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Survival Data with High-Dimensional

Covariates

Sijian Wang, Bin Nan, Ji Zhu, and David G. Beer

Abstract

Recent interest in cancer research focuses on predicting patients’ survival by in-
vestigating gene expression profiles based on microarray analysis. We propose
a doubly penalized Buckley-James method for the semiparametric accelerated
failure time model to relate high-dimensional genomic data to censored survival
outcomes, which uses a mixture of L1-norm and L2-norm penalties. Similar to
the elastic-net method for linear regression model with uncensored data, the pro-
posed method performs automatic gene selection and parameter estimation, where
highly correlated genes are able to be selected (or removed) together. The two-
dimensional tuning parameter is determined by cross-validation and uniform de-
sign. The proposed method is evaluated by simulations and applied to the Michi-
gan squamous cell lung carcinoma study.
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Summary. Recent interest in cancer research focuses on predicting patients’ survival by

investigating gene expression profiles based on microarray analysis. We propose a doubly

penalized Buckley-James method for the semiparametric accelerated failure time model to

relate high-dimensional genomic data to censored survival outcomes, which uses a mixture

of L1-norm and L2-norm penalties. Similar to the elastic-net method for a linear regression

model with uncensored data, the proposed method performs automatic gene selection and

parameter estimation, where highly correlated genes are able to be selected (or removed)

together. The two-dimensional tuning parameter is determined by cross-validation and uni-

form design. The proposed method is evaluated by simulations and applied to the Michigan

squamous cell lung carcinoma study.
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1 Introduction

Microarray technologies, including cDNA and oligonucleotide arrays, simultaneously obtain

thousands of gene expressions for each sample. Although a large number of genes are believed

to be mostly inactive, there are many genes whose activities are associated with various

physiological or environmental effects. An interesting and important task in analyzing human

genomic data is to relate gene activities to phenotypic or clinical information.

The work of this article is motivated by the analysis of lung cancer using oligonucleotide

arrays that initially involved the examination of lung adenocarcinomas (Beer et al., 2002),

which has been more recently expanded to squamous cell carcinomas of the lung (Raponi et

al., 2006). These tumors are strongly associated with tobacco use and along with adenocar-

cinomas account for the majority of non-small cell type lung cancer. Since histopathology

is insufficient for prediction of disease progression and clinical outcomes in patients with

both types of non-small cell type lung cancer, a goal of this study is to predict patients’

survival utilizing gene expression data among 129 patients who presented with squamous

cell carcinomas of the lung (Raponi et al., 2006). The RNA from each patient’s tumor is ex-

amined using Affymetrix 133A microarrays containing over 22,000 probe sets. The patients

are randomly divided into two groups: a training set with 65 patients and a test set with 64

patients. We want to select relevant genes from the training set and then use these genes to

predict survival for patients in the test set.

In the past few years, there has been extensive research on applications of microarray

data to cancer studies. Many investigators have developed methods to predict cancer classes

using gene expression data, and demonstrated that analyzing microarray data can be very

helpful and promising in cancer research, see e.g. Alon et al. (1999), Golub et al. (1999),

Alizadeh et al. (2000), Garber et al. (2001), and Sorlie et al. (2001). There has also

been active methodological research in relating gene expression profiles to censored survival
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phenotypes. In addition to the challenge of high dimensionality of the gene expression data

that all statistical methods need to deal with, another major challenge is the incomplete

survival outcome due to limited follow-up time in such studies. While much work is based

on the Cox model (e.g. Tibshirani, 1997; Li and Luan, 2003; Li and Gui, 2004; Li and Li,

2004; Gui and Li, 2005), other survival models have also be applied to the gene expression

data. Among those, Ma, Kosorok and Fine (2006) studied the additive hazards model and

Huang, Ma and Xie (2006) studied the accelerated failure time model.

In a classical regression setting, parameters of interest are often estimated by maximizing

(or minimizing) an objective function, e.g. the partial likelihood function for the Cox model.

Let p be the number of genes and n be the sample size of the training set. When p > n,

regularization techniques are needed, in other words, the objective function needs to be

penalized.

For censored survival data, Li and Luan (2003) investigate the L2-norm penalized partial

likelihood estimation based on the Cox model, where the penalty term is
∑p

j=1 β2
j , β is a p-

dimensional parameter of interest (relative hazards in the Cox model). This method include

all variables and does not provide a way of selecting a small set of relevant genes. Tibshirani

(1997), Gui and Li (2005), and Park and Hastie (2006) propose the LASSO method that uses

the L1-norm penalty
∑p

j=1 |βj| to the partial likelihood function. Tibshirani (1997) uses the

quadratic programming method for the optimization, Gui and Li (2005) use a modification

of the LARS algorithm by Efron et al. (2004), and Park and Hastie (2006) propose the

predictor-corrector algorithm for convex optimization that generalizes the LARS algorithm.

