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ESTIMATING PERCENTILE-SPECIFIC CAUSAL EFFECTS: A CASE STUDY

OF MICRONUTRIENT SUPPLEMENTATION, BIRTH WEIGHT, AND INFANT

MORTALITY

December 16, 2004

Francesca Dominici, Scott L. Zeger, Giovanni Parmigiani, Joanne Katz, and Parul Christian

Abstract

In developing countries, higher infant mortality is partially caused by poor maternal and fe-

tal nutrition. Clinical trials of micronutrient supplementation are aimed at reducing the risk of

infant mortality by increasing birth weight. Because infant mortality is greatest among the low

birth weight infants (LBW) (≤ 2500 grams), an effective intervention may need to increase the

birth weight among the smallest babies. Although it has been demonstrated that supplementation

increases the birth weight in a trial conducted in Nepal, there is inconclusive evidence that the

supplementation improves their survival. It has been hypothesized that a potential benefit of the

treatment on survival among the LBW is partly compensated by a null or even harmful effects

among the largest infants. Thus, two key scientific questions are whether the effect of the treat-

ment on survival differs across the birth weight distribution (e.g. is largest among the LBW), and

whether the effect of the treatment on survival is mediated wholly or in part by increases in birth

weight.

Motivated by a community trial in Nepal, this paper defines population and causal parameters

for estimating the treatment effects on birth weight and on survival as functions of the percentiles

of the birth weight distribution. We develop a model with potential outcomes and implement

principal stratification for estimating and comparing the causal effects of the treatment on mortality

in sub-populations of babies defined by their birth weights. We use a Bayesian approach with data

augmentation to approximate the posterior distributions of the parameters taking into account

uncertainty associated with the imputation of the counterfactuals. This approach is particularly

suitable for exploring the sensitivity of the results to modelling assumptions and other prior beliefs.

Our analysis shows that the average causal effect of the treatment on birth weight is equal to

68 grams (95% posterior regions 25 to 110) and that this causal effect is largest among the LBW.

Posterior inferences about average causal effects of the treatment on birth weight are robust to

modelling assumptions. However inferences about causal effects for babies at the tails of the birth

weight distribution can be highly sensitive to the unverifiable assumption about the correlation

between the observed and the counterfactuals birth weights. Among the LBW infants who have a

large causal effect of the treatment on birth weight, we found that a baby receiving the treatment

has 5% to 7% less chance of death if the same baby had received the control. Among the LBW,

we found weak evidence supporting an additional beneficial effect of the treatment on mortality
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independent of birth weight.
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1 Introduction

The reduction of infant mortality remains a major public health goal (Child Health Reserach

Project, 1996), particularly in developing countries where current rates are an order of magnitude

higher than in Europe, North America, and Japan. In developing countries, higher infant mortality

is partially caused by poor maternal and fetal nutrition as reflected in the distribution of infant birth

weights. One intervention trial have attempted to reduce infant mortality by improving maternal

micronutrient sufficiency (Christian et al., 2003a). The idea is to improve maternal nutritional

status thereby improving fetal growth and reducing the risk of infant mortality. Because infant

mortality is greatest among low birth weight (LBW ≤ 2500 grams) and very low birth weight

(VLBW ≤ 1500 grams) infants, it is assumed that an effective intervention must increase birth

weight among the smallest babies, that is, in the left tail of the birth weight distribution. That

maternal nutritional supplementation increases birth weight has been demonstrated in replicated

randomized trials in several countries (Lechtig et al., 1975; Ceesay et al., 1997; Caulfield et al.,

1999; Christian et al., 2003a). However, to date, there is limited direct evidence that maternal

supplementation causes a reduction in the prevalence of babies born at the smallest weights and

that this reduction improves their survival (Garner et al., 1992; McIntire et al., 2001; West et al.,

1999; Katz et al., 2000a; Rasmussen, 2001; Christian et al., 2003b).

The methods in this paper are motivated by a double blind randomized community trial in

rural Nepal (Christian et al., 2003a). The intervention program provided weekly iron, folic acid

and vitamin A while the control was weekly vitamin A alone. The 1051 and 947 pregnant women

that were assigned to the control and treatment delivered 866 and 766 live born infants, respectively.

Details on the study designs including the rational for the selection and exclusion of the women

in the study are detailed in Christian et al. (2003a). The team measured the birth weight within

72 hours of delivery and then followed the infants for one year to determine whether or not they

survived. In the motivating study, treatments were randomized to 426 communities rather than

to individual women. This can create some correlation among the birth weights and infant deaths

within communities. It is a minor extension of the methods discussed in this paper to account for

this clustering which turns out to be of negligible magnitude for the infant mortality outcome. To

simplify the notation and exposition, we will not address clustering here.

The interesting aspect of this study is that the investigators anticipate that antenatal iron-

folic acid supplementation may affect birth weight and ultimately survival differently among the

smaller and larger babies. That is, they hypothesize that there could be an interaction between

the treatment effect and the birth weight percentiles. Cox (1984) referred to this situation as the

most basic form of interaction. Doksum and Sievers (1976) defines a similar form of interaction by

allowing the treatment effect to vary as a function of the health response. Koenker and Bassett

(1978) introduced quantile regression methods which model the quantile function of an outcome
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variable as a function of covariates, and applied this approach to survival times where the regression

parameters are allowed to depend on the quantile of interest (Koenker and Geling, 2001). Dominici

et al. (2003) recently introduced Smooth Quantile Ratio Estimation (SQUARE), a novel method

for estimating the difference in medical expenditures between persons with and without a disease

as a function of the medical expenditures percentiles.

