




1 Introduction

The recent developments in the field of functional genomics attracted much attention to
non-parametric and semi-parametric regression methods in statistics. The availability of
thousands of genomes and the microarray technology that allow measurement of gene ex-
pression of thousands of genes simultaneously generate different types of high dimensional
data (e.g., typically ∼ 30, 000 gene expression profiles in humans). Modeling of this high
dimensional data with complex interactions among variables in combination with clinical
outcomes is an important and challenging task. There is a tremendous increase in the num-
ber of microarray gene expression studies that aim to link or correlate expression of genes
with the survival of patients or time to recurrence of various types of cancers (Alizadeh et al.
(2000), Garber et al. (2001), Sorliea et al. (2001), Beer et al. (2002), Wigle et al. (2002)).
In these studies the parameter of interest is typically mean or median survival of patients
(or time to recurrence of cancer or some other event) given the expression of thousands of
genes. This recent genomic literature indicates that analysis of such high dimensional data
structures by investigating the relationship between the gene expression profiles and other
phenotypes such as survival times is very important in clinical applications.

Another type of high dimensional data structure of functional genomics that require
the attention of non-parametric and semi-parametric regression methods is the single nu-
cleotide polymorphisms (SNPs) data sets. Recently, Ruczinski et al. (2001) developed a
method called Logic Regression that is entirely motivated by the binary structure of SNPs
data. This method essentially constructs predictive boolean expressions of SNPs, that can
equivalently be represented as a tree structure) for a given phenotype outcome. In SNPs
data sets, one question of interest is, again, to link SNPs to quantitative phenotypes such
as survival of patients. Besides being high dimensional, another challenge of these data sets
is that the outcome of interest such as survival is often right censored. Motivated by these
recent developments in functional genomics, we turn our attention to model selection (and
also predictor performance assessment) with right censored data that has applications in
a variety of models such as Cox-proportional hazard model and survival trees. Given an
algorithm searching through sets of variables (covariates) and corresponding models, e.g.
regression models, we need a criteria for selecting among the corresponding predictors, and
a measure of performance for any given predictor.

Non-parametric and semi-parametric regression methods are among the most popular
methods for analyzing right censored data. Recently, non-parametric alternatives to Cox
proportional hazard model have gained importance. These methods adapt well known
regression techniques to the analysis of censored survival data. In general, the available
methods propose a sequence of regression models of increasing complexity, typically deter-
mined by a stepwise feature selection method. This sequence of models is referred to as a
sieve. The final choice of the model is determined with a particular model selection criteria.
Although the actual regression methodology for analyzing right censored data have been
extensively studied, the problem of selecting the best model or predictor among a sieve has
not gained much attention.

Our goal in this paper is to develop a model selection method to select among predictors
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of right censored outcomes in the context of prediction and density/hazard estimation prob-
lems. In particular, we propose a model selection criteria that generalizes the resampling
based cross-validated risk criteria of a given loss function used with uncensored data to cen-
sored data. This criteria uses an inverse probability of censoring weighted risk estimator.
The consistency of this estimator relies on consistent estimation of the censoring mechanism
and the condition that the uncensored data structure (where all data is observed) has a
positive probability of being completely observed. This, in particular, rules out the type-I
censoring scheme which prevents the regions of the time axis being observable no matter
what the sample size is, i.e., fixed (known) censoring times.

The method that we describe here is applicable for two different tasks (i) selecting among
a set of predictors (models) and (ii) assessing the performance of a given predictor. In the
next two subsections, we firstly give a brief overview of the available non-parametric and
semi-parametric regression methods for censored survival data (or more broadly for right
censored outcomes that measure time to occurrence of an event) and the model selection
methods used by them (task (i)). We then review some of the less technical literature on
assessing the performance of a given predictor in the context of Cox proportional hazard
model and survival trees (task (ii)).

1.1 Model selection in the context of non-parametric and semi-parametric

regression with right censored data

Some of the most commonly used regression methods for censored survival data are based
on splines or partitioning trees. In particular, Hastie and Tibshirani (1990a) and Hastie
and Tibshirani (1990b) use additive Cox-proportional hazard models that model covariate
effects with smoothing splines. Kooperberg et al. (1995) follow a polynomial spline approach
and propose a sieve of multiplicative intensity models for the hazard of survival which allows
interaction effects between covariates and with time. In these approaches, model selection
techniques such as AIC (Akaike 1973, Bozdogan 2000), BIC (Schwartz 1978) are used to data
adaptively select the best model. Several extensions of classification and regression trees,
CART (Breiman et al. 1984), have also been proposed for censored survival data. These
are sometimes referred as survival trees and can roughly be divided into two categories.
Methods in the first category use a within node homogeneity measure. Examples of such
approaches are provided in Gordon and Olshen (1985), Davis and Anderson (1989), and
Leblanc and Crowley (1992). To be more specific, for instance, Davis and Anderson (1989)
use negative log-likelihood of an exponential model for each node as a measure of split
homogeneity and the squared difference of the parent node log-likelihood and a weighted
sum of child node log-likelihoods as the split function. Methods in the second category, first
proposed by Segal (1988), use a between node homogeneity measure and a split function
based on the two sample log rank test statistic.

In essence, these methods are replacing the least squares split functions utilized by
CART in the uncensored continuous outcome setting with suitable alternatives to deal with
right censored outcomes, i.e., to evaluate risk of a given predictor based on censored data.
In summary, the available spline based regression methods for censored survival data use
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AIC or BIC or variants for model selection, whereas the tree based methods replace the least
squares split criteria with an alternative split criteria that is entirely specific to censored
data.

1.2 Predictor performance assessment with right censored survival data

In the prediction and model selection problems with uncensored data, resampling based risk
estimators that are obtained by V−fold cross-validation or Monte carlo cross-validation (re-
peated sample splitting) are commonly used (Breiman et al. 1984, Burman 1989, Shao 1993,
Zhang 1993). The performance assessment of a given predictor with uncensored outcome
is achieved by estimating its risk with respect to a user supplied loss function with the
empirical mean of the corresponding loss function over a (independent) validation sample.
Contrary to the prediction and model selection literature with the uncensored outcome, we
observe that, in general, the literature on assessing the performance of predictors with right
censored data is sparse.

There is a range of ad hoc approaches (Korn and Simon (1990), O’Quigley and Xu (2001),
Schemper and Henderson (2000)) that address the problem of quantifying the predictive
accuracy of a survival model or assessing its performance (reviewed in Schemper and Stare
(1996)). In general, these approaches attempt to provide an analogue of multiple correla-
tion coefficient R2 of linear regression models for survival models such as Cox-proportional
hazard model and survival trees. Furthermore, they do not aim to measure the performance
of a predictor on future data points, i.e., they do not intend to measure the generalization
error.

In particular, Korn and Simon (1990) define a measure of explained variation as the
proportional reduction in risk obtained by using the model for prediction over the null
model in survival time models. Authors specifically consider the limited data setting where
the explanatory variables (covariates) are fixed and propose to derive the expected loss
from estimated model based survival curves. This model based approach gives inconsistent
estimates of the expected loss if the survival model is misspecified, and moreover it is not
suited for comparing different models. Schemper and Henderson (2000) suggest a measure
of predictive accuracy and explained variation based on the mean absolute distance between
the survival process (indicator function of observed survival time) and its predictor in the
Cox proportional hazard model. In particular, an observed data loss function is used and
its consistent estimation under non-informative censoring is considered. The proposed es-
timator is inconsistent under dependent censoring and whether it can be used for model
selection under independent censoring is not discussed. Similarly O’Quigley and Xu (2001)
suggest a measure of explained variation specifically for the Cox-proportional hazard model
utilizing Schoenfeld residuals. As mentioned at the beginning of this paragraph, none of
these approaches measure the performance of a given predictor based on independent obser-
vations (future observations) and they are not suited for model selection. They are mainly
intended to provide additional summary information to complement a fitted survival model.

Our approach of assessing performance of a predictor in a censored survival model
differs from all of the above methods. We propose a method that is suitable for model
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selection and is capable of predictor accuracy assessment based on future observations.
Moreover, this approach does not depend on the model assumed for survival times (i.e.,
form of the regression model) and it handles dependent censoring. Graft et al. (1999)
propose an interesting observed data loss function based on the so called Brier score to
measure the performance of a given predictor. To accommodate independent censoring,
a weighted version of the original loss function, that results in an inverse probability of
censoring weighted loss function, is used. Their method is similar to ours in the spirit since
it can be used to measure the performance of a predictor based on observations that are
not used to build the predictor and it relies on re-weighting of the full data loss function.
The approach that we present here is much more general since it treats the risk of a given
predictor as a full data parameter and considers natural ways to estimate it based on
the observed data. Furthermore, it handles dependent censoring and extends over model
selection and predictor performance assessment in general right censored data settings.
More importantly, we provide theoretical results showing the asymptotic optimality of our
method under general conditions.