However, the L1-norm penalty suffers from two drawbacks (Zou and Hastie, 2005):

1. When there are several genes that share one biological pathway, it is possible that

their expression levels are highly correlated. The L1-norm penalty, however, can usually only

select one gene. The ideal method should be able to automatically select the whole group of
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relevant and yet highly correlated genes while eliminating trivial ones.

2. As shown in Rosset, Zhu, Hastie (2004), the L1-norm penalty can select at most n,

the sample size, input variables. But for microarray data, the sample size n is usually on the

order of 10s or 100s, while the number of attributes p is typically on the order of 10,000s. So

claiming that no more than n genes are involved in a complicated biological process seems

to be unrealistic for many biomedical studies. The ideal method should be able to select an

arbitrary number of genes relevant to the clinical outcome.

On the other hand, for censored survival data, a linear regression model is a viable

alternative to the Cox model, because it models failure time directly and thus has a simpler

and more intuitive interpretation. Let Ti be the random failure time and Xi be the covariate

vector for subject i, then

g(Ti) = α + X ′
iβ + εi, i = 1, . . . , n, (1)

where g is a pre-specified monotone function, εi is the error term with an unknown distrib-

ution that is assumed to have zero mean and bounded variance and be independent for all

i. When g(·) = log(·), the above model is called the accelerate failure time (AFT), see e.g.

Kalbfleisch and Prentice (2002).

When Ti are subject to right censoring, Huang and Harrington (2005) applied the partial

least squares (PLS) method based on the Buckley-James estimating equation to estimate

the covariates’ effects. But similar to the principle component approach, their method in

fact involves all the genes for prediction and can not directly specify relevant genes that are

associated with survival time. Huang et al. (2006) proposed a regularized method for the

above linear model based on an inverse probability of censoring weighted loss function.

In this article, we propose a doubly penalized Buckley-James method for variable se-

lection, parameter estimation and prediction for survival time using high-dimensional gene

expression data. It extends the elastic-net regression for linear models developed by Zou
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and Hastie (2005) to right censored survival data. It has several attractive features that

make it a proper tool for analyzing microarray data with survival outcomes. First, it carries

out variable selection and estimation simultaneously. It selects genes that are most relevant

to the survival outcome, and excludes all other genes from the analysis. Secondly, it can

select an arbitrary number of genes with non-zero coefficients, which is more flexible than

using only the L1-norm penalty. Thirdly, it automatically selects highly correlated genes

altogether that are likely to be in the same biological pathway. This feature not only helps

us possibly understand biological processes more clearly, but also very much improves the

prediction performance. Furthermore, in contrast to the usual belief that the intercept α is

not estimable, we conjecture that α can be consistently estimated by relaxing the commonly

used assumption of bounded covariate support, which is supported by our simulation stud-

ies. Theoretical verification is still under exploration. We also introduce the uniform design

method of Fang and Wang (1994) for selecting multi-dimensional tuning parameters, which

is much more efficient than the simple grid search that is commonly used in the literature.

The rest of the article is organized as follows. In Section 2, we introduce the doubly

penalized Buckley-James method for model (1), and discuss the intercept estimation. In

Section 3, we introduce the method of selecting tuning parameters by using the uniform

design. We present simulation studies in Section 4, and report the analysis of the Michigan

squamous cell lung carcinoma study in Section 5. We provide a discussion in Section 6.

2 Doubly Penalized Buckley-James Method

2.1 Buckley-James Method

The linear model plays a fundamental role in statistical analysis. Even when p < n, the

situation we consider in this subsection, however, the least squares approach can not be

directly applied when the response variable is subject to censoring. In the past three decades,

4
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many researchers (Miller, 1976; Buckley and James, 1979; Koul et al., 1981, among many

others) extended the least-square principle in order to accommodate censoring. Later, the

rank based estimating method drew great attention, see e.g. Tsiatis (1990) and Wei et

al. (1990). Ritov (1990) establishes the equivalence of the Buckley-James method and the

weighted ranked based method, and Tsiatis (1990), Ritov (1990), Lai and Ying (1991) and

Ying (1993) provide the asymptotic properties of either the rank based estimator or the

Buckley-James estimator. A nice summary can be found in Chapter 7 of Kalbfleisch and

Prentice (2002). Wei (1992) discussed some advantages of the Buckley-James method over

the Cox regression model, including simpler interpretation and better fits for some data sets.

For notational simplicity, here let Ti denote the transformed failure time, e.g. the loga-

rithm of the failure time. Then model (1) becomes

Ti = α + X ′
iβ + εi, i = 1, . . . , n. (2)

When Ti is subject to right censoring, we can only observe (Yi, δi, Xi), where Yi = min(Ti, Ci),

Ci is the transformed censoring time by the same transformation for Ti, and δi = 1{Ti≤Ci} is

the censoring indicator. Suppose we observe a random sample of n observations (Yi, δi, Xi),

i = 1, . . . , n.