The second interesting question from this study is whether the antenatal iron-folic acid sup-

plementation improves survival largely through its positive effect on birth weight. The hypothesis

is that supplementation will improve intra-uterine growth, lowering the risk of LBW and thus in-

creasing the chance of survival during the first year after a live birth. Therefore we are interested in

investigating the relative importance of different pathways for the antenatal iron-folic acid supple-

mentation on survival. By one pathway, the intervention affects survival only throughout a change

in birth weight (the so called “mediated effect”). A second possible pathway is that intervention

affects survival over and above its effect on intra-uterine growth, that is through other mechanisms

that do not involve birth weight. We refer to this pathway as a “direct effect”.

To explore the association between birth weight and mortality, we fit a logistic regression model

expressing the log odds of infant death as a separate smooth function of the birth weight for the

control and intervention groups. The top panel of Figure 1 shows the smoothed histograms of the

birth weights. The bottom panel shows the estimated smooth curves with 95% confidence bands

plotted in correspondence to the ranges of the measured birth weights in the two groups. These

exploratory plots suggest that: 1) the probability of death decreases as the birth weight increases

and tends to rise again for the heaviest babies in the control group; 2) approximately 43% and

34% of the babies in the control and in the intervention groups are LBW, respectively, suggesting

that the treatment may reduce the percentage of LBW; and 3) the visual inspection of the two

smoothed histograms suggests that the treatment increases birth weight for the smaller babies only,

thus indicating that the treatment effect on birth weight might vary with respect to the percentiles

of the birth weight distribution.

The statistical literature on surrogate endpoints and causal inference extensively discusses post-

treatment variables in clinical trials and observational studies. Prentice (1986) first proposed crite-

ria for a perfect surrogate (e.g. the birth weight), the most important being that the final response

is conditionally independent of treatment given the surrogate. When the assumption of condi-

tional independence is violated, related approaches have been proposed that compare results of

the regression of the health response on the treatment with and without the adjustment for the

intermediate variable (Freedman et al., 1992; Daniels and Hughes, 1997; Buyse and Molenberghs,

1998; Begg and Leung, 2000; Leung, 2001; Molenberghs et al., 2001; Xu and Zeger, 2001; Cowles,

2002). Robins (1989), Robins and Greenland (1992), and Pearl (2000) have developed identifia-

bility results for direct and indirect causal effects under the framework of potential outcomes and

they define an “individual direct effect” as the counterfactual effect of a treatment on an outcome
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when the intermediate variable is set at the value it would have had if the individual had not

been treated (see also Cole and Hernan (2002)). These identifiability results have been recently

generalized by van der Laan and Petersen (2004). Frangakis and Rubin (2002) proposed a novel

approach for defining causal effects adjusted for post-treatment variables. This approach, known as

“principal stratification”, is based upon a comparison of treatment effects on the outcome among

sub-populations for whom a causal effect of treatment on the post-treatment variable did and did

not occur.

The broad objectives of this paper are to develop and apply a statistical model with counter-

factual variables for this birth weight-mortality study. The contributions of this paper are to: 1)

define and compare population and causal parameters (Holland, 1986) that measure the effects of

an intervention on a clinical outcome (infant mortality) that are allowed to vary with the percentiles

of the post-treatment variable (birth weight); 2) extend and apply a causal statistical framework

to compare the causal “direct” effect of the treatment on mortality, from the causal effect of the

treatment on mortality that is “mediated” by post-treatment changes in birth weight; 3) develop

a Bayesian approach with data augmentation (Tanner and Wong, 1987; Tanner, 1991; Albert and

Chib, 1993; Chib and Greenberg, 1998) for approximating the marginal posterior distributions of all

parameters of interest accounting for the uncertainty about the missing counterfactuals; 4) quantify

the sensitivity of causal inferences to key assumptions for which there are not direct observations

in the data set.

In Section 2, we introduce notation, specify our model, and define the population and causal

parameters. In section 3, we define the complete likelihood function for the observed data and

the missing counterfactual data. In this section, we also describe our Monte Carlo Markov Chain

with data-augmentation algorithm (Tanner and Wong, 1987; Tanner, 1991) for approximating the

posterior distributions of all the unknown parameters and the unobservable variables. In Section

4, we summarize the results by comparing causal and population parameter estimates. We explore

sensitivity of the causal parameter estimates to the unverifiable assumptions about counterfactuals,

to model specification, and to distributional assumptions. In Section 5, we discuss future research

opportunities.

2 Definition of Population and Causal Parameters

In this section, we define population and causal parameters of scientific interest in terms of coun-

terfactual variables. To establish notation, let Zi be the treatment indicator for live birth i that

takes values 0 or 1 to indicate the control and the treatment groups, respectively. Let W obs
i be

the observed birth weight measurement within the 72 hours of the delivery, and let Y obs
i be the

observed mortality indicator within one year. Let n0 = 866 and n1 = 766 be the number of live
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births for the control and the treatment groups respectively and let N = n0 + n1 = 1632 be the

total number of live births.

Adopting a causal model with potential outcomes (Rubin, 1978; Holland, 1986), let Z be the

N -dimensional vector of treatment assignments with ith element Zi, andWi(Z) be the birth weight

of baby i given the randomly allocated vector Z. We define Yi(Z,W ) to be the binary random

variable for the mortality indicator for baby i corresponding to the vector of birth weightsW and

the vector of treatment assignments Z. We refer to Yi(W ,Z) and Wi(Z) as potential outcomes.

To assure a valid causal interpretation of the causal estimands defined below, we make the following

usual assumptions:

1. Stable Unit Treatment Value Assumption (SUTVA) (Rubin, 1978): the potential outcomes

of each baby i are unrelated to the treatment status of other babies. That is, the birth

weight and the mortality potential outcomes of each baby are not affected by the treatment

assignment of others. Therefore we can write Yi(Z,W ) and Wi(Z) as Yi(Zi,Wi) and Wi(Zi),

respectively;

2. Ignorable Assignment: assignment to the supplementation is at random;

3. Perfect compliance with the treatment: all mothers take the assigned dose in both treatment

groups.