1.3 Outline of the paper

In this paper, we propose an asymptotically optimal method for model/predictor selection
with right censored outcomes. This, in particular, includes prediction problems and den-
sity/hazard estimation problems with right censored outcomes. In this method, we treat
the risk of a given predictor based on the training sample as a parameter of the full data
distribution in a censored data model. Subsequently, we utilize doubly robust locally ef-
ficient estimation methods (Robins and Rotnitzky 1992, Robins et al. 2000, Robins and
Rotnitzky 2001, van der Laan and Robins 2002) for estimating this parameter based on
the validation sample. The proposed model selection method also handles informative cen-
soring and the performance of a given predictor can be assessed consistently even when
the censoring mechanism is informative. The organization of the paper is as follows: Sec-
tion 2 introduces the new methodology and uses an inverse probability of censoring weighted
(IPCW) risk estimator that is consistent under informative censoring provided that the cen-
soring mechanism is estimated consistently. Subsequently, in Section 3 we present our main
theorem that states that under general conditions the proposed method is asymptotically
optimal and the cross-validation selector performs asymptotically as well as the benchmark
selector based on the true data generating distribution. Following this section, Section 4
presents a simulation study illustrating this result. In Section 5, we provide a detailed proof
of our result together with the lemmas required in this proof. The last section is dedicated
to discussion and in particular focuses on a doubly robust risk estimator obtained by the
general doubly robust locally efficient estimation methodology.

2 Model selection with right censored data

Data structure and model. Let T denote the survival time and define the random
variable X̄(T ) where X̄(T ) = {X(s) : 0 ≤ s ≤ T} and X(s) is a multivariate stochastic
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process evolving in time. X(s) includes, in particular, R(s) = I(T ≤ s) and the covariate
process L(s) evolving in time. The random variableX ≡ X̄(T ), that we refer as the full data
random variable, stands for everything that can be observed on a randomly selected subject
in the interval (0, T ] if the subject is not subject to censoring. We denote the distribution
of the full data by F and the general class of statistical models that F belongs to by MF .
Let W = L(0) denote a p−dimensional vector of time-independent baseline covariates. One
goal in this setting might be to build a predictor of log-survival Z = log T based on the
time-independent covariates W , which could then be used to predict the survival time of a
new incoming subject. Such a goal is not restricted to survival outcomes, in other words Z
could be any function of the full data. Some examples of the parameter of interest ψ0 are
the conditional mean E[Z | W ] or the conditional median median(Z | W ) of the outcome
Z or the marginal or conditional density of the survival time T , i.e., f(T ) or f(T |W ).

In real life applications, we often do not observe the full data but its censored version.
Let C denote the censoring time and let A(t) = I(C < t) denote the censoring process.
We will represent the observed data random variable with Y = (C,∆ = I(T ≤ C), X̄(C)).
The distribution of the observed data Y is indexed by the full data distribution F and the
conditional distribution G(· | X) of the censoring variable C given the full data X. We
will denote this observed data distribution by P . We refer to G(· | X) as the censoring
mechanism and sometimes simply denote it with G. As a convention we have C = ∞
(hence ∆ = 1) if T occurs before right censoring. The conditional hazard of the censoring
mechanism A(t) given the full data X will be denoted by λC(t | X) = E(dA(t) | Ā(t−) =
0,X). We assume that C is either discrete or continuous with respect to a Lebesgue measure,
that is λC(. | X) is either a probability or an intensity as in Andersen et al. (1993).

We assume coarsening at random (CAR) on the censoring mechanism. For the right
censored data structures, this assumption is

CAR: λC(t | X) = λC(t | X̄(t)).

Coarsening at random was originally formulated by Heitjan and Rubin (1991) and further
generalized by Jacobsen and Keiding (1995) and Gill et al. (1997). We refer to Robins
and Rotnitzky (1992) and Robins (1993) for the introduction and discussion of this CAR
definition for the right censored data structure.

Parameter of interest. We will keep our discussion of parameter of interest quite general
but will provide specific examples. In our general framework the parameter of interest is a
parameter of the full data distribution. Formally, the parameter of interest, ψ0 = ψ(. | F ), is
a mapping from the euclidean space into the real line. For example, in the regression context
the parameter of interest might be the conditional mean of the log of the survival time given
the baseline covariates, E[Z |W ], or the conditional median of the log of the survival time
given the baseline covariates, median[Z | W ]. In these two examples the euclidean space
captures the baseline covariates. Alternatively, in the context of density estimation the
parameter of interest might be the conditional density f(T |W ) of the survival time given
the baseline covariates, (or the hazard given the baseline covariates) or just the marginal
density f(T ) of the survival time. We will denote the parameter space of our parameter of
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interest by Ψ= {ψ(. | F ) : F ∈ MF }. Next, we define the parameter of interest ψ0 in terms
of a loss function, L(X,ψ). Performance of a given predictor ψ is usually quantified with a
loss function and its risk is defined as the expected loss. Our parameter of interest is one
of the minimizers of the risk or expected loss of a specified loss function. We have that

ψ0 = argminψ∈Ψ EF [L(X,ψ)],

where the choice of the loss function defines a parameter of interest (possibly non-unique).
Here, EF [L(X,ψ)] is the risk of the candidate predictor ψ. Note that the parameter of
interest minimizes the expectation of a particular loss function of a candidate parameter
value. When we plug in the true parameter value ψ0, i.e., the optimal predictor, as the
candidate predictor, we obtain the optimal risk θopt, i.e.,

θopt =

∫

L(X,ψ0)dF (X).

Next we provide examples of parameter of interest.

Examples of full data loss functions and parameter of interests. We will consider
parameters of interest from prediction and density/hazard estimation problems.

• Univariate prediction: In this setting, one is interested in predicting an univariate
outcome Z, such as the log of the survival time, Z = log T , or the indicator function
of the survival time at a given time point t, Z = I(T > t), based on a vector of base-
line covariates W . The parameter of interest in non-parametric and semi-parametric
regression approaches is typically the conditional mean, ψ0 = E[Z | W ], or the con-
ditional median ψ0 = median(Z | W ). E[Z | W ] corresponds with the L2 quadratic
(squared error) loss function L(X,ψ) = (Z−ψ(W ))2 and median(Z |W ) corresponds
with the L1 absolute error loss function L(X,ψ) = |Z − ψ(W )|.

• Multivariate prediction: In this setting, one is concerned with l outcomes of interest,
i.e., Z is a L dimensional vector. One parameter of interest in this data structure is
the conditional mean vector ψ0 = E[Z | W ] = (E[Z1 | W ], · · · , E[Zr | W ]). For a
candidate multivariate predictor ψ(W ), the following loss function can be defined

L(Z,ψ) = (Z − ψ(W ))T η(W )(Z − ψ(W )).

Here, η is a symmetric l × l-matrix function of W . A natural choice for η(W ) is
the inverse of the conditional covariance matrix of the outcome vector Z given the
baseline covariates W ; that is

η(W ) =
[

E
(

{Z − E[Z |W ]}{Z − E[Z |W ]}T
)]−1

.

This type of loss function aims to take into account the dependence structure among
the components of the response vector Z.

• Density or hazard estimation: In this setting, the parameter of interest might be the
conditional density of survival time T given the baseline covariates ψ0 = f(T | W ),
or the hazard at a time point t0 ψ0 = f(t0 | W,T ≥ t0) ≡ P (T > t0 | W,T ≥ t0) or
just the marginal density of T ψ0 = f(T ). In this case, corresponding full data loss
function is the negative log-likelihood loss function L(X,ψ) = − logψ(T,W ).
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Risk estimation with the full data. As emphasized in the introduction, we may be
interested in evaluating the risk of a predictor for at least two purposes: (i) model or
predictor selection, where the best predictor is chosen to minimize risk over a given class
of predictors; (ii) predictor performance assessment, where the generalization error of the
selected predictor is assessed. In literature, it is common practice to use cross-validation
for these purposes. There are various cross-validation schemes, however, in general terms
the idea is to divide the data into a training and a validation set and estimate the predictor
parameters on the training set while estimating the conditional risk of the predictor based
on the validation set. We refer to this risk as the conditional risk since it belongs to a
predictor based on a particular training set. Next, we will outline the steps that leads to
performing cross-validation with censored outcomes.