If there is no censoring, the least squares method can be applied to estimate the parame-

ters in model (2). For censored data, the key idea of the Buckley-James method is to recover

those censored Ti by their conditional expectations given corresponding censoring times and

covariates. This is the same idea as the single imputation of Little and Rubin (2002). Define

the “imputed” failure time Y ∗
i as

Y ∗
i = Yiδi + E(Ti|Ti > Yi, Xi)(1− δi). (3)

Clearly Y ∗
i = Ti if δi = 1 and Y ∗

i = E(Ti|Ti > Yi, Xi) when δi = 0. Absorbing the unknown
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intercept α into εi in model (2) and set the new error term to be

ξi = α + εi = Ti −X ′
iβ,

with the true β, the quantity E(Ti|Ti > Yi, Xi) for a censored subject i can be calculated by

E(Ti|Ti > Yi, Xi) = X ′
iβ + E(ξi|ξi > Yi −X ′

iβ)

= X ′
iβ +

∫ ∞

Yi−X′
iβ

tdF (t)

1− F (Yi −X ′
iβ)

, (4)

where F is the distribution function of ξ = T − X ′β in which the intercept is absorbed.

That Xi disappears from the conditional expectation of ξ is due to a common assumption of

independence between the error term and covariates in linear regression. Buckley and James

(1979) substitute the above F by its Kaplan-Meier estimator F̂ in order to estimate β. Then

the least squares method can be applied to the following regression model

Y ∗
i = α + X ′

iβ + ε∗i , (5)

where ε∗i are independent with zero mean.

Denote Y ∗ = (Y ∗
1 , Y ∗

2 , . . . , Y ∗
n )′, X∗

i = Xi − X̄, where X̄ =
∑n

i=1 Xi/n, and X∗ =

(X∗
1 , X

∗
2 , . . . , X

∗
n)′. Then the least squares estimator of β in model (5) is

β̂ = (X∗′X∗)−1X∗′Y ∗. (6)

The final solution requires an iterative procedure since Y ∗
i defined in (3) contain β. When

the iterated algorithm converges, the intercept α can be estimated by α̂ = Ȳ ∗ −∑p
i=1 X̄ ′

iβ̂,

where Ȳ ∗ =
∑n

i=1 Y ∗
i /n. Clearly whether α can be consistently estimated directly affects

the prediction of survival time for additional independent samples.

2.2 Estimation of Intercept

Buckley and James (1979) claim that the intercept can not be estimated consistently due

to the existence of censoring. In some of their simulations, however, Schneider and Weiss-

feld (1986) and Heller and Simonoff (1990) find that the intercept can be estimated quite

6
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well using the Buckley-James method. Based on the work of Susarla and Ryzin (1980),

we conjecture that the intercept can be consistently estimated when the supports of some

covariates are not restricted to finite intervals, which seems suitable to the gene expression

data. Detailed discussion is given below.

Let ηi = Ci −X ′
iβ. For the true β, it is clear from model (2) that the intercept α is the

mean of survival time ξi = Ti −X ′
iβ that is subject to right censoring. Hence α needs to be

estimated from the “observed” data (ξi∧ηi, δi), i = 1, . . . , n, here ξi∧ηi = min(ξi, ηi). We put

quotes on the word observed because β is actually unknown and thus (ei, δi) are not really

observed. Susarla and Ryzin (1980) provide a set of sufficient conditions for consistence and

asymptotic normality of a mean survival time estimator, and this estimator is equivalent to

the Buckley-James estimator shown by Susarla, Tsai and Ryzin (1984). The fundamental

assumption of Susarla and Ryzin (1980), in our notation, is

τ = sup{t|t is in the support of ξ}

≤ sup{t|t is in the support of η}. (7)

The above assumption may be violated if ξ and η are replaced by T and C, respectively,

because the maximum follow-up time for a biomedical study is often much shorter than the

lifespan of study subjects. If the supports of some covariates with nonzero coefficients in

model (2) are not bounded, then the supports of both ξ and η are dominated by the support

of those covariates and hence (7) is satisfied. Special care is needed when β is replaced by

its estimator β̂. The theoretical issues of estimating β and α under the relaxed assumption

on covariates will be discussed elsewhere. The results of the following simulation studies

provide numerical evidence to support our conjecture.

Consider the following model

T = 2 + 1×X + ε, (8)
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where ε ∼ N(0.0.52). Four different settings of the support of x are investigated. In the

first model, X ∼ N(0, 1.96/3); in the second model, X ∼ U(−1, 1); in the third model

X ∼ U(−0.5, 0.5); and in the fourth model, X ∼ U(−0.25, 0.25). The censoring distribution

is C ∼ U(0, 4) ∧ V , here V is the truncation time. For the first two models, we tried four

different V : 1, 1.5, 2, and 3. For last two models, we tried three different V : 1.5, 2, and

3. We drop V=1 because it yields a very high censoring rate that causes numerical trouble.

For each setting, we simulated 1000 runs with a sample size of 500. The simulation results

are summarized in Table 1.