Note that Yi(0) and Wi(0) are defined for all N babies, but only observed for the n0 babies in

the control group of the study. Similarly, Yi(1) and Wi(1) are defined for all N babies, but only

observed for the n1 babies in the intervention group. Thus we denote the observed and the missing

data as Y obs
i = {Yi(z), if z = Zi} and Y

mis
i = {Yi(z), if z 6= Zi}, respectively. Similar definitions

apply for W obs
i and Wmis

i .

The parameters of interest are defined in Tables 1 and 2 for birth weight and mortality respec-

tively. The first two rows of Table 1 indicate population parameters measuring difference between

the means (∆W ) and the percentiles (∆W
p ) of the population of birth weights for the two treat-

ments. Note that the parameter ∆W
p is defined as Q1(p) − Q0(p) where Q1(p) and Q0(p) are the

quantile functions of the marginal distributions of Wi(1) and Wi
′ (0) respectively.

The last two rows of Table 1 define the causal parameters measuring the effects of the treatment

on birth weight, on average (τW ), and specific to the percentiles of the birth weight distribution

(τW
p ). Note that ∆

W
p is a population parameter, whereas τW

p is a causal parameter: in the definition

of ∆W
p , we consider the difference in percentiles of two different distributions of birth weights. In

the definition of τW
p , we consider the expected difference in birth weightsWi(1)−Wi(0) for the same

baby (Holland, 1986) whose control value Wi(0) is at the p-percentile of the control distribution.
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Table 2 summarizes the population and causal parameters for the treatment effect on infant

mortality. Prior to defining these parameters, we need to specify a functional relationship between

death and birth weight. Substantive knowledge and our exploratory analyses indicates that the

following logistic regression model is a reasonable approximation to the actual mortality process:

logitPr{Yi(Zi) = 1 | Zi,Wi(Zi)} = β0 + β1Zi + s(Wi(Zi), 3), Zi = 0, 1. (1)

where s() denotes a natural cubic splines with 3 knots.

By specifying this parametric model we make two key assumptions.

4. Conditional independence of survival from the counterfactual birth weight given the treatment

assignment and the observed birth weight: For each baby, we assume that the probability of

death under the treatment depends only on the birth weight under that treatment, and it does

not depend on what birth weight would have been had the same baby been randomized to

the other group. That is we assume, Pr{Yi(Zi) = 1 | Zi,Wi(Zi),Wi(1− Zi)} = Pr{Yi(Zi) =

1 | Zi,Wi(Zi)};

5. No interaction between the direct treatment effect on survival and the birth weight: We assume

that the direct effect of the treatment on mortality is the same for all babies and does not

vary with respect to the birth weight distribution. That is we can write:

logitPr{Yi(1) = 1 | Zi = 1,Wi(1) = w} − logitPr{Yi(0) = 1 | Zi = 0,Wi(0) = w} = β1.

This assumption can be relaxed by assuming a linear or non-linear interaction between the

treatment and the birth weight, for example by replacing β1Zi with β1(Zi × Wi(Zi)) – or

more generally with Zi × s2(Wi(Zi), 3) – in model (1).

The first two rows of Table 2 indicate population parameters measuring treatment effect on

mortality, on average (∆Y ), and conditional on a specific percentile of the birth weight distribution

(∆Y
p ). Note that ∆

Y
p defines the difference in the probability of death between treated and non

treated infants who are at the same percentiles of their respective birth weight distribution. Thus

∆Y
p is not a causal parameter, because these differences correspond to two different sub-populations

of babies.

The last two rows of Table 2 indicate the causal parameters measuring the effects of treatment

on infant mortality, on average (τY ), and specific to the percentiles of the birth weight distribution

(τY
p ). Thus, for a specific p, τ

Y
p can be interpreted as a causal effect which compares the probability

of death for the same baby i given that the assumption that his/her birth weight under the control

(Wi(0)) is at the p-th percentile.

In the last row of Table 2, we use the idea of principal stratification by Frangakis and Ru-

bin (2002) for defining causal parameters of the effects of treatment on infant mortality that are
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“adjusted” and “mediated” by post-treatment changes in birth weight. More specifically, τ Y
1 and

τY
2 are the effects of treatment on mortality in the two sub-populations of LBW babies for whom

the treatment effect on birth weight was smaller and larger than 50 grams, respectively. Thus

a comparison between τY
1 and τY

2 measures the degree to which a causal effect of treatment on

mortality occurs together with a causal effect of treatment on the birth weight among the LBW.

The parameters τY
3 and τY

4 are the analogues of τY
1 and τY

2 for the not-LBW infants, that is for

the infants with birth weight larger than 2500 grams.

All causal parameters (τ) depend upon unverifiable assumptions about the joint distribution

of the counterfactual pairs of variables {Wi(0) and Wi(1)}, and {Yi(0) and Yi(1)}. In order to

estimate the average causal effects (τs), we make the following key but unverifiable assumptions

about the correlation between the observed outcomes and their counterfactuals:

6. Correlation between the observed and the counterfactual birth weight: we assume that the

correlation between Wi(Zi) and Wi(1− Zi), denoted by ρ, varies between 0.5 and 0.9.

7. Odds ratio between the observed and counterfactual mortality given birth weight: Let µi(11)

be the joint probability that the same baby i would die in both groups defined as P (Yi(Zi) =

1, Yi(1− Zi) = 1 |Wi(Zi),Wi(1− Zi)). We assume that the odds ratio ψ = (µ(11)× µ(00))/

(µ(10)× µ(01)) varies between 3 and 20.

These choices are arbitrary but based on prior knowledge. As a guide for reasonable choices

of ρ, we have used data from this randomized trial and from other data sources (Rahmathullah

et al., 2003; Katz et al., 2000b, 2001) to estimate the correlations of birth weights for two successive

children born to the same mother and birth weights for twins. We found that these correlations

range from 0.45 to 0.7. The analogous odds ratios for mortality were estimated to be 1.8 and 52

respectively. As detailed in the next section, we will study the dependence of our causal inferences

to the prior choices on the correlation coefficient ρ and on the odds-ratio ψ.