Risk estimation with the observed data. Given an empirical distribution Pn based
on an i.i.d. sample {Yi, i = 1, · · · , n} of size n, let ψk(. | Pn), k ∈ {1, · · · ,K(n)} be well
defined estimators, e.g. predictors based on different models, of the parameter of interest
ψ0. We will not discuss the available methods to obtain such estimators in different full data
models in this paper. We refer the reader to Chapter 3 of van der Laan and Robins (2002)
for a presentation of doubly robust locally efficient estimation of the full data parameters
in generalized linear models and multiplicative intensity models of the full data. Some
examples of sequence of predictor estimators in such full data models are as follows: Consider
a linear regression model for log T . Then ψk’s can be sequence of fitted models based on
different subsets of W . Similarly, if a Cox-proportional hazard model is used to model
survival times, sequence of models can be obtained through various subsets of W . Our
interest here is to select a k̂ among {1, · · · ,K(n)} such that ψk̂(. | Pn) converges to ψ0 in
an optimal manner.

The fundamental idea behind our method is to consider the risk of a given predictor as
a full data parameter of interest and apply the general methods developed by Robins and
Rotnitzky (1992), Robins et al. (2000), Robins and Rotnitzky (2001) and van der Laan and
Robins (2002) for estimating it consistently and efficiently using the observed data. This is a
crucial step since the full data loss functions such as quadratic loss, L(X,ψ) = (Z−ψ(W ))2,
cannot be evaluated for an observation with censored survival time (∆ = 0), and hence risk
estimators based on only uncensored observations, such as 1

n

∑

i L(Xi, ψ(Wi))∆i, are biased
for the expected loss EF [L(X,ψ)] of the predictor ψ. We now consider an IPCW estimator
of the risk of a given predictor. The IPCW estimating function was introduced by Robins
and Rotnitzky (1992) and it is widely used in censored data models (van der Laan and
Robins 2002), for handling missing covariates (Pugh et al. 1993) and when modeling survey
data (Binder 1992).

Given a predictor ψ, we define the following observed data function

IC0[Y | G,L(., ψ)] =
∆L(X,ψ)

Ḡ(T | X)
. (1)

This observed data function is an IPCW estimating function that is full data loss function
weighted by the inverse of the censoring probability times the censoring indicator. Note
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that this estimating function basically maps the full data (uncensored) loss function into
an observed data loss function that has the same expected value, i.e.,

EY [IC0[Y | G,L(., ψ)]] = EXEY
[
∆L(X,ψ)/Ḡ(T | X)

∣
∣X
]

= EX [L(X,ψ)]. (2)

We will now describe the formal notation that we use to define cross-validated risk
estimator. Let Sn ∈ {0, 1}n be a random vector independent of Pn with finite number
of support points V for some V < ∞. For technical reasons, let the probability on each
support point of Sn be bounded away from zero uniformly in n. A realization of Sn defines
a particular split of the sample of n observations into a training sample {i ∈ {1, · · · , n} :
Sn,i = 0} and a validation sample {i ∈ {1, · · · , n} : Sn,i = 1}. In particular, V -fold cross-
validation corresponds to a specific Sn. Let P 0

n,Sn
, P 1

n,Sn
denote the empirical distributions

of the training and the validation sample, respectively. Let the proportion p(n) ≡ p =
1/n

∑n
i=1 Sn,i ∈ (0, 1) of observations in the validation sample be constant.

Our proposed risk estimator utilizes the correspondence between the given full data loss
function and its inverse probability of censoring weighted version as elucidated in equation
(2). Let Ḡ(. | X) = 1 − G(. | X) be the survival of the censoring conditional on the full
data X and let Ḡ0

n,Sn
(. | X) be an estimator of Ḡ(. | X) based on the training sample. We

define the following cross-validated risk estimate

θ̂n(1−p)(k) = ESn

∫

IC0[Y | G0
n,Sn

, L(., ψk(. | P 0
n,Sn

))]dP 1
n,Sn

(Y ),

= ESn

[

1

np

n∑

i=1

I(Sn,i = 1)
∆i

Ḡ0
n,Sn

(Ti | X)
L(Xi, ψk(. | P 0

n,Sn
))

]

.

Here, the expectation indexed by Sn corresponds to taking empirical mean of the risk
estimate

∫
IC0[Y | G0

n,Sn
, L(., ψk(. | P 0

n,Sn
))] of a given predictor ψk(. | P 0

n,Sn
) over validation

samples corresponding with different Sn. This risk estimate defines an optimal choice k̂ of
k given by

k̂ = min−1
k∈{1,···,K(n)}θ̂n(1−p)(k).

Benchmark for k̂. A natural way to benchmark this choice of predictor index k̂ is by
defining the following true conditional risk function

θ̃n(1−p)(k) = ESn

∫

L(X,ψk(. | P 0
n,Sn

))dF (X),

which equals the true conditional risk of the predictor in the full data model. We note that

θ̃n(1−p)(k) = ESn

∫

IC0[Y | G,L(., ψk(. | P 0
n,Sn

))]dP (Y ) = ESn

∫

L(X,ψk(. | P 0
n,Sn

))dF (X)

by the double expectation property. The minimizer

k̃ = min−1
k∈{1,···,K(n)}θ̃n(1−p)(k)
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of the true conditional risk function for a given Pn indexes the best predictor, among the
predictors {ψk(. | Pn(1−p)), k ∈ {1, · · · ,K(n)}} based on n(1−p) observations, that achieves

the optimal conditional risk. Hence, k̃ defines a best choice or benchmark for k̂. In practice,
we do not observe the true conditional risk since it depends also on the true observed data
distribution P . Consequently, we do not have k̃ available to us.

Finally note that the optimal risk θopt ≡ E[L(X,ψ0)] can also be represented as

θopt =

∫

IC0[Y | G,L(., ψ0)]dP (Y ).

It is crucial to establish how the performance of k̂ obtained by the above resampling
based cross-validation method in estimating the optimal risk compares with the performance
of the minimizer k̃ of the true conditional risk. In Theorem 1 of next section, we prove that
k̂ performs asymptotically as well as the benchmark selector k̃ in the sense that

θ̃n(1−p)(k̂) − θopt

θ̃n(1−p)(k̃) − θopt
−→ 1 in probability as n→ ∞,

under general conditions.

3 Asymptotic optimality result

Before we present our main theorem stating the optimality result, we would like to elaborate
on the main assumptions of this theorem. Assumption (A.1) requires the supremum of the
difference between the full data loss function evaluated at a candidate estimator ψk and at
the true parameter value ψ0 to be bounded away from infinity over a support of the observed
data distribution. This assumption is easily satisfied if the outcome variable, e.g. Z = log T
is bounded provided that the predictor estimators are bounded in supremum norm by the
same bound as the data (this can be ensured by truncation). The second assumption (A.2)
specifies loss functions whose expectations can be estimated at a quadratic rate. These
loss functions will be referred to here as quadratic loss functions. This assumption may
not be satisfied for all kinds of loss functions but many loss functions used in practice such
as the L2 squared error loss function and the negative log-likelihood loss function satisfy
this assumption. Our theorem also addresses general loss functions where this assumption
does not hold, e.g., L1 absolute error loss function, and establishes the same optimality
result under slightly different conditions. Assumption (A.3) is an identifiability assumption
required for the IPCW risk estimator used in our method. It requires possible realizations
of the full data X to have a positive probability of being observed, hence excludes Type-
I censoring mechanism. Assumption (A.5) roughly requires the survival estimator of the
censoring mechanism to converge to its true value at a rate faster than the rate the true
conditional risk converges to the optimal risk.

Throughout the following theorem we introduce and use the following conventions:
Firstly, let Zn and Yn be two random variables and define Zn = OP (Yn) as lim supn→∞ PZn,Yn(|Zn| >
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mYn) ≤ εm where εm → 0 as m → ∞. Secondly, we define OP−(Zn) as a term that is
equivalent to OP (C(n)Zn) for any deterministic sequence C(n) converging to infinity at an
arbitrary slow rate. Moreover, the supremum in assumption (A.1) below is taken over a
support of the observed data distribution P .

We now present our main theorem.

Theorem 1 If

A.1 sup
X
L(X,ψk(. | P 0

n,Sn
)) − L(X,ψ0) ≤M1,∀k a.s. for some M1 <∞,

A.2

∫ [

L(X,ψk(. | P 0
n,Sn

)) − L(X,ψ0)
]2
dF (X) ≤

M2

∫ [

L(X,ψk(. | P 0
n,Sn

)) − L(X,ψ0)
]

dF (X) ∀k, for some M2 <∞,

A.3 Ḡ(T | X) > δ > 0, F − a.e. for some δ > 0,

A.4 θ̃n(1−p)(k̃) − θopt = OP

(
1

R(n)

)

for some deterministic sequence R(n),

A.5

√

ESn

∫

(Ḡ0
n,Sn

− Ḡ)2(T | X)dF (X) = OP

(

max

(
logK(n)

(np)0.5
,

1

R(n)0.5(np)γ

))

,

for a γ > 0

then,

θ̃n(1−p)(k̂) − θopt ≤ θ̃n(1−p)(k̃) − θopt +OP−(H(n)), (3)

where

H(n) = max

(

log1.5K(n)

R(n)0.25(np)0.75
,
log2K(n)

(np)
,

logK(n)

R(n)0.5(np)0.5
,

log0.5K(n)

R(n)0.75(np)0.25(np)γ
,

1

R(n)(np)γ

)

.

