 4 0.01 2.9 0.00 0.5 0.00 0.0
3 0.06 6.1 0.01 1.6 0.00 0.0
2 0.26 13.7 0.14 9.9 0.01 1.7
1 0.03 3.3 0.19 7.3 0.29 12.4

CRM 4 0.03 15.6 0.00 1.1 0.00 0.0

4 MTDS 4 0.00 0.8 0.00 0.0 0.00 0.0
3 0.00 1.7 0.00 0.2 0.00 0.0
2 0.00 3.7 0.00 2.0 0.00 0.2
1 0.08 11.1 0.02 5.1 0.00 3.7

CRM 4 0.01 13.8 0.00 0.5 0.00 0.0
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Table 2 (continued)

Dose (mg/m2)
8 16 24

Scenario Method Schedule (a) (b) (a) (b) (a) (b)
5 MTDS 4 0.19 8.8 0.04 3.7 0.00 0.1

3 0.09 6.5 0.19 9.7 0.00 0.7
2 0.01 3.4 0.24 12.3 0.06 5.8
1 0.00 1.4 0.09 3.1 0.08 4.6

CRM 4 0.72 43.2 0.15 11.0 0.00 0.2

6 MTDS 4 0.09 6.9 0.00 0.9 0.00 0.0
3 0.32 12.9 0.03 3.2 0.00 0.2
2 0.13 9.3 0.29 15.0 0.01 3.0
1 0.00 1.2 0.00 1.4 0.11 6.1

CRM 4 0.08 20.6 0.00 1.7 0.00 0.0

7 MTDS 4 0.03 6.1 0.01 2.2 0.00 0.0
3 0.00 2.7 0.09 8.3 0.00 0.4
2 0.00 1.5 0.54 20.9 0.01 5.3
1 0.00 1.0 0.13 3.5 0.19 8.2

CRM 4 0.77 40.1 0.23 19.6 0.00 0.2
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Table 3
Summary statistics for the MTDS and CRM designs under each scenario.

S c e n a r i o
Method 1 2 3 4 5 6 7

Probability of Selecting MTDS 0.87 0.81 0.88 n/a 0.71 0.72 0.54
an Acceptable Dose CRM 0.97 0.66 0.00 n/a 0.72 0.00 0.00

Probability of Selecting MTDS 0.00 0.00 0.01 0.90 0.00 0.00 0.00
No Dose CRM 0.03 0.16 0.97 0.99 0.13 0.92 0.00

Mean Number of MTDS 60.0 60.0 59.5 28.7 60.0 60.0 60.0
Patients Enrolled CRM 58.7 53.6 16.7 14.3 54.5 22.4 59.9

Observed Incidence MTDS 0.22 0.29 0.34 0.54 0.31 0.31 0.33
of Toxicity CRM 0.25 0.34 0.55 0.58 0.34 0.51 0.27
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Table 4
Simulation results for scenario 5 under different time to toxicity distributions. For
each (dose,schedule) pair, column (a) gives the selection percentage, and column

(b) gives the mean number of patients assigned to the pair. Boldface values
correspond to pairs with cumulative toxicity probability between 0.20 and 0.40.

Dose (mg/m2)
Time-to-Event 8 16 24

Distribution Schedule (a) (b) (a) (b) (a) (b)

Exponential 4 0.19 8.8 0.04 3.7 0.00 0.1
3 0.09 6.5 0.19 9.7 0.00 0.7
2 0.01 3.4 0.24 12.3 0.06 5.8
1 0.00 1.4 0.09 3.1 0.08 4.6

Weibull 4 0.25 9.4 0.03 2.0 0.00 0.0
3 0.11 8.4 0.16 7.5 0.00 0.2
2 0.03 4.4 0.20 11.7 0.03 4.0
1 0.00 2.2 0.12 4.9 0.08 4.9

Lognormal 4 0.18 9.0 0.07 5.5 0.00 0.1
3 0.07 5.7 0.17 9.3 0.00 1.2
2 0.01 2.9 0.27 12.2 0.04 6.6
1 0.00 1.2 0.07 1.9 0.10 4.4
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