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Abstract

Multiple hypothesis testing is studied under a two-level hierarchical model.
The parameters of interest follow an unknown distribution in the lower level
of the model and govern the distribution of the observed data at the top level.
Multiple testing is viewed as the joint problem of (1) estimating a rejection
region in the possibly high-dimensional space occupied by the observed data
and (2) estimating the false discovery rate in the estimated rejection region.
Optimal rejection regions, that maximize power for a given rate of false dis-
coveries, depend on the unknown data-generating distribution and are gener-
ally not identifiable. By expressing optimal rejection regions as functions of
certain sufficient statistics we define conservatively optimal rejection regions
that are identifiable. A simple algorithm is described for conservative esti-
mation of optimal rejection regions under the general hierarchical model, and
implemented in detail for the case in which observed data follow a general
linear model. Proposed testing procedures are evaluated through simulations
and applications to gene expression data and are found to outperform the
estimated ‘Optimal Discovery Procedure’ (Storey 2005, Storey et. al 2006)
and the ‘Empirical Alternative Hypothesis’ (Signorovitch 2006).
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1 Introduction

The statistical theory of multiple hypothesis testing has provided a valuable
framework for the discovery of interesting genes in large-scale microarray
experiments (Tusher et al. 2001, Storey and Tibshirani 2003). In a typical
experiment aimed at identifying differentially expressed genes across several
tissue types, the null hypothesis of constant mean expression across tissues
is tested for every gene. If a gene’s true differential expression leads to the
rejection of this null hypothesis we have a true positive, whereas if the null
is rejected for a gene that truly has constant mean expression across tissues
we have a false positive.

An ongoing statistical challenge has been to extract as much relevant
information as possible from gene expression data so as to increase the rate
of true positives while controlling the rate of false positives.

A fundamental insight is that multiple testing for differential expression
can benefit from the combination of information across genes (Efron et al.
2001, Tusher et al. 2001, Storey 2005, Signorovitch 2006). In this paper, in-
formation is combined across genes by building on the following observation.

Consider reducing the data from each gene to a p-value and a statistic S
having the property that conditional on any value of S the p-value is uni-
formly distributed on [0,1] under the null hypothesis. For simplicity, assume
that S is binary, taking the value 0 or 1.

Now suppose that when the p-values from thousands of genes are divided
into two groups according to S, the p-values tend to be smaller in the S =
1 group than in the S = 0 group (Figure 1). We can say that the S =
1 group provides more evidence of differential expression in the following
sense. Suppose the null hypothesis is rejected for all p-values less than some
threshold a, regardless of S. If the method of Storey et al. (2004) is used
to estimate upper bounds on the FDR separately in the S = 0 and S = 1
groups, the estimated bound should be smaller in the S = 1 group, as can
be seen by applying Storey et al.’s (2004) FDR estimate

F̂DR =
a

1− ξ
× #{pi > ξ}

#{pi < a} ,

with tuning parameter 0 ≤ ξ < 1, to the illustrative data in Figure 1.
In practice S could indicate, for example, the sign of a t-statistic, with

the p-value corresponding to a two-sided t-test. S need not be binary. If the
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Distribution of all P-values
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Figure 1: The false discovery rate in the rejection region [0, a] can be bounded
below a smaller value when S = 1 than when S = 0.

p-value corresponds to an F -test, S could depend on the possibly multivari-
ate direction of departure from the null (Signorovitch 2006). Furthermore,
since the joint distribution of S and P need not be known under the null, S
could also depend on estimates of so-called nuisance parameters. For exam-
ple when testing for a treatment effect, S could depend on the overall mean
response, information that is ignored by the Optimal Discovery Procedure
(ODP) (Storey 2005, Storey et al. 2006) and the Empirical Alternative Hy-
pothesis (EAH) (Signorovitch 2006). In these examples, the value of S for
a single gene in isolation often contains no information regarding differential
expression. Only after combining realizations of S and P across many genes
do we have enough information to influence our assessment of significance
under an FDR criterion.

This paper lays out a framework for combining all relevant information
across related hypothesis tests. The sharing of information is justified under
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a two-level hierarchical model described in Section 2. A simple FDR-based
optimality criterion given in Section 3 leads to a view of multiple testing as
the joint problem of using data from all tests to (1) estimate optimal rejection
regions and (2) estimate the FDR in the estimated rejection regions. Section
4 shows that optimal rejection regions are in general not identifiable. By
making use of certain sufficient statistics, we define in Section 4 near-optimal
rejection regions that are identifiable and maximize power under a localized
upper bound on the rate of false discoveries. Given the data in Figure 1, a
near-optimal rejection region would allow different significance thresholds in
the S = 0 and S = 1 groups to maximize the expected number of rejected
hypotheses while controlling the overall FDR.

Consistent estimates of the near-optimal rejection regions provide conser-
vatively-estimated optimal (CEO) rejection regions. A general program for
obtaining CEO rejection regions under the hierarchical model is described in
Section 5. The program is then applied in detail to a two-sample Gaussian
setting in Section 6 and extended to the general linear model in Section 7.
CEO multiple testing procedures are evaluated in Section 8 through simu-
lations and in Section 9 through application to gene expression data. Con-
nections to other multiple testing procedures are explored in Section 10 and
possible extensions of CEO multiple testing are discussed in Section 11.