If
logK(n)

(np)0.5
= O

(
1

R(n)0.5(np)α

)

, (4)

for some α > 0, then H(n) = 1
R(n)(np)min (α,γ) . Thus, if also

1

R(n)(np)min (α,γ)
(

θ̃n(1−p)(k̃) − θopt
) = oP (1), (5)

then
θ̃n(1−p)(k̂) − θopt

θ̃n(1−p)(k̃) − θopt
→ 1 in probability for n→ ∞. (6)

If (A.2) does not hold, then

H(n) = max

(
logK(n)

(np)0.5
,

1

R(n)0.5(np)γ

)

(7)

10
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and if
logK(n)

(np)0.5
= O

(
1

R(n)0.5(np)α

)

, (8)

for some α > 0, then H(n) = 1
R(n)0.5(np)min (α,γ) . Thus, if also

1

R(n)0.5(np)min (α,γ)
(

θ̃n(1−p)(k̃) − θopt
) = oP (1), (9)

then (6) holds.

For a fixed p, if K(n) converges to infinity with n at a polynomial rate and R(n)/
√
n −→

0 and the conditions (A.3) and (A.5) on Ḡ(. | X) hold, then condition (4) of the theorem
will hold for the loss functions whose optimal risk θopt can be estimated at a quadratic rate,
i.e., when (A.2) holds. Moreover, if also R(n) is chosen to be the actual rate of convergence
for (θ̃n(1−p)(k̃) − θopt) then condition (5) is satisfied, and thereby the optimality result (6)
holds.

Theorem 1 establishes the optimality of k̂ in selecting the best choice among the pre-

dictors
{

ψk(. | Pn(1−p)) : k ∈ {1, · · · ,K(n)}
}

that are based on n(1− p) observations. Here,

Pn(1−p) denotes the empirical distribution of Y based on n(1 − p) observations. The fol-
lowing corollary proves that if p(n) → 0 and the result (6) of Theorem 1 holds then the
proposed model choice of k̂ is also optimal for selecting a predictor among the predictors
{ψk(. | Pn) : k ∈ {1, · · · ,K(n)}} that are based on the whole sample. We use the notation
p(n) = pn in this corollary.

Corollary 1 Let

k̃n(1−p) = min−1
k∈{1,···,K(n)}ESn

∫

L(X,ψk(. | P 0
n(1−p),Sn

))dF (X),

denote the previously defined k̃. Let k̂ be defined as previously. Define

k̃n = min−1
k∈{1,···,K(n)}

∫

L(X,ψk(. | Pn))dF (X).

If pn → 0, the assumptions of Theorem 1 hold so that (6) holds, and

θ̃n(k̃n) − θopt

θ̃n(1−pn)(k̃n(1−pn)) − θopt
→ 1 in probability, (10)

then

θ̃n(1−pn)(k̂) − θopt

θ̃n(k̃n) − θopt
→ 1 in probability. (11)

A sufficient condition for (10) to hold is that
(

nγ
(

θ̃n(k̃n) − θopt
)

, (n(1 − pn))
γ
(

θ̃n(1−pn)(k̃n(1−pn)) − θopt
))

D⇒ (Z,Z)

11
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for some γ > 0 and random variable Z with Pr(Z > a) = 1 for some a > 0. In particular,
if Pr(Sn = s)=1 for some s ∈ {0, 1}n (i.e., single-split cross-validation), then it suffices to

assume nγ
(

θ̃n(k̃n) − θopt
)
D⇒ Z for some γ > 0 and Pr(Z > a) = 1 for some a > 0.

We expect the latter sufficient condition in this corollary to be sufficient for any general Sn
as well.

4 Simulation study

To illustrate the asymptotic optimality result of Theorem 1 we conducted a simulation study
where ψk(. | Pn) are univariate histogram regressions indexed by the bin width 1/k. The
full data structure in this simulation is (Ti,Wi), i = 1, · · · , n where W ∼ U(0, 1) and the
survival time T is generated from the model Z ≡ log T = W 2 + ε. For example, if k = 5,
then ψk(. | Pn) represents a histogram regression predictor with 5 bins of width 0.2. The
distribution of ε is chosen to be a truncated normal distribution with a compact support in
the interval [−10, 10] and σ2 = 2. We obtain θopt = 2 by using the numerical integration
function integrate of the statistical software R. The censoring times are generated from a
uniform distribution as follows: logC ∼ U(l1, 12) and l1 is set to −2 and −5 to generate 15%
and 30% censoring. This censoring distribution ensures that P (C > T | X) > δ > 0, F−a.e..
Specifically, δ approximately equals 0.07 with l1 = −2 and to 0.06 with l1 = −5.

Define

Bk
j (P

0
n,Sn

) = {i : Sn,i = 0,Wi ∈ j-th bin of the k-bin histogram regression},
as the set of observations in the j-th bin of the k-bin histogram regression. We have the
following IPCW predictor ψk(. | P 0

n,Sn
) of log survival for an observation with a covariate

value w in the j-th bin of the k-bin histogram regression:

ψk(w | P 0
n,Sn

) =
1

|Bk
j (P

0
n,Sn

)|
∑

i∈Bk
j (P 0

n,Sn
)

(log Ti)∆

Ḡ0
n,Sn

(Ti |W )
,

where Ḡ0
n,Sn

(. | W ) is obtained by fitting a Cox proportional hazards model of the form
P (C = t | W = w,C ≥ t) = λ0(t) exp (β0 + β1w) with (Ti,Wi, 1 − ∆i), i ∈ {1, · · · , n}
ignoring independent censoring. Here, λ0(.) represents the unspecified baseline hazard of
censoring. We used 100 different bin sizes resulting 100 different predictors. The true
conditional risk functions θ̃n(1−p)(k) and θ̃n(k) for each k ∈ {1, · · · , 100} are evaluated using
an analytical formula. This formula is easy to derive and is given in Keleş (2003) (see
Appendix D). We set the proportion of the validation sample p(n) to 0.2 (5-fold cross-
validation) and simulated from six different sample sizes n ∈ {100, 200, 500, 2000, 10000}.
At each sample size and censoring proportion 50 data sets were generated. Simulation
results illustrating Theorem 1 are summarized in Table 1.

This simulation study illustrates the converge of the ratio of the true conditional risk
difference of the cross-validated selector to the true conditional risk difference of the bench-
mark selector to unity. However, as observed in Table 1, this convergence might be slow in

12
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n 0% 15% 30%

100 4.479037 3.336332 3.209060
200 2.377004 2.449200 2.724465
500 1.829994 1.989088 2.319114
2000 1.593553 1.812296 1.553712
10000 1.553950 1.470549 1.467048

Table 1: Simulation study. Each column reports the average ratio of
θ̃n(1−p)(k̂)−θopt

θ̃n(1−p)(k̃)−θopt
over 50

data sets for censoring proportions 0%, 15%, and 30%, respectively.

practice. One issue that we have not emphasized in these simulations is the choice of the
proportion of the validation sample p(n), i.e., fold of the cross-validation. Keleş (2003) ex-
tends the simulations presented here to other choices of p(n) and illustrates that the results
are not sensitive to the choice of p(n).

5 Proof of Theorem 1 and Corollary 1

In this section we present the proofs for our main theorem (Theorem 1) and its corollary
(Corollary 1).

Proof of Corollary 1. Firstly note that

θ̃n(1−pn)(k̂) − θopt

θ̃n(k̃n) − θopt

θ̃n(k̃n) − θopt

θ̃n(1−pn)(k̃n(1−pn)) − θopt
→ 1

by Theorem 1. This proves the first statement of the corollary given by (11). We now show
that (10) holds under the given sufficient condition. Define

Z1,n = nγ
(

θ̃n(k̃n) − θopt
)

(12)

Z2,n = (n(1 − pn))
γ
(

θ̃n(1−pn)(k̃n(1−pn)) − θopt
)

(13)

If (Z1,n, Z2,n)
D⇒ (Z,Z) then by the continuous mapping theorem we have

Z1,n

Z2,n
→ 1. How-

ever, note that
Z1,n

Z2,n
=

1

(1 − pn)γ
θ̃n(k̃n) − θopt

θ̃n(1−pn)(k̃n(1−pn)) − θopt
.