The first setting corresponds to unbounded covariate support, and it is clearly seen that

the bias of the intercept estimator is minimal even for a very short follow-up time. The bias

of the intercept estimator exists in other three settings that have finite covariate supports,

but is diminishing with wider covariate support and extended follow-up time. It suggests

that the intercept estimator can be numerically satisfactory if covariates have wide support,

even though the unbounded covariate support is required by theory. The bias for the slope

parameter β is minimal across all simulation settings.

2.3 Buckley-James Method with Double Penalization

In microarray data analysis, the number of covariates p is usually much greater than the

sample size n, and the classical Buckley-James method fails since the estimation for β in

model (5) is not unique. So some regularization is needed to obtain a stable estimator of

β with smaller prediction error. We propose a modified Buckley-James approach by using

penalized least squares with both the L1-norm and the L2-norm penalty terms. To be

specific, we consider the following minimization problem

min
β

1

2

n∑
i=1

(Y ∗
i −X∗′

i β)2 + λ1

p∑
j=1

|βj|+ λ2

p∑
j=1

β2
j , (9)

8
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where λ1 and λ2 are prespecified constants and are called the tuning parameters in the

machine learning field.

This type of regularization method with double penalties was originally developed by

Zou and Hastie (2005) for linear models with uncensored data. They called it the elastic-net

regression. By using the mixture of the L1-norm and the L2-norm penalties, it combines

good features of the two. Similar to the regression with the L1-norm penalty, the elastic-net

method simultaneously performs automatic variable selection and continuous shrinkage. The

added advantages by including a L2-norm penalty are that groups of correlated variables now

can be selected together and the number of selected variables is no longer limited by n. The

proposed doubly penalized Buckley-James method extends these good features to the linear

regression with censored data. Following are the major steps of the algorithm for a given

pair of (λ1, λ2).

Algorithm. Doubly Penalized Buckley-James method

1. Initialize β = β(0).

2. At the m-th iteration,

(a) compute

Y ∗
i = δiYi + (1− δi)

{
X ′

iβ
(m−1) +

∫ ∞

Yi−X′
iβ

(m−1)

tdF̂ (t)

1− F̂ (Yi −X ′
iβ

(m−1))

}
;

(b) compute β(m) by

min
β

1

2

n∑
i=1

(Y ∗
i −X∗′

i β)2 + λ1

p∑
j=1

|βj|+ λ2

p∑
j=1

β2
j ; (10)

(c) stop the iteration if |β(m) − β(k)| < ε for some k ∈ {0, 1, . . . , m − 1}, here ε is a

prespecified precision.
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3. When convergence is claimed, rescale β̂ obtained from the last iteration to be (1+λ2)β̂,

and compute α̂ = Ȳ ∗ −∑p
i=1 X̄ ′

iβ̂.

The optimization in Step 2(b) is a standard elastic-net problem and can be carried out

by the method of Zou and Hastie (2005). The stopping rule given in Step 2(c) considers

possible oscillation among iterations, a common problem of the Buckley-James method due

to the discontinuity feature of the estimating function for β caused by the Kaplan-Meier

estimator. When oscillation occurs, the current solution can be chosen as the final solution,

see e.g. Huang and Harrington (2006). The final rescale step is very important. We can

see in step 2(b) that β is doubly shrunken by both the L1-norm and the L2-norm penalties.

This double shrinkage actually introduces unnecessary extra bias comparing to using either

the L1-norm or the L2-norm penalty only. Following Zou and Hastie (2005), we rescale β̂ by

multiplying the amplifying factor 1 + λ2.

Similar to the elastic-net method for the linear regression, the doubly penalized Buckly-

James model can select correlated genes, and the number of selected genes can exceed the

sample size.

3 Tuning Parameter Selection

In practice, it is important to select appropriate tuning parameters λ1 and λ2 in order

to obtain a good prediction precision. It is anticipated that the computing cost for the

optimization in Subsection 2.3 is high. Thus an efficient way of choosing (λ1, λ2) is of

particular interest, given that the Buckley-James method may involve a lot of iterations. A

commonly used method is to specify a fine two-dimensional grid that covers a desirable wide

range of (λ1, λ2) uniformly, then use either a separate validation data set or cross-validation

to search all the points on the grid for the optimal pair of (λ1, λ2). But this equi-lattice

search method is very inefficient. Another approach is to search the optimal λ1 for a fixed
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λ2, and then search the optimal λ2 by fixing λ1 at the previously found point. This method

is computationally more efficient, but it is very easy to miss the optimal pair of (λ1, λ2) in

the two-dimensional search region due to the nonuniform feature of the searched points.