2 The Probabilistic Setting

Consider the random triple (Y, Θ, H) generated by a semiparametric hierar-
chical model with

H ∼ Bernoulli(1− p0)

Θ|H = h ∼ Gh (1)

Y |Θ = θ ∼ Pθ.

The indicator H represents a null hypothesis that is true (H = 0) with
probability p0 and false (H = 1) otherwise. The state of H in turn governs
the distribution of a d-dimensional parameter Θ with Θ ∼ G1 supported on
Rd when H = 1 and Θ ∼ G0 supported on a linear subspace V0 ⊂ Rd when
H = 0. We suppose that H and Θ are unobserved and that p0, G0 and
G1 are unknown. Each realization of Θ specifies a particular instance of the
known parametric model {Pθ : θ ∈ Rd} and we do observe the value Y ∈ Rn
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sampled from Pθ. We assume that the conditional distributions of Y given
H = 0 and H = 1 have continuous densities f0 and f1, respectively, on Rn.

Suppose an experiment generates m independent realizations (yi, θi, hi),
i = 1, . . . ,m, of (Y, Θ, H). Given the m observations yi, i = 1, . . . , m, our
objective is to determine as well as possible the values of the unobserved
indicators hi, i = 1, . . . ,m, or, equivalently, to test the hypotheses

θi ∈ V0, i = 1, . . . , m,

for a known subspace V0 ⊂ Rp.
In most experimental settings the observed data are generated according

to fixed parameter values θ1, . . . , θm. Modeling these values as realizations
of a random variable captures the idea that the observed data Y1, . . . , Ym

are related by some underlying phenomena. Inference under the frequentist
setting in which the θi’s and hi’s are fixed is considered in Section 5.

The probabilistic setting described above provides a simple model for a
gene expression microarray experiment with m genes on n arrays. Each n×1
observation vector yi can represent the expression measurements for the ith
gene across the n arrays. Assuming a Gaussian model for gene expression,
the gene-specific parameter θi = (βi, σi) can specify the distribution of Yi

such that
Yi ∼ N(X′βi, σ

2
i In),

where the rows of the n × d matrix X contain array-specific covariates, for
example the tissue type, patient’s age, gender etc., whose effects on the mean
expression level of the ith gene are given by the d × 1 coefficient vector βi.
The gene-specific hypothesis hi may indicate whether or not certain elements
of βi are zero. Dependence across genes is considered in the Appendix.

3 Optimal Rejection Regions

We restrict our attention to multiple testing procedures that produce multiple
decision rules of the form

reject hi if yi ∈ Γ, i = 1, . . . , m,

for some rejection region Γ ⊆ Rn. These rules ensure that once Γ is specified,
acceptance or rejection of hi depends only on the value of yi, though of course
the selection of a decision rule Γ may depend jointly on all yi’s.

5
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A rejection region Γ is considered optimal at level α if it maximizes, over
all subsets of Rn, the probability of rejecting a false null hypothesis given that
the frequency of true nulls among the rejected hypotheses is less than α. That
is, letting P denote the joint distribution of (Y, Θ, H), the optimal level-α
rejection region is the solution to the constrained optimization problem

Maximize : P(Y ∈ Γ|H = 1) (2)

subject to : P(H = 0|Y ∈ Γ) ≤ α,

where the constrained quantity

FDR(Γ) ≡ P(H = 0|Y ∈ Γ)

is the false discovery rate in Γ under the data-generating distribution P . Sim-
ilarly to the Neyman-Pearson setting for testing a single hypothesis, where
the constrained quantity is P(Y ∈ Γ|H = 0) instead of FDR, optimal rejec-
tion regions are likelihood ratio (LR) level sets for the conditional densities
of Y given H = 0 and H = 1.

Theorem 1 A rejection region Γ∗ ⊆ R solves (2) for some 0 ≤ α ≤ 1 if and
only if

Γ∗ =

{
y ∈ Rn :

f1(y)

f0(y)
> γ

}
(a.e.) (3)

for some γ ≥ 0.

This theorem complements that of Storey (2005), where different optimality
criteria led to the same collection of optimal rejection regions. The argument
used to prove Theorem 1 in the Appendix also provides the following.

Corollary 1 A rejection region Γ∗ maximizes P(Y ∈ Γ) over all Γ ⊆ Rn

such that FDR(Γ) ≤ α for some 0 ≤ α ≤ 1 if and only if Γ∗ is an LR level
set.

Since LR level sets provide optimal rejection regions, asymptotically optimal
multiple testing procedures could be based on consistent estimates of LR
level sets.
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4 Optimal Conservative Rejection Regions

In general, LR level sets are not identifiable since the ratio of f1 to f0 is not
identifiable, even up to monotone transformations, given only observations
of Y . In this section we define identifiable rejection regions that are near-
optimal and conservative. References to identifiablilty will always assume
that only Y is observed.

We exploit the representation of LR level sets as maximizers of the func-
tion

Rγ(Γ) = P(Y ∈ Γ|H = 1)− γP(Y ∈ Γ|H = 0). (4)

The idea is that if Rγ were identifiable at every Γ, LR level sets could be
identified as

Γγ = arg max
Γ⊆Rn

Rγ(Γ)

and estimated as maximizers of a consistent estimate of Rγ. In this section
we find approximations to Rγ that are identifiable.