Thus, if pn → 0, then we have

θ̃n(k̃n) − θopt

θ̃n(1−pn)(k̃n(1−pn)) − θopt
→ 1,

13
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and thus (10) holds. If there is only one split, i.e., P (Sn = s) = 1 for some s, then

Z1,n = Z2, n
1−pn

(i.e., n in the definition (13) is replaced by n
1−pn

), and hence Z1,n
D⇒ Z

implies (Z1,n, Z2,n)
D⇒ (Z,Z). This completes the proof. 2

Next we present the proof of Theorem 1.

Proof of Theorem 1. We will sometimes use the following shorthand notation in this
proof.

IC0[Y | G0
n,Sn

−G,L(., ψk(. | P 0
n,Sn

))] ≡
IC0[Y | G0

n,Sn
, L(., ψk(. | P 0

n,Sn
))] − IC0[Y | G,L(., ψk(. | P 0

n,Sn
))].

Note that IC0[. | G,L(., ψk(. | P 0
n,Sn

))] is linear in L(., ψk(. | P 0
n,Sn

)) and hence IC0[. |
G,L(., ψk(. | P 0

n,Sn
))] − IC0[. | G,L(., ψ0)] equals IC0[. | G,L(., ψk(. | P 0

n,Sn
)) − L(., ψ0)].

We have

0 ≤ ESn

∫

IC0[Y | G,L(., ψk̂(. | P
0
n,Sn

)) − L(., ψk̃(. | P
0
n,Sn))]dP (Y )

= ESn

∫

IC0[Y | G,L(., ψk̂(. | P
0
n,Sn

)) − L(., ψk̃(. | P 0
n,Sn

))]dP 1
n,Sn

(Y )

+ ESn

∫

IC0[Y | G,L(., ψk̂(. | P
0
n,Sn

)) − L(., ψk̃(. | P
0
n,Sn

))]d(P − P 1
n,Sn

)(Y )

= ESn

∫

IC0[Y | G0
n,Sn

, L(., ψk̂(. | P
0
n,Sn

)) − L(., ψk̃(. | P 0
n,Sn

))]dP 1
n,Sn

(Y )
︸ ︷︷ ︸

≤0

+ ESn

∫

IC0[Y | G−G0
n,Sn

, L(., ψk̂(. | P
0
n,Sn

)) − L(., ψk̃(. | P
0
n,Sn

))]dP 1
n,Sn

(Y )

+ ESn

∫

IC0[Y | G,L(., ψk̂(. | P
0
n,Sn

)) − L(., ψk̃(. | P
0
n,Sn

))]d(P − P 1
n,Sn

)(Y )

≤ ESn

∫

IC0[Y | G−G0
n,Sn

, L(., ψk̂(. | P
0
n,Sn

)) − L(., ψk̃(. | P 0
n,Sn

))]dP 1
n,Sn

(Y )

+ ESn

∫

IC0[Y | G,L(., ψk̂(. | P
0
n,Sn

)) − L(., ψk̃)]d(P − P 1
n,Sn

)(Y )

= − ESn

∫

IC0[Y | G0
n,Sn

, L(., ψk̂(. | P
0
n,Sn

)) − L(., ψk̃(. | P 0
n,Sn

))]dP 1
n,Sn

(Y )

+ ESn

∫

IC0[Y | G,L(., ψk̂(. | P
0
n,Sn

)) − L(., ψk̃(. | P
0
n,Sn

))]dP (Y )

= −ESn

∫

IC0[Y | G0
n,Sn

−G,L(., ψk̂(. | P
0
n,Sn

)) − L(., ψk̃(. | P
0
n,Sn

))]dP (Y )
︸ ︷︷ ︸

R1,n(Sn)

−ESn

∫

IC0[Y | G0
n,Sn

, L(., ψk̂(. | P
0
n,Sn

)) − L(., ψk̃(. | P
0
n,Sn

))]d(P 1
n,Sn

− P )(Y )
︸ ︷︷ ︸

R2,n(Sn)

= −ESnR1,n(Sn) − ESnR2,n(Sn).

14
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Thus, we have

0 ≤ θ̃n(1−p)(k̂) − θ̃n(1−p)(k̃) ≤ −ESnR1,n(Sn) − ESnR2,n(Sn),

which implies

0 ≤ θ̃n(1−p)(k̂) − θopt ≤ θ̃n(1−p)(k̃) − θopt − ESnR1,n(Sn) − ESnR2,n(Sn). (14)

Using the linearity of IC0[Y | G,L(., ψk)] in L(., ψk), R1,n and R2,n can be decomposed as:

R1,n(Sn) =

∫

IC0(Y | G0
n,Sn

−G,L(., ψk̂(. | P
0
n,Sn

)) − L(., ψ0))dP (Y )
︸ ︷︷ ︸

R1,n(Sn,k̂)

−
∫

IC0(Y | G0
n,Sn

−G,L(., ψk̃(. | P
0
n,Sn

)) − L(., ψ0))dP (Y )
︸ ︷︷ ︸

R1,n(Sn,k̃)

≡ R1,n(Sn, k̂) −R1,n(Sn, k̃)

R2,n(Sn) =

∫

IC0(Y | G0
n,Sn

, L(., ψk̂(. | P
0
n,Sn

)) − L(., ψ0))d(P
1
n,Sn

− P )(Y )
︸ ︷︷ ︸

R2,n(Sn,k̂)

−
∫

IC0(Y | G0
n,Sn

, L(., ψk̃(. | P
0
n,Sn

)) − L(., ψ0))d(P
1
n,Sn

− P )(Y )
︸ ︷︷ ︸

R2,n(Sn,k̃)

≡ R2,n(Sn, k̂) −R2,n(Sn, k̃)

We will analyze the terms of R1,n and R2,n separately. We will also divide this analysis
into two cases as (i) proof for quadratic loss functions, i.e., for which (A.2) holds, and (ii)
proof for general loss functions, i.e., for which (A.2) does not hold. Both cases use two
general lemmas based on the Bernstein’s inequality (van der Vaart and Wellner 1996) to
bound the R2,n terms in probability. The R1,n terms are bounded in probability using the
Cauchy-Schwartz inequality. The specific lemmas used to bound R1,n and R2,n terms for
the two cases are slightly different. We state and prove these lemmas in subsections 5.1 and
5.2. Overall, the proof with general loss functions is simpler than the proof with quadratic
loss functions since the latter requires implicit bounding.

5.1 CASE I: Proof for quadratic loss functions

Using the lemmas given later in this subsection we obtain

ESnR1,n(Sn, k̃) = OP

(
√

θ̃n(1−p)(k̃) − θopt

√

ESn

∫

(Ḡ0
n,Sn

− Ḡ)2(T | X)dF (X)

)

,

15
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ESnR1,n(Sn, k̂) = OP

(
√

θ̃n(1−p)(k̂) − θopt

√

ESn

∫

(Ḡ0
n,Sn

− Ḡ)2(T | X)dF (X)

)

,

ESnR2,n(Sn, k̃) = OP

(

max

(

logK(n)

R(n)0.5−(np)0.5
,
logK(n)

(np)

))

,

ESnR2,n(Sn, k̂) = OP

(

max

(
a(n) logK(n)

(np)0.5
,
logK(n)

(np)

))

,

where a(n) is any deterministic sequence such that Pr(||θ̃n(1−p)(k̂)− θopt|| ≤ a(n)) → 1 and

R(n)0.5
−

refers to a deterministic sequences that is slower than R(n), i.e., R(n)0.5−λ for a
arbitrarily small λ.

Substituting these upper bounds in the inequality (14) yields

θ̃n(1−p)(k̂) − θopt ≤ θ̃n(1−p)(k̃) − θopt −ESnR1,n(Sn) − ESnR2,n(Sn)

≤ θ̃n(k̃) − θopt +OP

(
a(n) logK(n)

(np)0.5

)

+OP

(

logK(n)

R(n)0.5−(np)0.5

)

+OP

(
logK(n)

(np)

)

+ OP

(
√

θ̃n(1−p)(k̂) − θopt

√

ESn

∫

(Ḡ0
n,Sn

− Ḡ)2(T | X)dF (X)

)

+ OP

(
√

θ̃n(1−p)(k̃) − θopt

√

ESn

∫

(Ḡ0
n,Sn

− Ḡ)2(T | X)dF (X)

)

.

Because ESnR1,n(Sn, k̂) dominates ESnR1,n(Sn, k̃) this inequality reduces to

θ̃n(1−p)(k̂) − θopt ≤ θ̃n(1−p)(k̃) − θopt +OP

(
a(n) logK(n)

(np)0.5

)

+OP

(

logK(n)

R(n)0.5−(np)0.5

)

+ OP

(
logK(n)

(np)

)

+OP

(
√

θ̃n(k̂) − θopt

√

ESn

∫

(Ḡ0
n,Sn

− Ḡ)2(T | X)dF (X)

)

.