3 A Bayesian Implementation of Causal Inference

In this section, we define a Bayesian approach for approximating the marginal posterior distributions

of the population and the causal parameters defined in Section 2. We start by defining the likelihood

function for the complete data as:

L(η1,η2) =
N
∏

i=1

Pr(Yi(1), Yi(0) |Wi(1),Wi(0),η1)× f(Wi(1),Wi(0) | η2). (2)
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In section 3.1, we specify f(Wi(1),Wi(0) | η2) as a mixture of normal distributions. In Sec-

tion 3.2, we specify an odds-ratio association model for bivariate binary variables P (Yi(1), Yi(0) |

Wi(1),Wi(0),η1) (Liang et al., 1992). This model will be consistent with equation (1). In section

3.3, we then detail the elicitation of the prior distributions and the implementation of the MCMC

methods with data augmentation to obtain posterior samples of all the unknown parameters and

the missing counterfactuals variables.

3.1 Statistical model for birth weight

We begin our specification of the joint distribution in Equation (2), by assuming that the marginal

distributions of the random variables Wi(z), z = 0, 1, i = 1, . . . , N are a mixture of J(= 3) normal

distributions:

fz(Wi(z) | µz,σ
2
z,γz) =

∏J
j=1 γzjφ(Wi(z);µzj , σ

2
zj), z = 0, 1 (3)

where φ(x;µ, σ2) is the density of a normal distribution with mean µ and variance σ2, µz =

(µ1z, µ2z, µ3z), σz = (σ1z, σ2z, σ3z), and γz = (γ1z, γ2z, γ3z), where γjz are the mixing probabilities

with
∑J

j=1 γjz = 1. To identify the mixture we set the constraint µ1z < µ2z < µ3z (Kadane, 1974).

We further assume that σ2
1z = σ2

3z = 2×σ
2
2z: assigning a larger variance to the outside components

of the mixture is designed to flexibly capture heavy-tailed distributions. For ease of notation, we

will set σ2
z = σ2

2z.

This distributional assumption allows the parameters ∆W
p and τW

p to vary flexibly as functions of

the percentiles (p) of the birth weight distribution. If instead of the mixture model (3), we assumed

thatWi(z) ∼ N(µz, σz), then ∆
W
p = (µ1−µ0)+(σ1−σ0)Φ

−1(p). Therefore, the simpler assumption

of normality for the marginal distributions of Wi(0) and Wi(1) imposes a specific parametric form

for ∆W
p which does not depend on p for σ1 = σ0. In the results section, we will calculate the

posterior probability of σ2
0 6= σ2

1 to provide evidence in favor of the assumption that ∆
W
p depends

on p, and we will explore the sensitivity of the posterior distribution of ∆W
p as a function of p,

under the mixture model and under the simpler assumption of normality with σ0 = σ1.

To allow for a correlation between Wi(0) and Wi(1), we assume that the standardized variables

Φ−1[Fz(Wi(z))], z = 0, 1 have a bivariate normal distribution with mean zero, variance 1 and

correlation ρ, where Φ is the cdf of a standard normal distribution and Fz is the cdf of Wi(z).

In this formulation for the joint distribution of (Wi(0),Wi(1)), letting ρ = 1 corresponds to the

rank preservation assumption used by Efron and Feldam (1991). Our specification allows for a single

interpretable parameter capturing the correlation between Wi(0) and Wi(1), while allowing for a

flexible representation of the two marginal distributions. An alternate stochastic generalization of

the rank preservation assumption, obtained by specifying a probabilistic distribution on the ranks,

has also been developed by Dobbin and Louis (2003).

9
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3.2 Statistical model for infant mortality given birth weight

We specify the causal model for the joint distribution of the two outcome indicators conditional

on the birth weights. Following Liang et al. (1992), we parametrize the 2 × 2 joint distribution

[Yi(0), Yi(1) | Wi(0),Wi(1)] in terms of the margins and the odds ratio. Specifically, we assume

that:

P (Yi(0) = yi(0), Yi(1) = yi(1) |Wi(0),Wi(1),η1) = µi(0)
yi(0)(1− µi(0))

1−yi(0)×

× µi(1)
yi(1)(1− µi(1))

1−yi(1)+

(−1)yi(0)−yi(1)(µi(11)− µi(0)µi(1))

(4)

where µi(1) = Pr(Yi(Zi) = 1 | Zi,Wi(Zi)) is defined in Equation (1). The parameter µi(11) =

Pr(Yi(0) = Yi(1) = 1 | Wi(0),Wi(1)) is a known function of the marginal probabilities µi(1), µi(0)

and of the odds ratio ψ.

3.3 Prior Distributions and Computation

Distributional assumptions in Sections 3.1 and 3.2 involve the following vectors of unknown param-

eters: 1) η1 = (β, ψ) where β includes β0, β1 and the spline coefficients defined in the regression

model (1); and 2) η2 = (µ0,µ1, σ0, σ1,γ0,γ1, ρ) denoting all the unknown parameters of the mix-

ture (3). As stated in assumptions 6 and 7, the parameters ρ and ψ measure the association between

the observed outcomes and their counterfactuals and they cannot be identified from the observed

data. We specify prior distributions on the parameter of the mixture that are proper but vague

enough to achieve goodness of fit to the observed birth weights. These choices are summarized in

Table 3. In the results section, we explore the sensitivity of our results with respect to different

values of ρ and ψ and we evaluate the goodness of fit of the empirical distributions of the observed

birth weights.