As in Efron et al. (2001) it is convenient to absorb the non-identifiable
quantity P(Y ∈ Γ|H = 1) into the identifiable quantity P(Y ∈ Γ) and
rewrite (4) as

Qλ(Γ) = P(Y ∈ Γ)− λP(Y ∈ Γ, H = 0) (5)

with λ = 1 + γ(1− p0)/p0 ≥ 1. Still, Qλ is generally not identifiable because
any set Γ’s ‘false content,’

P(Y ∈ Γ, H = 0) = p0

∫

V0

∫

Γ

f0(y|θ)dydG0(θ),

is not identifiable, even up to a multiplicative constant.
Since we can not consistently estimate Qλ or its maximizer, a reasonable

compromise is to replace the false content of Γ in Qλ with an identifiable
upper bound, since upper bounds on the false content will yield upper bounds
on the FDR. The main idea of this paper is that identifiable upper bounds
on the false content of any rejection region can be substantially tightened by
conditioning on certain sufficient statistics.

Suppose there exists a statistic S = S(Y ), supported on A, such that the
conditional distribution of Y given S is free of θ for all θ ∈ V0, that is

P(Y |S = s, Θ = θ, H = 0) = P0(Y |S = s), for all θ ∈ V0,

7
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where P0(Y |S = s) is a known distribution for any s ∈ A. Since S is a
sufficient statistic for Θ under the null hypothesis, we call S a null-sufficient
statistic. Let Ph(s) be the distribution of S conditional on H = h, h = 0, 1,
and let P (s) be the marginal distribution of S. Also define the conditional
null frequency as π0(s) = P(H = 0|S = s).

The objective function Qλ (5) can now be written as

Qλ(Γ) = P(Y ∈ Γ)− λ

∫
P0(Y ∈ Γ|S = s)π0(s)dP (s). (6)

Considering (6) with an eye towards estimation, we notice that P(Y ∈ Γ)
and P (s) can be replaced by their empirical counterparts and that P0(Y ∈
Γ|S = s) is known since S is null-sufficient. Only the conditional null fre-
quency π0(s) is not identifiable, and it is for this quantity that we will derive
identifiable upper bounds.

To see that identifiable upper bounds πu
0 (·) ≥ π0(·) exist, consider any

set-valued function Λ : A → Rn. Since

P(Y ∈ Λ(s)|S = s) ≥ P0(Y ∈ Λ(s)|S = s)π0(s)

for all s ∈ A we have, similarly to Storey et al. (2004),

πu
0 (s) ≡ 1 ∧ P(Y ∈ Λ(s)|S = s)

P0(Y ∈ Λ(s)|S = s)
≥ π0(s), s ∈ A,

in which the numerator is an identifiable function of s ∈ A and the denomi-
nator is a known function.

An identifiable upper bound on π0 leads to identifiable upper bounds on
FDR since, letting

FDR(Γ, η) =

∫
P0(Y ∈ Γ|S = s)η(s)dP (s)

P(Y ∈ Γ)
(7)

for some function η : A → [0, 1], we have

FDR(Γ, πu
0 ) ≥ FDR(Γ, π0) = FDR(Γ), Γ ⊆ R,

with FDR(Γ, πu
0 ) identifiable.

An identifiable upper bound on π0 also leads to identifiable objective
functions that approximate Qλ. Let

Qλ(Γ, η) ≡ P(Y ∈ Γ)− λ

∫
P0(Y ∈ Γ|S = s)η(s)dP (s) (8)
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so that Qλ(Γ, π0) = Qλ(Γ) as defined in (5) and define conservatively optimal
rejection regions under πu

0 as

Γu
λ = arg max

Γ⊆R
Qλ(Γ, πu

0 ), λ ≥ 1. (9)

In principle, the maximizer Γu
λ is identifiable since Qλ(Γ, πu

0 ) is identifiable.
If πu

0 (s) = π0(s) for P-almost all s, the rejection regions {Γu
λ}λ≥0 are the

optimal LR level sets of Theorem 1 for the true data-generating distribution.
However if πu

0 (s) and π0(s) differ, as they will in practice, Γu
λ is only guar-

anteed to be an LR level set under the conditional distributions for Y given
H = 0 and H = 1 determined by the true marginal distribution P(Y ) and
the conditional null frequency πu

0 (·). Thus Γu
λ may not satisfy (2) for any

α under the true data-generating distribution. However Corollary 1 can be
applied to prove the following.

Theorem 2 A rejection region Γ∗ maximizes P(Y ∈ Γ) over all Γ ⊆ Rn

such that FDR(Γ, πu
0 ) ≤ α for some 0 ≤ α ≤ 1 if and only if Γ∗ = Γu

λ for
some λ ≥ 1.

Unlike Theorem 1 and Corollary 1, Theorem 2 provides solutions to an op-
timization problem involving only identifiable quantities. The identifiable
region Γu

λ may be called conservatively optimal in that by Theorem 2 it
maximizes the expected number of rejected hypotheses among all rejection
regions with equal or smaller upper bounds on the FDR under πu

0 (·).