We now use the assumption (A.5) and replace the last term by OP
(

a(n)
R(n)0.5(np)γ

)

and obtain

θ̃n(1−p)(k̂) − θopt ≤ θ̃n(1−p)(k̃) − θopt +OP

(
a(n) logK(n)

(np)0.5

)

+

+ OP

(

logK(n)

R(n)0.5−(np)0.5

)

+OP

(
logK(n)

(np)

)

+OP

(
a(n)

R(n)0.5(np)γ

)

. (15)

Since a(n) is the width of an interval containing θ̃n(1−p)(k)−θopt with probability tending to

1, this probabilistic inequality implies a convergence in probability result for θ̃n(1−p)(k̂)−θopt.
We solve this inequality iteratively and the limit of this iterative process is given by

θ̃n(1−p)(k̂) − θopt ≤ θ̃n(1−p)(k̃) − θopt +OP− (H(n)) ,

where H(n) is defined in Theorem 1.
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Specifically, the details of this iterative process are as follows.
Define

c1(n) = max

(

1

R(n)
,

logK(n)

R(n)0.5−(np)0.5
,
logK(n)

(np)

)

,

c2(n) = max

(
logK(n)

(np)0.5
,

1

R(n)0.5(np)γ

)

.

Then, (26) implies the following equation

θ̃n(1−p)(k̂) − θopt = OP (c1(n)) +OP (a(n)c2(n)) (16)

Initialize: Set a(n) = 1 so that (16) implies

θ̃n(1−p)(k̂) − θopt = OP (max(c1(n), c2(n))) .

A: ifmax(c1(n), c2(n)) = c1(n), set a(n) = c1(n)0.5
−

and stop iterating. Then, (16) becomes

θ̃n(k̂) − θopt = OP (c1(n)) +OP (c1(n)0.5
−

(n)c2(n)). (17)

B: if max(c1(n), c2(n)) = c2(n), set a(n) = c2(n)0.5
−

and go to the iteration step.

Iteration step: This step updates a(n) and iterates (16).

A: if max(c1(n), a(n)c2(n)) = c1(n), set a(n) = c1(n)0.5
−

and stop iterating. As a result
we obtain (17).

B: if max (c1(n), a(n)c2(n) = a(n)c2(n), set anew(n) = a(n)0.5
−

c2(n)0.5
−

, and set a(n) =
anew(n). Then repeat the iteration step with this a(n).

We note that a(n) converges to c2(n)1
−

in branch B while it converges to c1(n)0.5
−

in branch
A. Substituting a(n) = max (c1(n)0.5

−

, c2(n)1
−

) in (26) and after some trivial simplification,
we obtain

θ̃n(1−p)(k̂) − θopt ≤ θ̃n(1−p)(k̃) − θopt +OP−(H(n)),

where H(n) is defined in Theorem 1. This proves the first statement (3) in the theorem.
We note that if

logK(n)

(np)0.5
= O

(
1

R(n)0.5(np)α

)

,

for some α > 0 then

H(n) =
1

R(n)(np)min (α,γ)
.

Finally, if (5) holds, then we obtain the desired result (6) in the theorem. This completes
the proof. 2

We will now present the lemmas regarding the analysis of the R1,n and R2,n terms.

The following general lemma is obtained from Bernstein’s inequality (van der Vaart and
Wellner 1996) and is used in the analysis of R2,n(Sn, k̃) term.
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Lemma 1 Let Zn,i, i = 1, . . . , n be n independent mean zero random variables with variance
VAR(Zn,i) ≤ σ2

n and Pr(maxi | Zn,i |≤Wn) = 1 for Wn <∞. If Wn√
nσn

= O(1), then

√
n

σn

∣
∣
∣
∣
∣

1

n

n∑

i=1

Zn,i

∣
∣
∣
∣
∣
= OP (1).

Specifically,

Pr

(√
n

σn

∣
∣
∣
∣
∣

1

n

n∑

i=1

Zn,i

∣
∣
∣
∣
∣
> x

)

≤ 2 exp




−1

2

x2

1 + Wnx
3
√
nσn



 .

Proof. By Bernstein’s inequality we have

Pr(

∣
∣
∣
∣
∣

n∑

i=1

Zn,i

∣
∣
∣
∣
∣
> x) ≤ 2 exp

(

−1

2

x2

nσ2
n +Wnx/3

)

.

Thus

Pr

(

1√
nσn

∣
∣
∣
∣
∣

n∑

i=1

Zn,i

∣
∣
∣
∣
∣
> x

)

≤ 2 exp




−1

2

nσ2
nx

2

nσ2
n + Wn

√
n

σnx/3



 .

If lim supn→∞Wn/
√
nσn < ∞, then the lim supn→∞ of the right hand side converges to

zero for x→ ∞. This completes the proof. 2

Similarly, one proves the following lemma which is used in the analysis of R2,n(Sn, k̂).

Lemma 2 For each n and k ∈ {1, . . . ,K(n)}, let Zk,n,i, i = 1, . . . , n be n independent mean
zero random variables with variance VAR(Zk,n,i) ≤ σ2

n and Pr(maxi,k | Zk,n,i |≤ Wn) = 1
for Wn <∞. If Wn

n0.5σn
= O(1), then

max
k∈{1,...,K(n)}

∣
∣
∣
∣
∣

1

n

n∑

i=1

Zk,n,i

∣
∣
∣
∣
∣
= OP

(
logK(n)

n0.5σ∗n

)

,

where σ∗n = max(σn, n
−0.5). Specifically,

Pr

(

n0.5

σn logK(n)
max

k∈{1,...,K(n)}

∣
∣
∣
∣
∣

1

n

n∑

i=1

Zk,n,i

∣
∣
∣
∣
∣
> x

)

≤ K(n)2 exp

(

−1

2

x2 logK(n)

{1/ logK(n) + Wnx
3σnn0.5

)

.

Proof. By the Bonferoni argument and Bernstein’s inequality we have

Pr

(

1

σnn0.5 logK(n)
max
k

|
n∑

i=1

Zk,n,i |> x

)

≤ K(n)max
k

Pr

(

|
n∑

i=1

Zk,n,i |> xσnn
0.5 logK(n)

)

≤ K(n)2max
k

exp




−x2σ2

nn log2K(n)

nσ2
n + Wnσnn0.5 logK(n)x

3




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= K(n)2max
k

exp

(

−1

2

x2 logK(n)

{1/ logK(n) + Wnx
3σnn0.5

)

.

= K(n)2max
k

(
1

K(n)

)

[

1
2

x2

1/ log K(n)+
Wnx

3σnn0.5

]

.2

We now analyze R2,n(Sn, k̂) using Lemma 2.

Lemma 3 Define

K(a(n)) ≡
{

k ∈ {1, · · · ,K(n)} : ||θ̃n(1−p)(k) − θopt||F ≤ a(n)
}

Let a(n) be such that P (k̂ ∈ K(a(n))) → 1. We have

Rn,2(Sn, k̂) = OP

(

max

(
a(n) logK(n)

(np)0.5
,
logK(n)

(np)

))

. (18)

Proof. Define B(n, k) = I(k ∈ K(a(n)), Ḡn,Sn(T | X) > δ/2) and decompose R2,n(Sn, k̂)
as

R2,n(Sn, k̂) = R2,n(Sn, k̂)B(n, k̂) +R2,n(Sn, k̂)(1 −B(n, k̂))

Since P (k̂ ∈ K(a(n))) → 1 and Ḡ(T | X) > δ > 0, F − a.e. (by (A.3)) we have that
the probability that the second term equals 0 converges to 1 as n → ∞. Thus this term
converges to 0 in probability at an arbitrary rate. We note that

Pr
(

R2,n(Sn, k̂)B(n, k̂) > x
∣
∣
∣Sn, P

0
n,Sn

)

≤ Pr

(

max
k∈K(a(n))

R2,n(Sn, k)B(n, k) > x

∣
∣
∣
∣
∣
Sn, P

0
n,Sn

)

Let Zk,n = I(Ḡ0
n,Sn

(T | X) > δ/2)IC0[Y | G0
n,Sn

, L(., ψk(. | P 0
n,Sn

)) − L(., ψ0)]. For k ∈
K(a(n)) we have that

R2,n(Sn, k)B(n, k) =

∫

Zk,nd(P
1
n,Sn

− P )(Y ).