To investigate the posterior distributions of all parameter of interest we implement Monte Carlo

Markov Chain methods with data augmentation for imputing the missing data (Tanner, 1991; Gel-

man et al., 1995). Bayesian sampling of parameters of normal mixture distributions is typically

handled by introducing auxiliary variables representing mixture component indicators, which re-

sults in closed form full conditionals (Diebolt and Robert, 1994). In our case, this option was not

practical because of the special correlation structure we used, and because the unobserved birth

weight variables enter the logistic component of the likelihood as well. We thus implemented a

Metropolis-within-Gibbs (Tierney, 1994) approach, in which both the parameters and the counter-

factual variables are sampled using a random walk proposal, truncated to the region defined by the

constraints wherever applicable.

For each posterior sample of the unknown parameters and counterfactuals, we obtain a posterior

sample of the p-specific parameters as follows. To obtain a posterior sample of ∆W
p , we sort Wi(0)
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andWi
′ (1) within the two groups of treated and untreated babies separately and then we take their

difference. To calculate a posterior sample of τW
p , we sort by Wi(0) and then we take the difference

between the sorted Wi(0) and its matched Wi(1) for the same infant i. To calculate a posterior

sample of ∆Y
p , we first sort Yi(0) with respect to Wi(0) and Yi

′ (1) with respect to Wi
′ (1) within

each of the two groups separately, and then we take the difference. Finally to calculate a posterior

sample of τY
p , we sort Yi(0) with respect to Wi(0), and then we take the difference between the

sorted Yi(0) and its matched Yi(1) for the same baby i. We smoothed the posterior samples of

these percentile-specific parameters to reduce monte carlo variability in the posterior probability

bounds.

4 Results

Figure 2 shows the posterior means and 95% posterior regions of the p-specific treatment differences

in birth weight (∆W
p ) comparing the treatment and control populations, plotted with respect to p

under the two modelling assumptions for (Wi(0),Wi(1)). In Panel (a)Wi(0),Wi(1) have a bivariate

normal distribution with equal variances. In Panel (b) Wi(0),Wi(1) have a mixture of normal

distributions with correlation ρ as defined in Section 2. The triangles denote the difference between

the empirical quantile functions for the observed data. The black dots denote the posterior means

of ∆W
p as a function of p.

Under the two modelling assumptions for the birth weights, the posterior means of ∆W
p are

generally consistent with the observed differences. However these two sets of estimates are very

different at the smallest and at the largest percentiles. In fact in Panel (a), ∆W
p is a constant function

of p as is reflected in the flat line relationship in the lower left panel. If we fit a bivariate normal

distribution without the constraint of equal variances, the posterior probability that log σ2
1 − log σ

2
0

is less than zero is 97%, thus providing strong evidence that ∆W
p varies with respect to p. Panel

(b) shows that, when a more flexible mixture model is used, the effect of the intervention on the

birth weight appears to vary by percentiles of the birth weight distribution. Therefore, estimating

the posterior means of ∆W
p by use of summaries of the posterior samples of W s without imposing

the normality assumption, provides a useful diagnostic tools for the performance of the algorithm

and indicates that our mixture model with unequal variance in preferred and it will be used to

report the results described below. Under the mixture model, we estimated a difference in birth

weights quantiles between groups equal to 100 grams (95% posterior interval: 30 to 190) for the

smallest babies (p ' 0.05) and that the treatment difference was close to zero for the largest babies

(p ' .95). This is an ideal improvement as it has its greatest effect where the need is greatest.

Figure 3, Panel (a), shows the posterior means and 95% posterior regions of the p-specific causal

effects of treatment on birth weight (τW
p ) under the mixture model, ρ = 0.9 and ρ = 0.5 (darker
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line). The vertical line is placed at the 0.42 percentile corresponding to 2500 grams in the control

sample. Note that under the hypothesis of rank preservation (ρ = 1), then τW
p = ∆W

p . For ρ

different than one, population and causal parameter inferences differ by an amount that increases

towards the tails of the birth weight distribution. Among LBW infants, we found that the average

causal effects of the intervention on the birth weight are equal to 150 grams (95% posterior regions

100 to 300 grams) and to 410 grams (95% posterior regions 230 to 750 grams) for ρ = 0.9 and 0.5,

respectively.

Figure 3, Panel (b), shows the sensitivity of the posterior distributions of the causal effect of

treatment on birth weight (τW
p ) separately for three sub-populations of babies (Wi(0) ≤ 1500, 1500 <

Wi(0) ≤ 2500,Wi(0) < 2500), and overall for all babies, with respect to (ρ, ψ). The horizontal dot-

ted line is placed at the sample mean difference (∆W ). Within each sub-population, these causal

effects are very sensitive to ρ but not to ψ. However the average causal effect of supplementation

on birth weight (τW ) – estimated to be 68 grams (95% posterior regions 25 to 110) – is robust to

modelling assumptions about both ρ and ψ.

Figure 4, Panel (a), shows the posterior means and 95% posterior regions of the p-specific

difference in infant mortality rates between the treatment and control populations (∆Y
p ) plotted

with respect to the percentiles of the birth weight distributions. For a specific p, ∆Y
p is the difference

in the probability of death between the babies with birth weights Wi(1),Wi
′ (0), each at the p-

percentile of their respective birth weight distributions. The vertical dotted line is placed at the

0.42 percentiles corresponding to 2500 grams in the control sample. There is no convincing evidence

of a difference in the probabilities of death across the entire birth weight distribution.

Figure 4, Panel (b), shows the posterior means and 95% posterior regions of the p-specific causal

effect of the treatment on infant mortality (τY
p ) plotted with respect to the percentiles of Wi(0) for

ρ = 0.9 and ρ = 0.5. For a specific p, τY
p is defined as the difference in the probability of death

for the same baby i whose control birth weight {Wi(0)} is at the p-th percentile. For ρ = 0.9, we

found that the causal effect of supplementation on mortality adjusted by birth weight is negative

(intervention better) for the smaller babies and that this effect diminished for the larger babies,

although with wide posterior regions. Posterior inferences on τ Y
p are sensitive to ρ at the smallest

percentiles. For ρ = 0.5 (darker line), there is stronger support for a beneficial “direct” effect of

the supplementation on mortality among the very small babies only.