5 Conservative Estimation of Optimal Rejec-

tion Regions

This section defines conservatively-estimated optimal (CEO) rejection re-
gions as estimates of conservatively optimal rejection regions and gives the-
orems for FDR control. We will use the notation PZ ≡ ∫

Z(y)dP(y) for
functions Z of y and PΓ ≡ ∫

I(y ∈ Γ)dP(y) for sets Γ ⊆ Rn. Also define

v(Γ, η)(y) ≡ P0(Y ∈ Γ|S = S(y))η(S(y))

so that (8) can be written as

Qλ(Γ, η) = P{Γ− λv(Γ, η)}.

9
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The theoretical developments of the preceding sections involved maxi-
mizations over all subsets of Rn. The practical CEO tests described in this
paper restrict attention to a small class G of potential rejection regions. Con-
sequently, we do not need an upper bound on π0(s) for all s ∈ A. A function
πu

0 (·) that weakly dominates π0(·) over G such that

sup
Γ∈G

P{v(Γ, πu
0 )− v(Γ, π0)} ≥ 0 (10)

provides an upper bound on the false content of any potential rejection region
in G.

To define CEO tests, begin by letting G be a Vapnik-Chervonenkis (VC)
class of potential rejection regions such that (G, d) is a complete, pathwise
connected pseudometric space containing the empty set ∅ and Rn, with
d(A,B) giving the Lebesgue measure of the symmetric difference between
sets A,B ∈ G. In principle G could be allowed to grow with m, but here we
provide asymptotic theory for the simpler case of fixed G. Applications and
simulations will show that even for modestly sized classes G, CEO testing
offers substantial improvement over other methods.

Suppose we have an estimator π̂u
0 (·) of the conditional null frequency such

that
sup
s∈A

|π̂u
0 (s)− πu

0 (s)| a.s.−−→ 0

with πu
0 (·) weakly dominating π0(·) over G in the sense of (10). Given G and

πu
0 (·), conservatively optimal rejection regions are defined for λ ≥ 1 as

Γu
λ = arg max

Γ∈G
P{Γ− λv(Γ, πu

0 )}, (11)

and CEO rejection regions are defined as their empirical counterparts,

Γ̂u
λ,m = arg max

Γ∈G
Pm{Γ− λv(Γ, π̂u

0 )}, (12)

where Pm is the empirical measure based on {yi}m
i=1.

FDR is estimated for any non-empty Γ ∈ G as the empirical counterpart
of (7),

F̂DRm(Γ, π̂u
0 ) =

Pmv(Γ, π̂u
0 )

PmΓ
. (13)

If PmΓ = 0 we set F̂DRm(Γ, π̂u
0 ) = 0.
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When evaluating rejection regions, we may also be interested in the real-
ized rate of false discoveries

rFDRm(Γ) ≡
∑m

i=1 I(yi ∈ Γ)(1− hi)

1 ∨∑m
i=1 I(yi ∈ Γ)

.

Under technical conditions given in the Appendix, we have the following.

Theorem 3 For any fixed λ∗ such that PΓu
λ∗ = δ > 0 we have as m →∞

a. supλ≥1 d(Γ̂u
λ,m, Γu

λ)
a.s.−−→ 0,

b. sup1≤λ≤λ∗ FDR(Γ̂u
λ,m, π0)− F̂DR(Γ̂u

λ,m, π̂0) ≤ 0 w.p.1 and

c. sup1≤λ≤λ∗ rFDR(Γ̂u
λ,m)− F̂DR(Γ̂u

λ,m, π̂0) ≤ 0 w.p.1.

The proof of this theorem is given in the Appendix.
Theorems 3a and 3b ensure that the collection of CEO rejection regions

and their estimated FDRs can be interpreted simultaneously for 1 ≤ λ ≤ λ∗

as estimated optimal conservative rejection regions. Theorem 3c ensures
large-m control of the true proportion of false discoveries. Since the con-
vergence in Theorem 3c occurs for almost every sequence of observations, a
frequentist interpretation follows. So long as the fixed sequence {(θi, hi)}∞i=0

can be thought of as a typical realization from some underlying distribution,
rFDR is controlled asymptotically with probability 1. Further discussion
of the connection between the Bayesian and Frequentist views of multiple
testing can be found in Genovese and Wasserman (2002) and Storey (2002,
2003).

Once the parametric model {Pθ : θ ∈ Θ} has been specified, the above
framework for CEO testing can be applied in five steps:

(i) choose a null-sufficient statistic S,

(ii) choose a class G of potential rejection regions,

(iii) estimate an identifiable πu
0 (·) that weakly dominates π0(·) over G,

(iv) obtain CEO rejection regions via (12) and

(v) conservatively estimate the FDR in the CEO rejection regions via (13).

In the following section we illustrate in detail the application of this program
to testing for a difference of means in a two-sample Gaussian model. In
Section 7 we extend this application to testing the mean parameter in a
general linear model.

11
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6 The Two-Sample Gaussian Problem

Suppose Y = (Y1, . . . , Y2n) contains n independent normally-distributed ob-
servations from each of two groups with common variance σ2 and possibly dif-
ferent means β1 and β2. The unobserved random parameter Θ = (β1, β2, σ

2)
follows an unknown distribution as in Section 2. An experiment generates m
independent realizations of (Y, H, Θ) yielding the observations {yi}m

i=1. The
goal is to test for each yi the null hypothesis that the underlying realizations
of β1 and β2 are equal.