We will now apply Lemma 2 with Zk,n. It is straightforward to show that Wn = M1/δ
so that Pr(max |Zk,n| ≤ Wn) = 1. Next, we note that the conditional variance of Zn is
bounded by

E
[

Z2
k,n | Sn, P 0

n,Sn

]

≤ 1

δ

∫ (

L(Z,ψk(. | P 0
n,Sn

)) − L(X,ψ0)
)2
dF (X)

≤ M2

δ

∫ (

L(X,ψk(. | P 0
n,Sn

)) − L(X,ψ0)
)

dF (X)

where we used the double expectation theorem (EY [Z] = EXEY |X [Z | X]) and the last
inequality follows by assumption (A.2). Define

a(n)∗ = max

(

a(n),
1

(np)0.5

)

.
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We now note that V AR(Zk,n | Sn = sn, P
0
n,Sn

) is bounded above by O(a(n)∗) up to a
constant. A direct application of Lemma 2 with Zk,n −

∫
Zk,ndP gives for each x > 0

Pr

(

(np)0.5

a(n)∗ logK(n)
I(k̂ ∈ K(a(n)))Rn,2(Sn, k̂) > x

∣
∣
∣
∣
∣
Sn, P

0
n,Sn

)

≤

K(n) exp




−1

2

x2 logK(n)

1/ logK(n) + Wnx
3a(n)∗(np)0.5



, (19)

where Wn = M1/δ. The definition of a(n)∗ implies that Wn
a(n)∗(np)0.5 = O(1). We note that

this bound in particular holds marginally and hence we obtain (18). This completes the
proof. 2

Lemma 4

R2,n(Sn, k̃) = OP

(

max

(

logK(n)

R(n)0.5−(np)0.5
,
logK(n)

(np)

))

. (20)

Proof. The lemma can be proved in a similar way to Lemma 3 with a(n) = R(n)−0.5−

and a(n)∗ = max
(

R(n)−0.5− , (np)−0.5
)

where the notation R(n)−0.5− implies a rate slower

that R(n)−0.5 as mentioned previously. 2

Since the number of support points of Sn is bounded by some V <∞ and the probability
on each support point is bounded away from zero uniformly in n, Lemmas 3 and 4 readily
provide the required results for ESnR2,n(Sn, k̃) and ESnR2,n(Sn, k̂). The corollary given
below states these results.

Corollary 2 Redefine

K(a(n)) ≡
{

k ∈ {1, · · · ,K(n)} :

√

Esn

∫ (

L(X,ψk(. | P 0
n,Sn

)) − L(X,ψ0)
)2
dF (X) ≤ a(n)

}

Let a(n) be such that P (k̂ ∈ K(a(n))) → 1. Then, we have

ESnR2,n(Sn, k̂) = OP

(

max

(
a(n) logK(n)

(np)0.5
,
logK(n)

(np)

))

. (21)

Similarly, with a(n) = R(n)−0.5− so that P (k̃ ∈ K(a(n))) → 1, we have

ESnR2,n(Sn, k̃) = OP

(

max

(

logK(n)

R(n)0.5−(np)0.5
,
logK(n)

(np)

))

. (22)

We will now present the lemma used in the analysis of R1,n terms.
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Lemma 5 We have

ESn

∫

IC0

[

Y | G0
n,Sn

−G,L(., ψk(. | P 0
n,Sn

)) − L(., ψ0)
]

dP (Y )

= OP

(
√

θ̃n(1−p)(k) − θopt

√

ESn

∫

(Ḡ0
n.Sn

− Ḡ)2(T | X))dF (X)

)

.

Proof.

ESn

[∫

IC0(Y | G0
n,Sn

−G,L(., ψk(. | P 0
n,Sn

)) − L(., ψ0))dP (Y )

]

= ESnEY

[
(

L(X,ψk(W | P 0
n,Sn

)) − L(X,ψ0)
) ∆(Ḡ− Ḡ0

n,Sn
)(T | X)

Ḡ(T | X)Ḡ0
n,Sn

(T | X)

]

= ESnEX

[
(

L(X,ψk(W | P 0
n,Sn

)) − L(X,ψ0)
) (Ḡ− Ḡ0

n,Sn
)(T | X))

Ḡ0
n,Sn

(T | X)

]

(Using Cauchy Schwartz inequality )

≤ sup
X

{

(|Ḡ− Ḡ0
n,Sn

)(T | X)|
Ḡ0
n,Sn

(T | X)

}

×
√

ESn

∫

(Ḡ0
n,Sn

− Ḡ)2(T | X)dF (X)

√

ESn

∫

(L(X,ψk(W | P 0
n,Sn

)) − L(X,ψ0))2dF (X)

≤ sup
X

{

(|Ḡ− Ḡ0
n,Sn

)(T | X)|
Ḡ0
n,Sn

(T | X)

}

×
√

ESn

∫

(Ḡ0
n,Sn

− Ḡ)2(T | X)dF (X)

×
√

ESn

∫

(L(X,ψk(W | P 0
n,Sn

)) − L(X,ψ0))2dF (X)

≤ M2 sup
X

{

(|Ḡ− Ḡ0
n,Sn

)(T | X)|
Ḡ0
n,Sn

(T | X)

}

×
√

ESn

∫

(Ḡ0
n,Sn

− Ḡ)2(T | X)dF (X)

×
√

ESn

∫

(L(X,ψk(W | P 0
n,Sn

)) − L(X,ψ0))dF (X) by (A.2)

= OP

(
√

θ̃n(1−p)(k) − θopt

√

ESn

∫

(Ḡ0
n,Sn

− Ḡ)2(T | X)dF (X)

)

,

where we used that Pr(Ḡ0
n,Sn

(T | X) > δ/2) → 1. This completes the proof. 2

Using the above lemma with k = k̃ and k = k̂ we obtain

ESnR1,n(Sn, k̃) = OP

(
√

θ̃n(1−p)(k̃) − θopt

√

ESn

∫

(Ḡ0
n,Sn

− Ḡ)2(T | X))dF (X)

)

,

ESnR1,n(Sn, k̂) = OP

(
√

θ̃n(1−p)(k̂) − θopt

√

ESn

∫

(Ḡ0
n,Sn

− Ḡ)2(T | X))dF (X)

)

.

This completes the proof of Theorem 1 for quadratic loss functions. 2
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5.2 CASE II: Proof for general loss functions

The proof for general loss functions deviates from the proof for quadratic loss functions
satisfying (A.2) assumption by changes in Lemma 3, Lemma 4, and Lemma 5. In this
section, we firstly present modified versions of these lemmas as Lemma 6, Lemma 7 and 8,
respectively. Then, we finish the proof of Theorem 1 without any implicit bounding.

Lemma 6 (Modified version of Lemma 3) Define

K(a(n)) ≡
{

k ∈ {1, · · · ,K(n)} : ||θ̃n(1−p)(k) − θopt||F ≤ a(n)
}

Let a(n) be such that P (k̂ ∈ K(a(n))) → 1. We have

Rn,2(Sn, k̂) = OP

(
logK(n)

(np)0.5

)

. (23)

Proof. Define B(n, k) = I(k ∈ K(a(n)), Ḡn,Sn(T | X) > δ/2) and decompose R2,n(Sn, k̂)
as

R2,n(Sn, k̂) = R2,n(Sn, k̂)B(n, k̂) +R2,n(Sn, k̂)(1 −B(n, k̂))

Since P (k̂ ∈ K(a(n))) → 1 and Ḡ(T | X) > δ, F − a.e. (by (A.3)) we have that the
probability that the second term equals 0 converges to 1 as n → ∞. Thus this term
converges to 0 in probability at an arbitrary rate. We note that

Pr
(

R2,n(Sn, k̂)B(n, k̂) > x
∣
∣
∣Sn, P

0
n,Sn

)

≤ Pr

(

max
k∈K(a(n))

R2,n(Sn, k)B(n, k) > x

∣
∣
∣
∣
∣
Sn, P

0
n,Sn

)

Let Zk,n = I(Ḡ0
n,Sn

(T | X) > δ/2)IC0[Y | G0
n,Sn

, L(., ψk(. | P 0
n,Sn

)) − L(., ψ0)]. For k ∈
K(a(n)) we have that

R2,n(Sn, k)B(n, k) =

∫

Zk,nd(P
1
n,Sn

− P )(Y ).