We propose to use the uniform design approach of Fang and Wang (1994) to generate

candidate points of (λ1, λ2). The method actually works for a tuning parameter with arbi-

trary dimension. Let D be the search region. Using the concept of discrepancy that measures

uniformity on D ⊂ Rd with arbitrary dimension d, d = 2 for our case, which is basically

the Kolmogorov statistic for a uniform distribution on D, Fang and Wang (1994) point out

that the discrepancy of the good lattice point set from a uniform design converges to zero

with a rate of O(m−1(log m)d), here m (a prime number) denotes the number of generated

points on D. They also point out that the sequence of equi-lattice points on D has a rate

of O(m−1/d) and the sequence of uniformly distributed random numbers on D has a rate

of O(m−1/2(log log m)1/2). Thus the uniform design has an optimal rate when d ≥ 2. Fang

and Wang (1994) provide useful tables of the uniform design in Appendix A, which makes

it trivial to implement their method.

For uncensored data, cross-validation (CV) and generalized cross-validation (GCV) are

commonly used to choose tuning parameters from a set of candidate points. For survival data,

O’Sullivan (1988) and Nan et al. (2005) propose CV and GCV for choosing the smoothing

parameter for the smoothing spline estimator. To choose the smoothing parameter, they

suggest recording the derived dependent variables and covariates at the last iteration step

and treating them as a linear regression problem. Then GCV for linear models can be applied

to evaluate the current smoothing parameter. Following the same idea, we derive GCV for

doubly penalized Buckly-James model.

Given a pair of λ1 and λ2, we fit the doubly penalized Buckley-James model. Let α̂, β̂,

and Y ∗
i be the values obtained in the last iteration. Assuming β̂s1 , . . . , β̂sm are non-zero, and
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other β̂j’s are all zero. Let X0 be the matrix consisted of columns s1, . . . , sm in X, which

are corresponding columns for non-zero β̂j’s. Denote q = Trace(X0(X
′
0X0 + λ2I)−1X ′

0) that

is discussed in Zou, Hastie and Tibshirani (2005), then GCV is given by

GCV =
n∑

i=1

(Y ∗
i − α̂−X ′

iβ̂)2/(n− q)2.

We calculate GCV for each pair of (λ1, λ2) determined by the uniform design, and then select

the one that yields the smallest GCV.

4 Simulation Studies

In this section, we assess the group selection feature and the prediction performance of the

proposed doubly penalized Buckley-James method by simulation studies.

4.1 Group Selection of Correlated Covariates

The purpose of this simulation is to show that the doubly penalized Buckley-James method

tends to select highly correlated and predictable covariates in groups. We consider two

examples with the same simulation settings studied by Zou and Hastie (2005) for censored

survival data. For both examples, the logarithm of true survival time is simulated by

T = Xβ + σε, ε ∼ N(0, 1). (11)

In the first example, we choose σ = 15 and generate 50 observations and 40 covariates for

each simulated data set. The coefficients are set to be βj = 3 when 1 ≤ j ≤ 15 and βj = 0

when j ≥ 16. The covariates are generated as follows:

εx
j ∼ N(0, 0.01), j = 1, . . . , 15,

Xj = Z1 + εx
j , Z1 ∼ N(0, 1), j = 1, . . . , 5

Xj = Z2 + εx
j , Z2 ∼ N(0, 1), j = 6, . . . , 10

12
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Xj = Z3 + εx
j , Z3 ∼ N(0, 1), j = 11, . . . , 15

Xj ∼ N(0, 1), j = 16, . . . , 40.

The logarithm of censoring time C is generated from a uniform distribution U(−τ, τ), where

τ is chosen to yield 50% censoring rate. The observed log transformed survival time is

Y = T ∧ C.

The second example has the same setting as the first one except p > n. We now choose

100 observations with 120 covariates. Again only the first 15 elements of β are equal to 3,

and the rest are equal to 0.

In each example, we have three equally important groups that are related to survival

time, and there are five covariates within each group. An ideal variable selection method

would keep only the first 15 covariates and set the coefficients of all others to be 0.

For both examples, 200 runs are simulated. For each covariate, we evaluate the frequency

of being selected among 200 simulation runs and the sample average of its coefficient. Due

to space limitation, we only summarize the intercept and the first 15 slope parameters in

Table 2. In the first example, 95 percent of the rest 25 variables are selected less than 41

times, and 95 percent of their estimates are within the range (-0.1495, 0.1159). In the second

example, 95 percent of the rest 105 variables are selected less than 41 times, and 95 percent

of their estimates are within the range (-0.0568, 0.0580). We see from this simple simulation

study that the doubly penalized Buckley-James method is able to select highly correlated

and predictable covariates in groups.

4.2 Comparisons to Other Regularization Methods

In this Subsection, we conduct a simulation study to compare the doubly penalized Buckley-

James method to either the L1-norm or the L2-norm penalized Buckley-James method.