We summarize Y via the usual two-sample statistics. Let β̂1(Y ) =

n−1
∑n

i=1 Yi denote the mean in the first group, let β̂2(Y ) = n−1
∑2n

i=n+1 Yi

denote the mean in the second group and let β̂0(Y ) = {β̂1(Y ) + β̂2(Y )}/2
denote the pooled mean. The usual variance estimate under the null is
s2
0(Y ) = (2n− 1)−1

∑2n
i=1{Yi − β̂0(Y )}2 and the variance estimate under the

alternative is

s2
1(Y ) = (2n− 2)−1

[ n∑
i=1

{Yi − β̂1(Y )}2 +
2n∑

i=n+1

{Yi − β̂2(Y )}2
]

This setting models a gene expression microarray experiment in which
expression levels for m genes are measured on n samples from each of two
tissue types. The goal of such experiments is often to identify genes with
different mean expression levels across the two tissues.

Step (i): Choose a Null-Sufficient Statistic

We choose the null-sufficient statistic

S =
[
s0(Y ), β̂0(Y ), sign{β̂1(Y )− β̂2(Y )}

]
.

This is not a minimal sufficient statistic under the null, but this choice will
be seen to provide computational advantages without altering the limiting
performance. The remaining information in Y regarding θ is captured by the
usual F -statistic

T = 2−1n{β̂1(Y )− β̂2(Y )}2/s2
1(Y ),

12
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in the sense that (S, T ) is sufficient for θ even under the alternative. For
convenience we replace T by its corresponding p-value, P , under an F -
distribution with 1 and 2n − 2 degrees of freedom. Without loss of infor-
mation, we may convert the observations {yi}m

i=1 to the sufficient statistics
{(si, pi)}m

i=1

Step (ii): Choose a Class of Potential Rejection Regions

By sufficiency, LR level sets for Y can be defined in terms of (S, P ). Since
departures from the null hypothesis can only make P stochastically smaller
than its Uniform[0,1] distribution under the null, any LR level set Γ can be
expressed as a function of S having the form

r : R+ × R× {−1, 1} → [0, 1]

such that P < r(S) if and only if Y ∈ Γ. A class G of potential rejection
regions that can approximate LR level sets can now be defined through con-
straints on the function r. In this paper we use a simple piecewise constant
model for r, letting

r(S) =
K∑

k=1

rkI(S ∈ Bk)

for scalars r1, . . . , rK corresponding to sets B1, . . . , BK partitioning the sup-
port of S.

Step (iii): Conservatively Estimate the Conditional Null Frequency

For fixed 0 ≤ ξ < 1, the function

πu
0 (s) =

K∑

k=1

I(s ∈ Bk)P(P > ξ|S ∈ Bk)/(1− ξ)

weakly dominates π0(s) over G and can be uniformly consistently estimated
by

π̂u
0 (s) =

K∑

k=1

I(s ∈ Bk)π̂
u
k,0

13
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with

π̂u
k,0 = 1 ∧m−1

k

m∑
i=1

I(si ∈ Bk)I(pi > ξ)/(1− ξ)

where mk =
∑m

i=1 I(si ∈ Bk). As in Storey et al. (2004) setting ξ = 0 yields
the most conservative estimate, while increasing ξ makes the bound tighter
but increases its estimation variance.

Step (iv): Estimate Optimal Conservative Rejection Regions

For any value of λ ≥ 1, the optimal conservative rejection region is

Γu
λ = {Y : P < rλ(S)}

with rλ(S) =
∑K

k=1 rk,λI(S ∈ Bk) and, simplifying from (9),

(r1,λ, . . . , rK,λ)
′ = arg max

(r1,...,rK)
P

[
I{P < r(S)} − λr(S)πu

0 (S)
]
.

Following Theorem 3, this set can be consistently estimated by

Γ̂u
λ = {Y : P < r̂λ(S)} (14)

with r̂λ(S) =
∑K

k=1 r̂k,λI(S ∈ Bk) and, simplifying from (12),

(r̂1,λ, . . . , r̂K,λ)
′ = arg max

(r1,...,rK)
m−1

m∑
i=1

{
I{pi < r(si)} − λr(si)π̂

u
0 (si)

}

This optimization problem is solved by a simple algorithm. Let p(j; k) be the
jth largest p-value among the group of pi’s having si ∈ Bk, j = 0, . . . , mk,
k = 1, . . . , K and set p(0; k) = 0 for all k. The estimated near-optimal
rejection region is given by

r̂k,λ = p(ĵk; k), k = 1, . . . , K

with
ĵk = arg max0≤j≤mk

{j − λmkp(j; k)π̂u
0,k}. (15)

In practice there is no need to repeatedly solve (15) for different values of λ
since values of λ that change the solution correspond to vertices of the lower
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convex majorant of the empirical distribution of p-values, as can be seen in
the R implementation of this method available from the author.