Figure 4, Panel (c), shows the posterior distributions of the causal effects of treatment on

mortality for different values of (ρ, ψ) among different sub-population of babies. More specifically

the posterior distributions are shown separately for four sub-populations of babies: 1) babies with a

birth weight smaller than 2500 grams (LBW infants) for whom there is a causal effect of treatment

on birth weight smaller than 50 grams (τY
1 ); 2) LBW infants for whom there is a causal effect of

treatment on birth weight larger than 50 grams (τ Y
2 ); 3) babies with a birth weight larger than 2500
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grams (not-LBW infants) for whom there is a causal effect of treatment on birth weight smaller

than 50 grams (τY
3 ); and 4) not-LBW infants for whom there is a causal effect of treatment on

birth weight larger than 50 grams (τY
4 ). The four boxplots at the far right show the posterior

distributions of the total (direct plus mediated) causal effect of supplementation on mortality on

average for all babies (τY ).

The four boxplots on the left (posterior distributions of τ Y
1 ) indicate that, among the LBW

babies with little change in birth weight after the supplementation, there is only weak evidence

that antenatal iron-folic acid supplementation affects survival. The second set of four boxplots

(posterior distributions of τY
2 ) suggest that, among the LBW babies with absolute changes in birth

weight after the supplementation larger than 50 grams, there is much stronger evidence that the

antenatal iron-folic acid supplementation affects survival. The posterior means of these “mediated”

causal effects for ρ = 0.9 and ρ = 0.5 are equal to -0.046 and -0.071 (95% posterior regions -0.11

to 0.02 and -0.13 to -0.02), respectively. These results indicate that a LBW infant receiving the

intervention has 5% to 7% smaller chance of death than if the same baby had received the control

intervention. This higher chance of death is due to changes in birth weight from the control to the

treatment larger than 50 grams. The posterior distributions of the parameters τ Y
3 and τ

Y
4 indicate

that there is little evidence of a beneficial effect of supplementation on infant mortality for the

not-LBW babies. The average causal effect of supplementation on mortality is robust to modelling

assumptions and to (ρ, ψ).

Finally, we evaluate the consistency of the model assumptions and prior distributions with the

patterns in the observed data. Figure 5 (top) shows 95% posterior regions of Fz(Wi(z),θ
(j)
z ), z =

0, 1 where Fz are the cumulative distribution functions (cdfs) from the mixture model defined in

Equation (3) and θ
(j)
z are the jth posterior samples of the parameters of the mixture. The black

lines are the corresponding empirical cdfs, estimated directly from the observed birth weights. We

see that the assumed model is reasonably consistent with the data.

5 Discussion

A micronutrient supplementation trial is considered effective if the treatment reduces the risk of

infant mortality either directly or through increases in birth weight. Because infant mortality is

greatest among low birth weight infants (LBW), an effective intervention must increase birth weight

mainly among the smallest babies. In addition, it has been hypothesized that the supplementation

could be harmful if it increases birth weight among the largest babies. A community-based trial

in Nepal has shown that a multiple micronutrient supplementation increases birth weight but the

limitation in the study size have to date prevented us from establishing that this translates into a

mortality benefit (Christian et al., 2003b).
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In this paper we develop a causal model to evaluate the efficacy of micronutrient supplemen-

tation trials in developing countries. We focus on whether the supplementation increases birth

weight and ultimately survival differently among the smaller and the larger babies, and whether

the supplementation improves survival largely through its positive effect on birth weight (mediated

effect) or it improves survival even without affecting the birth weight (direct effect). Addressing

these scientific questions is challenging because birth weight is a post-treatment variable (i.e. in-

termediate variable) that is in the causal pathway between nutritional supplementation and infant

mortality.

Although average causal effects are robust to unverifiable assumptions about counterfactuals,

posterior inferences on causal effects toward the tails of the birth weight distribution (for example

among LBW infants) can be highly sensitive to ρ. More specifically we found that: among LBW

infants, the effect of micronutrient supplementation on birth weight is greatest and its estimates

size is highly sensitive of ρ: lower values of ρ correspond to a larger causal increase in birth weight.

The posterior distributions of the population and causal parameters are evaluated by using

Bayesian inferences with data-augmentation methods (Tanner and Wong, 1987; Tanner, 1991; Al-

bert and Chib, 1993; Chib and Greenberg, 1998). A nice feature of this inferential approach is

that we can evaluate the posterior distributions of the quantities of interest taking into account

uncertainty in the imputation of the the missing counterfactuals. In addition, we can easily explore

the sensitivity of the posterior inferences to unverifiable assumptions about the correlation between

the observed and the counterfactual variables.

To implement our approach we make several important assumptions. The first two (SUTVA,

random assignment), are justified by the randomization of the treatment assignment and the in-

dependence of the sampling units. Third we assume perfect compliance. The compliance for this

trial was very good and did not depend on the treatment (Christian et al., 2003a). The fourth and

the fifth assumptions are in the logistic regression model for the probability of infant mortality as

a function of the treatment indicator and the birth weight for the treatment received. Under the

fourth assumption, we expect that that the risk of mortality under the treatment would depend only

on the actual birth weight and not on the birth weight for the intervention not received. The fifth

assumption, that the direct effect of the intervention on mortality is common to babies of all sizes,

is consistent with the patterns in Figure 1 but there is little statistical power to show otherwise.