The log transformed survival times are also generated from model (11). Log transformed
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censoring times are generated from a uniform distribution that yields 50% censoring rate.

Since the true survival time for each subject is available in simulated data, we use the relative

prediction error (RPE) obtained from an independent test data set to evaluate the prediction

performance, where RPE ≈ (1/n)
∑n

i=1(Ti −X ′
iβ̂)2/σ2 and β̂ is obtained from the training

data set.

For each of the following simulations, we generate an independent validation data set

to choose tuning parameter(s). So in fact we generate three independent data sets for

each simulation: a training set for model fitting, a validation set for tuning parameter

selection, and a test set for RPE calculation. Their corresponding sample sizes are denoted

as (n1, n2, n3).

Four examples are considered. The first two examples have the same settings as that

in Tibshirani (1996) with an exception that we consider censored data here. The last two

examples consider situations with several groups of correlated covariates.

Example 1 considers a few large effects with sample sizes (50,50,400) for the three data

sets . We choose β = (3, 1.5, 0, 0, 2, 0, 0, 0) and σ = 3. The pairwise correlation between two

predictors Xj1 and Xj2 is ρ(j1, j2) = 0.5|j1−j2|.

Example 2 considers many small effects with sample sizes (50,50,400). The only difference

to method 1 is that βj = 0.85 for all j.

Example 3 considers a group of highly correlated covariates in the case of p > n with

sample sizes (100, 100, 400). This example has the same setting as the second example in

the previous subsection.

Example 4 considers two groups of moderate correlated covariates in the case of p > n

with sample sizes (100, 100, 400). As in Example 3, we also have 120 predictors. We choose

σ = 5 and set the first six slope parameters to be (3, 3, 2, 3, 3, 2) and all other 114 slope

parameters to be zero. The first three covariates consist of a group and the next three
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consist of another group. Within each group, the pairwise correlation between any two

predictors Xj1 and Xj2 is 0.5. Unlike Example 3, the coefficients within each group are set

to be unequal.

Due to the computing limitation, we conduct 200 simulation runs for Examples 1 and 2

and 50 simulation runs for Examples 3 and 4. The RPE values and corresponding standard

deviations are listed in Table 3. We can see that in all examples, the doubly penalized

Buckley-James method has not only the smallest RPE but also the smallest standard devi-

ation.

5 Squamous Cell Lung Carcinoma Data Analysis

The goal of the Michigan squamous cell lung carcinoma study is to predict the survival

of early-stage lung cancer patients using microarray gene expression data. The study has

enrolled 129 subjects with squamous cell lung carcinoma. RNA samples are analyzed by

using Affymetrix U133A microarray chips. Subjects are divided into a training set that

has 65 subjects and a test set that has 64 subjects. We use the proposed doubly penalized

Buckley-James method to select relevant genes from a linear model based on the training

set, and then use the model to predict survival for subjects in the test set.

Gene expression values are log transformed. Those genes with very low expression levels

or very small variabilities are excluded. This step is done by the Bioconductor package

“genefilter”. Then the rest of the genes are assessed by running univariate AFT models

using the Buckley-James method, and 1000 genes with the smallest p-values are selected.

Starting with these 1000 genes, the AFT model fitted by the proposed doubly penalized

Buckley-James method has selected 59 probe sets using the training set, see Table 4. Tuning

parameters are determined by the method of uniform design and the generalized cross-

validation described in Section 3. We start with 233 points in the region [10, 200]×[0.001, 100]
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http://biostats.bepress.com/umichbiostat/paper62



for the tuning parameters λ1 and λ2, where λ2 is uniformly spread using the uniform design

on the log scale. The optimal pair of tuning parameters determined by the training set is

(λ1, λ2)opt = (18.56, 9.54). Among those 59 probe sets, there are 4 duplicated genes and 5

anonymous probe sets.

The model with these selected 59 probe sets is then used to predict the survival times

for subjects in the test set. A subject is assigned to the high risk group if the predicted

survival time is less than 3 years, or to the low risk group if the predicted survival time is

no less than 3 years. Kaplan-Meier curves for these two groups are plotted in the left panel

of Figure 1. We can see that the two curves are separated well. The log rank test yields a

p-value of 0.02.

We have also analyzed the data using the Cox model. Instead of fitting univariate AFT

models by the Buckley-James method, we fit univariate Cox models to select 1000 genes

to start with. We then fit a Cox model by using the doubly penalized partial likelihood

with both the L1-norm and the L2-norm penalties, which minimizes the following objective

function for β:

− log
n∏

i=1

{
exp(X ′

iβ)∑n
k=1 1{Yk≥Yi}exp(X ′

kβ)

}δi

+ λ1

p∑
j=1

|βj|+ λ2

p∑
j=1

β2
j .

An iterative approach is used for solving the above optimization problem. At each iteration,

the partial likelihood is linearized and then the elastic-net method is applied.