Step (v): Conservatively estimate the FDR for Estimated Rejection Regions

The conservative FDR estimator (13) evaluated at the estimated piecewise
constant rejection region (14) simplifies to

F̂DR(Γ̂u
λ, π̂

u
0 ) =

∑K
i=1 mkr̂k,λπ̂

u
0,k

1 ∨∑m
i=1 I{pi < r̂λ(si)} . (16)

7 The General Linear Model

Consider the probabilistic setting of Section 2 with Θ = (β, σ) and Y ∼
Pθ = N (Xβ, σ2In) where β is d1 × 1 and σ > 0 for a fixed and known
n× d1 covariate matrix X. Without loss of generality, we assume that X is
orthonormal. The null hypothesis has the form β ∈ V0 for some subspace
V0 ⊂ Rd1 with dimension d0.

Each observation of Y can be summarized without loss of information
by the least squares estimate of β under the alternative β̂1(Y ) = X′Y , the

estimate of β under the null, β̂0(Y ), which by orthonormality of X is the

projection of β̂1(Y ) into V0, the estimated variances under the null and
alternative

s2
i (Y ) = ‖Y −Xβ̂i(Y )‖2/(n− di), i = 0, 1,

and the ‘direction of departure from the null’ (Signorovitch 2006)

φ(Y ) =
β̂1(Y )− β̂0(Y )

‖β̂1(Y )− β̂0(Y )‖
.

Analogously to the two-sample setting of Section 6, we choose the null-
sufficient statistic to be

S =
{

s0(Y ), β̂0(Y ), φ(Y )
}

and we summarize the remaining information in Y regarding θ with the usual
F -statistic,

T =
‖β̂1(Y )− β̂0(Y )‖2/(d1 − d0)

s2
1(Y )
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which is then converted to its p-value, P , under the F -distribution with
d1 − d0 and n − d1 degrees of freedom. By sufficiency, any LR level set
contains exactly those values of Y for which P < r(S) for some

r : R+ × Rd0 × Sd1−d0 → [0, 1],

where Sd1−d0 is the surface of the unit ball in d1 − d0 dimensions supporting
φ(Y ). Once the support of S is partitioned into K regions over which r is
modeled as constant, as in step (ii) of Section 6, CEO testing procedures can
be implemented as in steps (iii) through (v).

8 Simulation Study

This section compares CEO multiple testing to EAH tests (Signorovitch
2006) and the ODP (Storey 2005, Storey et al. 2006) under four simula-
tion scenarios described by Storey et al. (2006). Briefly, paraphrasing from
Storey et al. (2006), scenario (a) generates expression data from two tissues
with symmetric patterns of differential expression and variances simulated
from a unimodal distribution. Scenario (b) introduces some asymmetry in
differential expression between the two tissues and simulates variances from
a bimodal distribution. Scenario (c) generates data for three tissues with
slight asymmetry in differential expression and variances simulated from a
unimodal distribution. Scenario (d) introduces stronger asymmetry in dif-
ferential expression across the three groups and samples variances from a
bimodal distribution. Under each scenario, data were simulated for 1000 dif-
ferentially expressed genes and 2000 non-differentially expressed genes in 8
samples from each tissue.

The ODP was applied using the EDGE software (Leek et al. 2006). CEO
tests for scenarios (a) and (b) were implemented as described in Section 6

with the support of S(Y ) = [s0(Y ), β̂0(Y ), sign{β̂1(Y )− β̂2(Y )}] partitioned

by first splitting the data into two groups according to sign{β̂1(Y )− β̂2(Y )}
and then further splitting within each group according to quintiles of β̂0(Y ),
ignoring s0(Y ). For the three-tissue comparisons in simulations (c) and (d),
CEO tests were implemented as described in Section 7 with the support of
S = {s0(Y ), β̂0(Y ), φ(Y )} partitioned first into two groups according to the

median of β̂0(Y ) and further partitioning within each group according to
quintiles of φ(Y ), ignoring s0(Y ). Discretized EAH tests were performed
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under the CEO framework by partitioning only by sign{β̂1(Y ) − β̂2(Y )} in
the two-sample setting and partitioning only by deciles of φ(Y ) in the three-
sample setting.

Operating characteristics of the multiple testing procedures were evalu-
ated by averaging across 100 simulated data sets under each scenario. Figure
2 compares the average number of false null hypotheses rejected by each mul-
tiple testing procedure as a function of the estimated FDR. In all scenarios,
the CEO tests were found to reject on average more false nulls at each level
of estimated FDR. The improvement offered by the CEO tests is especially
notable in scenario (a) where the EAH, ODP and ANOVA tests have simi-
lar performance. Figure 3 illustrates FDR control for CEO tests by showing
that at any level of estimated FDR the rFDR is expected to be smaller. FDR
control was also achieved by the discretized EAH tests.

Example CEO rejection regions given in Figure 4 illustrate how CEO
tests adapt to information contained in null-sufficient statistics. In scenarios
(a) and (b), the estimated rejection regions, expressed in terms of signed

t-statistics, efficiently capture false nulls by varying with β̂0(Y ). In scenario

(c), separating genes with high and low values of β̂0(Y ) concentrates evidence

for differential expression in the high-β̂0(Y ) group, allowing CEO rejection

regions to outperform the other procedures which ignore β̂0(Y ). Rejection
regions for scenario (d) were similar to those for (c).