We will now apply Lemma 2 with Zk,n. It is straightforward to show that Wn = M1/δ
so that Pr(max |Zk,n| ≤ Wn) = 1. Next, we note that the conditional variance of Zk,n is
bounded by

E
[

Z2
k,n | Sn, P 0

n,Sn

]

≤ 1

δ
EX

[(

L(Z,ψk(. | P 0
n,Sn

)) − L(X,ψ0)
)2
∣
∣
∣
∣Sn, P

0
n,Sn

]

≤ M2
1

δ

where we used the double expectation theorem (EY [Z] = EXEY |X [Z | X]) and the last
inequality follows by assumption (A.1). This shows that V AR(Zk,n | Sn = sn, P

0
n,Sn

) is
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bounded above by by a constant σ∗ = M2
1 /δ. A direct application of Lemma 2 with

Zk,n −
∫
Zk,ndP gives for each x > 0

Pr

(

(np)0.5

σ∗ logK(n)
I(k̂ ∈ K(a(n)))Rn,2(Sn, k̂) > x

∣
∣
∣
∣
∣
Sn, P

0
n,Sn

)

≤

K(n) exp




−1

2

x2 logK(n)

1/ logK(n) + Wnx
3σ∗(np)0.5



, (24)

where Wn = M1/δ. The definition of σ∗ implies that Wn
σ∗(np)0.5 = O(1). We note that this

bound in particular holds marginally and hence we obtain (23). This completes the proof. 2

Lemma 7

R2,n(Sn, k̃) = OP

(
logK(n)

(np)0.5

)

. (25)

Proof. The lemma can be proved in a similar way to Lemma 3 with a(n) = R(n)−0.5−.
Here the notation R(n)−0.5− implies a rate slower that R(n)−0.5 as mentioned previously.
2

Since the number of support points of Sn is bounded by some V < ∞ and the probability
on each support point is bounded away from zero uniformly in n, Lemmas 6 and 7 readily
provide the required results for ESnR2,n(Sn, k̃) and ESnR2,n(Sn, k̂).

We will now present the lemma used in the analysis of R1,n terms in the case where (A.2)
assumption does not hold, i.e., analogue of the Lemma 5.

Lemma 8 (Modified version of Lemma (5)) We have

ESn

∫

IC0

[

Y | G0
n,Sn

−G,L(., ψk(. | P 0
n,Sn

)) − L(., ψ0)
]

dP (Y )

= OP

(√

ESn

∫

(Ḡ0
n.Sn

− Ḡ)2(T | X)dF (X)

)

.

Proof.

ESn

[∫

IC0(Y | G0
n,Sn

−G,L(., ψk(. | P 0
n,Sn

)) − L(., ψ0))dP (Y )

]

= ESnEY

[
(

L(X,ψk(W | P 0
n,Sn

)) − L(X,ψ0)
) ∆(Ḡ− Ḡ0

n,Sn
)(T | X)

Ḡ(T | X)Ḡ0
n,Sn

(T | X)

]

= ESnEX

[
(

L(X,ψk(W | P 0
n,Sn

)) − L(X,ψ0)
) (Ḡ− Ḡ0

n,Sn
)(T | X))

Ḡ0
n,Sn

(T | X)

]

(Using Cauchy Schwartz inequality )
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≤ sup
X

{

(|Ḡ− Ḡ0
n,Sn

)(T | X)|
Ḡ0
n,Sn

(T | X)

}

×
√

ESn

∫

(Ḡ0
n,Sn

− Ḡ)2(T | X)dF (X)

√

ESn

∫

(L(X,ψk(W | P 0
n,Sn

)) − L(X,ψ0))2dF (X)

≤ M1 sup
X

{

(|Ḡ− Ḡ0
n,Sn

)(T | X)|
Ḡ0
n,Sn

(T | X)

}

×
√

ESn

∫

(Ḡ0
n,Sn

− Ḡ)2(T | X)dF (X) by (A.1)

= OP

(√

ESn

∫

(Ḡ0
n,Sn

− Ḡ)2(T | X)dF (X)

)

,

where we used that Pr(Ḡ0
n,Sn

(T | X) > δ/2) → 1. This completes the proof. 2

Using the above lemma with k = k̃ and k = k̂ we obtain

ESnR1,n(Sn, k̃) = OP

(√

ESn

∫

(Ḡ0
n,Sn

− Ḡ)2(T | X))dF (X)

)

,

ESnR1,n(Sn, k̂) = OP

(√

ESn

∫

(Ḡ0
n,Sn

− Ḡ)2(T | X))dF (X)

)

.

Using the results of the above lemmas, we obtain

ESnR1,n(Sn, k̃) = OP

(√

ESn

∫

(Ḡ0
n,Sn

− Ḡ)2(T | X)dF (X)

)

,

ESnR1,n(Sn, k̂) = OP

(√

ESn

∫

(Ḡ0
n,Sn

− Ḡ)2(T | X)dF (X)

)

,

ESnR2,n(Sn, k̃) = OP

(
logK(n)

(np)0.5

)

,

ESnR2,n(Sn, k̂) = OP

(
logK(n)

(np)0.5

)

.

Substituting these upper bounds in the inequality (14) yields

θ̃n(1−p)(k̂) − θopt ≤ θ̃n(1−p)(k̃) − θopt − ESnR1,n(Sn) − ESnR2,n(Sn)

≤ θ̃n(k̃) − θopt +OP

(
logK(n)

(np)0.5

)

+OP

(√

ESn

∫

(Ḡ0
n,Sn

− Ḡ)2(T | X)dF (X)

)

.

We use the assumption (A.5) and replace the last term by OP
(

1
R(n)0.5(np)γ

)

and obtain

θ̃n(1−p)(k̂) − θopt ≤ θ̃n(1−p)(k̃) − θopt +OP

(
logK(n)

(np)0.5

)

+OP

(
1

R(n)0.5(np)γ

)

. (26)

Note that H(n) now equals (7) as given in the theorem. We note that if

logK(n)

(np)0.5
= O

(
1

R(n)0.5(np)α

)

,
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for some α > 0 then

H(n) =
1

R(n)0.5(np)min (α,γ)
.

Finally, if (9) holds, we obtain the desired result (6) in the theorem. This completes the
proof for general loss functions for which (A.2) assumption does not hold.

6 Discussion

We presented an asymptotically optimal model selection method for choosing among pre-
dictors of right censored outcomes such as survival times. This method deals with the
censored data by replacing the full data loss function by an observed data loss function
that has the same expectation as the full data loss function. Specifically, it treats the risk
of a given predictor based on training sample as a full data parameter in a censored data
model. We have discussed the estimation of this conditional risk with an inverse probability
of censoring weighted estimator based on the validation sample. The consistency of this
estimator relies on consistent estimation of the censoring mechanism and the the condition
that Ḡ(T | X) > δ > 0, F − a.e.. One can improve on this estimator by constructing a
doubly robust risk estimator. Applying the general doubly robust estimation methodology
(Robins and Rotnitzky 1992, van der Laan and Robins 2002), we replace the observed data
IPCW loss function IC0[Y | G,L(., ψ)] in our risk estimate by

IC[Y | G,Q(F,G), L(., ψ)] = IC0[Y | G,L(., ψ)] +

∫

Q(F,G)(u, X̄(u))dMG(u)

where dMG(u) = I(T̃ ∈ du,∆ = 0) − I(T̃ ≥ u)λC(u | X)d(u) is the martingale of the
censoring process A(.) = I(C ≤ .) andQ(F,G)(u, X̄(u)) denotes the conditional expectation
of IC0(Y | G,L(., ψ)) given X̄(u), C > u under the observed data generating distribution
PF,G. This new observed data loss function equals the observed data IPCW loss function
IC0(. | G,L(., ψ)) minus its projection onto the nuisance tangent space for the censoring
mechanism G in the non-parametric observed data model only assuming CAR (Robins and
Rotnitzky 1992). We refer to van der Laan and Robins (2002) for a detailed treatment
of such projections and the general methodology of obtaining doubly robust estimators.
IC[Y | G,Q(F,G), L(., ψ)] has the so called double robust property. Let G1 and F 1 be the
guessed models of the censoring mechanism G and the full data distribution F respectively.
Then, we have

EPF,G
IC[Y | G1, Q(F 1, G1), L(., ψ)] = EF [L(X,ψ]

if either G1 = G and Ḡ(T | X) > δ > 0, F−a.e. or Q(F 1, G1) = Q(F,G1). This implies that
the double robustness property allows misspecification of either the censoring mechanism
or the part of the full data distribution that is utilized in the projections. We then define
the doubly robust cross-validated risk estimator for a given predictor ψk(. | P 0

n,Sn
) as

θ̂n(1−p)(k) = ESn

∫

IC[Y | G0
n,Sn

, Q0
n,Sn

, L(., ψk(. | P 0
n,Sn

))]dP 1
n,Sn

(Y ), (27)
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where Ḡ0
n,Sn

is an estimate of Ḡ(. | X) andQ0
n,Sn

is an estimate ofQF,G based on the training

sample defined by the split Sn. k̂ is again chosen such that θ̂n(1−p)(k̂) is the minimum over
the index set k ∈ {1, · · · ,K(n)}. This double robust risk estimator is also generally more
efficient than the IPCW risk estimator. We refer to van der Laan and Robins (2002) for the
estimation methods for the nuisance parameters G and Q(F,G) and the general properties
of these double robust estimators. The properties of this doubly robust cross-validated
model selection criteria is investigated in van der Laan and Dudoit (2003) and both finite
sample results and asymptotic optimality results are established.
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