The doubly penalized Cox model has selected 204 genes using the training set. The

cumulative baseline hazard function is estimated by the Breslow estimator. Then survival

probabilities for subjects in the training set are calculated and the risk score X ′β̂ that yields

a 50% survival probability at 3 years is chosen to be the threshold for high/low risk groups.

Kaplan-Meier curves for the two groups classified by such a threshold in the test set are

plotted in the right panel of Figure 1. The p-value of the log rank test is 0.03.
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From Figure 1 we see that the doubly penalized Buckley-James method uses less number

of genes to yield a similar separation of the high/low risk groups in the test set. These two

methods achieve agreements on 49 out of 64 subjects in terms of risk group assignments.

Among the 59 genes selected by the doubly penalized Buckley-James method, 44 are also

selected by the doubly penalized partial likelihood approach.

Several of the genes identified using the proposed method are consistent with prior analy-

sis of survival-related genes in squamous cell carcinoma lung cancer. The increased expression

of the tyrosine kinase FGFR2 was observed to be associated with better survival (Raponi et

al., 2006), which is also demonstrated in this study. The biological basis for this relationship

is not established however the role of fibroblast growth factor signaling is associated with nor-

mal lung development and the interaction between the epithelial and mesenchymal-derived

cellular components of the lung (De Langhe et al., 2006). Loss or decreased expression

of FGFR2 may allow lung squamous carcinoma cells to escape from this interaction and

affect differentiated function or cell proliferation. In analysis of the other main type of non-

small cell lung cancer namely lung adenocarcinomas, the increased expression of both KRT7

(Gharib et al., 2002) and the angiogenic molecule VEGF (Beer et al., 2002; Gharib et al.,

2004) at the mRNA and protein levels were investigated and shown to be related to poor pa-

tient outcome. Both genes in the present study are also associated with increased expression

and a reduced survival consistent with these earlier studies. Interestingly, increased expres-

sion of several of the other genes including DNA methyltransferase (DNMT3B), dynamin

2 (DNM2) and DNA polymerase delta (POLD3) are suggestive of more DNA replication

and thus more highly proliferative tumors and observed in the present study to demonstrate

increased expression in patient’s tumors with reduced survival. Additional studies will be

required to establish the direct relationships between the expression of these genes and tumor

behavior in squamous cell carcinomas of the lung.

17

http://biostats.bepress.com/umichbiostat/paper62



6 Discussion

A set of regularity conditions needs to be developed for the consistent estimation of the

intercept parameter in the linear model for censored survival data. A relaxation of the

requirement of bounded support for covariates will affect the existing asymptotic theory for

the slope estimators developed by Tsiatis (1990), Ritov (1990), Lai and Ying (1991), and

Ying (1993), and a uniform extension of Susarla and Van Ryzin (1980) is important for

obtaining an intercept estimator with nice asymptotic features. All these theoretical issues

are under investigation and will be presented elsewhere.

A possible alternative approach of estimating the slope parameters is to use the rank

based estimating equations. When p < n, using Gehen weights yields a monotone rank based

estimating function that is an important feature for developing sound numeric algorithms.

Penalized method is needed for the situation that p > n, however. Then an interesting

question would be: how to construct an objective function using the rank based approach,

which allows utilizing the L1-norm and the L2-norm penalties and yet still can be optimized

by a feasible numerical algorithm.
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Table 1: Intercept and slope estimation for four univariate Buckley-James models with
different covariate support.

Truncation Censoring Empirical mean Empirical mean

time rate (std. dev.) for α̂ (std. dev.) for β̂

X ∼ N(0, 1.96/3)

1.0 0.90 1.972 (0.071) 0.999 (0.084)
1.5 0.79 1.987 (0.071) 0.997 (0.084)
2.0 0.67 1.995 (0.045) 0.998 (0.063)
3.0 0.52 1.999 (0.032) 1.000 (0.045)

X ∼ U(−1, 1)

1.0 0.92 1.811 (0.026) 1.018 (0.037)
1.5 0.80 1.955 (0.067) 1.001 (0.103)
2.0 0.67 1.994 (0.041) 1.003 (0.067)
3.0 0.52 1.999 (0.031) 1.001 (0.052)

X ∼ U(−0.5, 0.5)

1.5 0.86 1.800 (0.063) 1.011 (0.173)
2 0.69 1.957 (0.032) 1.003 (0.118)
3 0.51 1.999 (0.032) 0.999 (0.100)

X ∼ U(−0.25, 0.25)

1.5 0.88 1.650 (0.059) 1.006 (0.310)
2 0.70 1.899 (0.031) 1.010 (0.227)
3 0.51 1.999 (0.029) 1.005 (0.196)
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Table 2: Frequency of being selected by the doubly penalized Buckley-James method for the
first 15 nonzero slopes and the summery statistics of their estimates from 200 simulation
runs.