9 Application to Gene Expression Data

Multiple testing procedures based on CEO rejection regions, EAH tests, the
ODP and ANOVA tests were applied to the three-tissue microarray exper-
iment of Spira et al. (2004). This experiment measured the expression of
22,214 genes in human airway epithelial cells from 34 Current Smokers, 23
Never Smokers and 18 Former Smokers. Normalized data obtained from
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE994 were log-
transformed prior to analysis.

For a three-sample analysis of the Spira et al. (2004) data we aimed
to detect genes with differential expression across the three tissue groups.
ANOVA tests for each gene were performed as for a standard three-sample
comparison. ODP tests were implemented using EDGE (Leek et al. 2006)
and CEO tests were implemented as described in Section 7 with the support
of S partitioned by splitting at the median of β̂0(Y ) and then splitting by
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deciles of φ(Y ). Discretized EAH tests were implemented under the CEO
framework by splitting the genes into 20 groups based on quantiles of φ(Y ).

Figure 5a shows that the CEO testing procedure rejected more genes than
the other procedures at each level of estimated FDR. From the CEO rejection
region illustrated in Figure 6, we see that the CEO testing procedure adapts
to variation in the evidence for differential expression across partitions of S.
Among genes with low values of β̂0(Y ) there is strong evidence for differential
expression among genes with a decreasing trend in expression from never
to former to current smokers. This pattern also exists among genes with
high values of β̂0(Y ), but here we also have strong evidence of differential
expression among genes with increasing expression from never to former to
current smokers.

Since CEO tests use information in the null-sufficient statistic β̂0(Y ) that
is ignored by other procedures, the potential value of CEO testing increases
with the dimension of β̂0(Y ). To explore this idea in the Spira et al. (2004)
data, we tested for differential expression between never and current smok-
ers while adjusting for age, sex and race (Caucasian, African, Hispanic or
other). For each gene, the estimated effects of these potential confounders

on expression is included in β̂0(Y ).
CEO testing in this setting was implemented as in Section 7 with the

support of S partitioned by first splitting according to the sign of β̂1(Y ) and

then splitting by tertiles of the first component of β̂0(Y ) and then by tertiles

of the second component of β̂0(Y ). Figure 5b shows that the CEO tests based
on this partition detected many more genes as differentially expressed than
the ANOVA or EAH tests, which were also adjusted for age, sex and race but
ignore the information in β̂0(Y ) when assessing significance. The value of the

information in β̂0(Y ) is evident in Figure 7, which shows how the distribution
of p-values changes across the nine partitions of S corresponding to negative
values of β̂1(Y ). We have the most evidence of differential expression when

the first component of β̂0(Y ) is high and the second component is low. When
both the first and second components are high there appears to be no evidence
for differential expression.

10 Connections to Other Testing Procedures

If data are reduced to statistics Z = Z(Y ) with known null distributions,
CEO testing coincides with existing methods. The key connection is that
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when Z has a known null distribution, LR level sets for Z are identifiable
since the objective function Qλ (5) can be written as

Qψ(Γ) = P(Z ∈ Γ)− ψP(Z ∈ Γ|H = 0),

with ψ = λp0, which is an identifiable function of Γ for each ψ. Even though
the frequency of false nulls p0 is unknown and non-identifiable, the maxi-
mizers of Qψ for any fixed ψ are LR level sets, just at some unknown level.
It follows that when Z has a known null distribution, the class of optimal
rejection regions can be consistently estimated. However choosing a rejection
region to control FDR will require conservative estimation of the uncondi-
tional null frequency p0.

Consider the extreme data reduction in which Y is converted to an unbi-
ased p-value. In this case there is no need to estimate the optimal rejection
regions on [0, 1] since every region [0, a), a ∈ (0, 1], is an LR level set. The
multiple testing problem is therefore reduced to choosing a threshold a to
control FDR. From (15) it is clear that when given only p-values, CEO test-
ing coincides with the methods of Storey et al. (2004), controlling FDR
through conservative estimation of p0.

Under the less extreme data reduction that converts each Y to a t-
statistic, LR level sets have the form t /∈ (a, b), a < b, and can be estimated
from level cuts of the consistently estimated ratio f(t)/f0(t) as described by
Efron et al. (2001). The EAH procedure (Signorovitch 2006) generalizes this
idea to multivariate statistics Z(Y ) with known null distributions. Again,
even though optimal rejection regions can be identified in these cases, the
choice of a rejection region to control FDR requires conservative estimation
of the unconditional frequency of true nulls.

Wasserman and Roeder (2006) and Rubin et al. (2006) study ‘variable
threshold procedures’ in which evidence against the null hypotheses is sum-
marized by a univariate test statistic for each test. The optimal rejection
region is then defined by possibly different significance thresholds for each
test that depend on the true data-generating distributions. From the per-
spective of p-values, CEO testing can be viewed as a variable threshold pro-
cedure in which we share information across tests to conservatively estimate
the optimal thresholds as functions of the null-sufficient statistic S.