Finally the sixth and the seventh assumptions are about the associations between the observed

and the missing counterfactuals and these associations cannot be estimated from the data. To deal

with this unidentified problem we: a) use data on siblings to estimate lower bounds for ρ and ψ

and use those as a guide for our prior choices and sensitivity analyses; b) explore the sensitivity

of estimated causal parameters with respect to choices for ρ and ψ; and c) compare inferences on

causal parameters versus inferences on population parameters which are not affected by ρ and ψ.
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The methodological development of this paper cuts across several contributions in quantile

regression and causal inference literature. For example, we could have estimated the p-specific

parameter ∆W
p by use of a quantile regression model of the form Q(p) = αp + ∆

W
p Zi (Koenker

and Bassett, 1978) where Q(p) is the quantile function of W obs
i , and Zi represents the treatment

assignment. However in this paper we extend the traditional definition of p-specific regression

coefficients in two ways: 1) we introduce p-specific regression coefficients in presence of post-

treatment variables where the treatment effect on the dependent variable is allowed to vary with

respect to the percentiles of an intermediate variable (∆Y
p ); 2) we introduce causal analogues of p-

specific regression coefficients which vary with respect to the percentile of the counterfactual Wi(0)

(τW
p , τY

p ).

Estimation methods in quantile regression are based upon finding the solution of a quantile

regression minimization problem with a pre-specified loss function (Koenker and Bassett, 1978).

Bayesian analogues are described by Yu and Moyeed (2001). Our estimation approach for the p-

specific parameters is simply based upon transformations of the posterior samples of (Wi(0),Wi(1)).

By modelling the marginal distributions of Wi(0) and Wi(1) as a mixture of normals instead of a

single normal distribution, we allow very flexible shapes for the p-specific treatment effects. This

gain in goodness of fit, especially at the tails of the birth weight distribution is clearly shown in

Figure 2 and supported by the posterior inferences on the variances components of the mixture

model.

In the causal inference literature, Angrist et al. (1996) showed how instrumental variables (IV)

can be embedded within the Rubin Causal Model for estimating an average causal effect in the

presence of a binary post-treatment variable. These authors introduced five assumptions under

which an IV-estimator (Durbin, 1954) can be interpreted as the average causal effect. The first two

assumptions are the SUTVA and the random assignment. The third assumption, called exclusion

restriction, assumes that any effect of the treatment on the health outcome must be via an effect

of the treatment on the post-treatment variable, that is, there is no direct effect. We are not

making this assumption: we use principal stratification to compare the different causal pathways

on how the supplementation affects survival. In addition Angrist et al. (1996) assume monotonicity

in the post-treatment variable, that is that Wi(1) ≥ Wi(0), we instead define a joint model for

(Wi(0),Wi(1)).

By specifying a joint model for for (Wi(0),Wi(1)), which allows for the correlation ρ between

the normalized percentiles of Wi(0) and Wi(1), we provide a stochastic generalization of the rank

preservation assumption (Efron and Feldam, 1991) similar to the one recently proposed by Dobbin

and Louis (2003). More specifically, the hypothesis of rank preservation (also called percentiles

invariance) implies that, for any group of participants the birth weight percentiles would not be

permuted if the group had been assigned to another treatment. In our model specification for the

birth weights, the percentile invariance assumption leads to ρ = 1 which also implies that all the
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population parameters ∆s are equal to the to causal parameters τs.

The methodology we described has broad applicability to a variety of situation in which one

investigates a continuous post-treatment variable that potentially mediates a binary response of

interest. For example, similar issues arise in cancer trials that evaluate both tumor growth and

survival. In these studies it is likely that there are both mediated and direct effects of treatments,

and that these effects may vary across the distribution of tumor growths. In summary, we have pro-

vided an inferential framework for estimating causal effects in a randomized trial with a continuous

post-treatment variable. By comparing population with causal parameter estimates, carrying out

sensitivity analyses, and implementing principal stratification, we have characterized the amount

of evidence supporting the scientific questions of interest and their sources of uncertainty.

The estimation of treatment effects by percentile of the birth weight distribution has public

health significance. In the case study presented here, the treatment increased the birth weight of

smaller babies and had no apparent effect on larger babies. Had it increased the size of the larger

infants, both the infants and their mothers might have been at higher risk of mortality given the

absence of obstetrical care in rural communities. In such a situation, it would be necessary to

predict those mothers who are likely to have larger infants and to exclude them from intervention

programs. However, while maternal pre-pregnancy nutritional status, weight gain during pregnancy

and other factors are strong determinants of low birth weight, their ability to predict infants likely

to be born with low birth weight is still uncertain.

Currently recommendations exist for supplementing women with iron-folic acid during pregnancy

in developing countries. The Nepal study (Christian et al., 2003a) demonstrates that beyond

reducing anemia, iron can result in an improvement in birth weight primarily through moving the

lower tail of the birth weight distribution to the right. Presumably, this effect is mediated through

improving the iron status of those pregnant women who are the most iron deficient. These data

from Nepal reveal that when evaluating public health interventions it is important to be, at the very

least, cognizant of the differential beneficial effects of an intervention depending on where in the

distribution the program participants fall and that an overall effect size may: 1) under-estimate the

maximum likely benefit in the most malnourished individuals; and 2) incorrectly assume benefits

where none exist and potentially mask harm in the more well-nourished individuals.
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Table 1: Definition of population and causal parameters for estimating the effects of antenatal

iron-folic acid supplementation on birth weight as a function of birth weight percentiles. Q1(p)

and Q0(p) are the quantile functions of Wi(1) and Wi
′ (0), respectively. The parameters ρ and ψ

measure the correlation between Wi(0) and Wi(1) and the odds-ratio between Yi(0) and Yi(1). The

subscripts i and i
′

indicate two different infants.