p = 40 p = 120
Frequency Empirical mean Frequency Empirical mean

(Standard Deviation) (Standard Deviation)
α — 0.001 (2.873) — -0.008 (1.126)
β1 195 2.746 (1.119) 200 2.899 (0.589)
β2 194 2.887 (1.477) 200 2.868 (0.555)
β3 196 2.689 (1.021) 200 2.850 (0.568)
β4 195 2.744 (1.036) 200 2.869 (0.553)
β5 196 2.803 (1.179) 200 2.876 (0.567)
β6 193 2.602 (0.966) 200 2.874 (0.603)
β7 195 2.650 (1.114) 200 2.879 (0.575)
β8 192 2.583 (1.196) 200 2.873 (0.588)
β9 196 2.683 (1.115) 200 2.877 (0.584)
β10 196 2.630 (1.185) 200 2.862 (0.615)
β11 197 2.706 (0.696) 200 2.899 (0.611)
β12 191 2.620 (1.011) 200 2.875 (0.612)
β13 195 2.788 (0.966) 200 2.866 (0.602)
β14 196 2.811 (0.791) 200 2.897 (0.619)
β15 197 2.688 (0.802) 200 2.858 (0.604)
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Table 3: Comparison of different regularization methods in terms of average relative pre-
diction error (empirical standard deviation) calculated from simulated test sets, where the
Buckley-James method does not apply in Examples 3 and 4 due to p > n. BJ: Buckley-
James; DP-BJ: Doubly penalized Buckley-James; L1-BJ: L1-norm penalized Buckley-James;
L2-BJ: L2-norm penalized Buckley-James.

Example BJ DP-BJ L1-BJ L2-BJ
1 0.462 (0.279) 0.280 (0.186) 0.283 (0.196) 0.342 (0.199)
2 0.477 (0.338) 0.230 (0.146) 0.353 (0.193) 0.256 (0.160)
3 — 0.452 (0.189) 0.501 (0.210) 1.580 (0.281)
4 — 0.200 (0.103) 0.400 (0.187) 0.722 (0.179)
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Table 4: Probe set ID, Gene symbol, and estimated coefficient for each of the 59 probe sets
selected by the doubly penalized Buckley-James model based on 65 subjects in the training
set.

Probe set Gene symbol Coef. Probe set Gene symbol Coef.
218433 at PANK3 0.624 219957 at — -0.130
209220 at GPC3 0.543 210512 s at VEGF -0.137
219128 at FLJ20558 0.389 214791 at LOC93349 -0.139
211578 s at RPS6KB1 0.303 208862 s at CTNND1 -0.142
203638 s at FGFR2 0.274 212080 at MLL -0.143
214190 x at GGA2 0.201 202005 at ST14 -0.181
211084 x at PRKD3 0.159 218245 at TSK -0.182
203895 at PLCB4 0.119 204027 s at METTL1 -0.187
203639 s at FGFR2 0.101 203040 s at HMBS -0.193
208228 s at FGFR2 0.084 201003 x at — -0.211
207551 s at MSL3L1 0.068 213240 s at KRT4 -0.212
222099 s at C19orf13 0.012 212680 x at PPP1R14B -0.226
201545 s at PABPN1 -0.001 212076 at MLL -0.228
203082 at BMS1L -0.010 212836 at POLD3 -0.234
201613 s at AP1G2 -0.013 201059 at — -0.255
219217 at FLJ23441 -0.013 204385 at KYNU -0.290
218810 at FLJ23231 -0.029 202978 s at ZF -0.292
209457 at DUSP5 -0.043 209709 s at HMMR -0.329
204218 at DKFZP564M082 -0.056 209446 s at — -0.347
209016 s at KRT7 -0.057 211240 x at CTNND1 -0.380
217253 at — -0.080 202253 s at DNM2 -0.406
203545 at ALG8 -0.080 217014 s at AZGP1 -0.456
221989 at RPL10 -0.086 203431 s at RICS -0.472
200747 s at NUMA1 -0.093 51192 at SSH3 -0.486
203212 s at MTMR2 -0.094 36552 at DKFZP586P0123 -0.510
219919 s at SSH3 -0.102 219241 x at SSH3 -0.683
220668 s at DNMT3B -0.109 213700 s at PKM2 -0.762
202887 s at DDIT4 -0.118 218136 s at MSCP -0.770
212669 at CAMK2G -0.119 202471 s at IDH3G -0.914
212568 s at DLAT -0.126
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Figure 1: Lung cancer survival curves (Kaplan-Meier) of the test set high/low risk groups
classified by the doubly penalized Buckley-James method and the doubly penalized partial
likelihood method fitted from the training set: —– high risk group; - - - low risk group.
Log rank p-value = 0.02 for the doubly penalized Buckley-James method; Log rank p-value
= 0.03 for the doubly penalized partial likelihood method.
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