Percentile-specific Effects on Birth Weight

Population Parameters

Average ∆W = E[Wi(1)]− E[Wi
′ (0)] = E[W obs

i | Zi = 1]− E[W
obs

i
′ | Zi

′ = 0]

p-specific ∆W
p (ρ) = E[Wi(1) | F1(Wi(1)) = p]− E[Wi

′ (0) | F0(Wi
′ (0)) = p] = Q1(p)−Q0(p)

Causal Parameters

Average τW (ρ, ψ) = E[Wi(1)−Wi(0)]

p-specific τW
p (ρ, ψ) = E[Wi(1)−Wi(0) | F0(Wi(0)) = p]

Table 2: Definition of population and causal parameters for estimating the effects of antenatal iron-

folic acid supplementation on infant mortality as a function of the birth weight percentiles. The

parameters ρ and ψ measure the correlation between Wi(0) and Wi(1) and the odds-ratio between

Yi(0) and Yi(1). The subscripts i and i
′

indicate two different infants.

Percentile-specific Effects on Mortality

Population Parameters

Average ∆Y = E[Yi(1)]− E[Yi
′ (0)] = E[Y obs

i | Zi = 1]− E[Y
obs

i
′ | Zi

′ = 0]

p-specific ∆Y
p = E[Yi(1) | F1(Wi(1)) = p]− E[Yi

′ (0) | F0(Wi
′ (0)) = p]

Causal Parameters

Average τY (ρ, ψ) = E[Yi(1)− Yi(0)]

p-specific τY
p (ρ, ψ) = E[Yi(1)− Yi(0) | F0(Wi(0)) = p]

P-Stratification






















τY
1 (ρ, ψ) = E[Yi(1)− Yi(0) givenWi(0) ≤ 2500 & |Wi(1)−Wi(0) |≤ 50]

τY
2 (ρ, ψ) = E[Yi(1)− Yi(0) givenWi(0) ≤ 2500 & |Wi(1)−Wi(0) |> 50]

τY
3 (ρ, ψ) = E[Yi(1)− Yi(0) givenWi(0) > 2500 & |Wi(1)−Wi(0) |≤ 50]

τY
4 (ρ, ψ) = E[Yi(1)− Yi(0) givenWi(0) > 2500 & |Wi(1)−Wi(0) |> 50]
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Parameter Prior distribution

β flat

µ0 N3

[

(1500, 2500, 3500), 5002I
]

µ1 N3

[

(2000, 3000, 3500), 5002I
]

σ2
0 LN(log(4002), 0.8)

σ2
1 LN(log(4002), 0.8)

γ0 Dirichlet(10, 1
3 ,

1
3 ,

1
3)

γ1 Dirichlet(10, 1
3 ,

1
3 ,

1
3)

Table 3: Prior distributions on the unknown parameters of the mixture. I denotes a 3× 3 identity

matrix, 5002 denotes the prior variance, LN denotes the log-normal distribution with prior mean

400 and prior standard deviation 0.8.
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Figure 1: Top: smoothed histograms of the birth weights for the treated and the control groups.

Bottom: estimated log-odds of death as smooth function of the birth weight with 95% confidence

bands and plotted in correspondence to the observed range of birth weights in the two groups.
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Figure 2: Posterior means and 95% posterior regions of the p-specific effects of treatment on

birth weight (∆W
p ) under the following modelling assumptions for (Wi(0),Wi(1)): a) Wi(0),Wi(1)

have a bivariate normal distribution with equal variances; b)Wi(0),Wi(1) have a mixture of normal

distributions with correlation ρ as defined in Section 2. The triangles denote the differences between

the empirical quantile functions for the observed data. The black dots denote the posterior means

of ∆W
p as a function of p.
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Figure 3: Panel (a): Posterior means and 95% posterior regions of the p-specific causal effects

of treatment on birth weight (τW
p ) for ρ = 0.9 and for ρ = 0.5 (darker polygon). The vertical

dotted line is placed at the 0.42 percentile, corresponding to 2500 grams in the control distribution.

Panel (b): sensitivity analysis of the posterior distributions of the causal effect of treatment on

birth weight (τW
p ) separately for three sub-populations of babies Wi(0) ≤ 1500; 1500 < Wi(0) ≤

2500;Wi(0) < 2500 and overall for all babies with respect to (ρ, ψ). The horizontal dotted line is

placed at the sample mean difference (∆W ).

25

Hosted by The Berkeley Electronic Press



(a) (b)

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

p

PSfrag replacements

∆
Y p

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

p

PSfrag replacements

τ
Y p

(c)

−
0

.2
−

0
.1

0
.0

0
.1

0
.2

0.90.50.90.50.90.50.90.50.90.50.90.50.90.50.90.50.90.50.90.5

20 20 3 3 20 20 3 3 20 20 3 3 20 20 3 3 20 20 3 3

W0<2500 W0<2500
|W1−W0|<50 |W1−W0|>50

W0>2500 W0>2500
|W1−W0|<50 |W1−W0|>50

overallPSfrag replacements

τ
Y p

Figure 4: Panel a: posterior means and 95% posterior regions of the p-specific effects of treatment

on mortality (∆Y
p ). Panel b: posterior means and 95% posterior regions of the p-specific causal

effects of treatment on mortality (τY
p ) for ρ = 0.9 and for ρ = 0.5 (darker line). Panel c: posterior

distributions of the causal effects of treatment on mortality (τ Y
p ) for different values of (ρ, ψ). The

posterior distributions are shown separately for five sub-populations of infants: 1) LBW infants for

whom there is causal effect of treatment on birth weight smaller than 50 grams; 2) LBW infants for

whom there is a causal effect of treatment on birth weight larger than 50 grams; 3) not-LBW for

whom there is a causal effect of treatment on birth weight smaller than 50 grams; 4) not-LBW for

whom there is a causal effect of treatment on birth weight larger than 50 grams; and 5) all infants.
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Figure 5: Left and right: 95% posterior regions of F0(W
obs
i ,θj

0) and F1(W
obs
i ,θj

1) where F0, F1 are

the cdf of the mixture of three normal distributions, and θ
(j)
0 ,θ

(j)
1 are the the jth posterior sample

of the vector of parameters of the mixture. The black lines are the corresponding empirical cdf.
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