The popular SAM procedure (Tusher et al. 2001) accepts the null hy-
pothesis of equal mean expression in two groups when

l <
∆̂

ŝ1 + c
< u,
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for upper and lower bounds u and l where ∆̂ is the estimated mean difference
between groups with standard error ŝ1 and c is some positive constant. These
acceptance regions can be written as

(l−1 − c∆̂−1)−1 < t < (u−1 − c∆̂−1)−1,

where t is the usual two-sample t-statistic. Since SAM rejection regions
depend on ∆̂, which is not a null-sufficient statistic, they do not fall within
the CEO testing framework.

11 Discussion

This paper has shown that null-sufficient statistics can contain valuable in-
formation for multiple hypothesis testing.

The piecewise constant model for CEO rejection region boundaries used in
this paper has the advantage of computational simplicity. However smoother
models for CEO rejection region boundaries could more efficiently capture
the information in null-sufficient statistics, leading to more powerful testing
procedures. For example, the tightest identifiable upper bound on π0(s) is
provided by g(1|s) where g(·|s) is the conditional density for P given that
S = s. Plugging this upper bound into (9) and maximizing over all subsets
of Rn leads to identifiable rejection regions of the form

reject hi if
g(pi|si)

g(1|si)
> c

for some constant c. Notice that even for the simple two-sample problem,
consistent estimation of these rejection regions would require nonparametric
density estimation in essentially three dimensions.

A promising way to improve upon CEO testing for gene expression exper-
iments is through the incorporation of information external the gene expres-
sion measurements. For example gene-level information such as GO terms
(The Gene Ontology Consortium 2000), locations of genes in pathways or
networks, or the presence of specific cis-regulatory elements could all be used
to augment the null-sufficient statistic S. If such external data are related
to differential expression, their incorporation into CEO tests could facilitate
the statistical detection of differential expression.

With or without external information, it is only practical to obtain CEO
rejection regions in a limited number of dimensions. An interesting direction
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for future research is the development of data-driven dimension reduction for
multiple testing.

12 Appendix

Proof of Theorem 1. Let

Γ(γ) = {y : f1(y) > γf0(y)}, γ ≥ 0

denote the LR level set at level γ. Since f0 and f1 are continuous the function

z(γ) ≡
∫

Γ(γ)

f0(y)dy

is a continuous and decreasing map from [0, γ∗] to [0, 1] for γ∗ = supy f1(y)/f0(y)
and the function

C(z) = sup
Γ⊆R

{ ∫

Γ

f1(y)dy :

∫

Γ

f0(y)dy ≤ z
}

(17)

is a continuous map from [0, 1] to [0, 1]. By the Neyman-Pearson Lemma
(Lehmann 1986, pp. 74-76) the supremum in (17) given each 0 ≤ z ≤ 1 is
achieved at a unique LR-level set and we can write

C(z(γ)) =

∫

Γ(γ)

f1(y)dy.

Note that C(z) is concave and increasing on [0, 1]. Consider approximating
the derivative of C(z) between the points z(γ1) and z(γ2) with 0 ≤ γ1 <
γ2 ≤ γ∗. Since Γ(γ2) ⊂ Γ(γ1) and γ1f0(y) < f1(y) ≤ γ2f0(y) for y ∈ D ≡
Γ(γ1) ∩ Γ(γ2)

c we have

γ1 ≤ C(z(γ1))− C(z(γ2))

z(γ1)− z(γ2)
=

∫
D f1(y)dy∫
D f0(y)dy

≤ γ2,

and taking the limit as γ2 ↓ γ1 we see that the derivative of C(z) evaluated
at z(γ1) is γ1. Since the inverse function of z(γ) decreases with z and has
non-negative range, it follows that C(z) is increasing and concave. Note that
if the continuity assumptions of this theorem are violated so that C(z) is
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not concave or continuous, it can always be made concave and continuous by
permitting randomized rejection regions.

The remainder of the proof can be accomplished graphically. Imagine
plotting for every Γ ∈ G the point in [0, 1]× [0, 1] given by P(Y ∈ Γ|H = 0)
on the horizontal axis and P(Y ∈ Γ|H = 1) on the vertical. The function
C(z) defines the the concave, non-decreasing upper bound on this set of
points. The FDR constraint in (2) can be written as

P(Y ∈ Γ|H = 1) ≥ p0(1− α)

α(1− p0)
P(Y ∈ Γ|H = 0),

which defines a region lying above a line from the origin. If this line inter-
sects the concave, non-decreasing curve C(z), the unique point of intersection
corresponds to an LR level set that maximizes P(Y ∈ Γ|H = 1) under the
FDR constraint. Furthermore, since C(z) is concave and increasing, every
LR level set will have the highest value of P(Y ∈ Γ|H = 1) for some FDR
constraint 0 < α < 1. If the FDR constraint line falls entirely above C(z)
the rejection region is the empty set; if the FDR line falls entirely below C(z)
the rejection region is the whole space.

Note that Corollary 1 follows from this proof since the concavity and in-
creasingness of the map z → zp0 + C(z)(1− p0) follows from that of C(z).

The following property of Γ̂u
λ is worth noting for practical applications

and is used in the proof of Theorem 3.

Proposition 1 For any G and λ1 < λ2, PmΓ̂λ1 ≥ PmΓ̂λ2.

Proof of Proposition 1 For any fixed Γ,

Q̂λ(Γ) = PmΓ− λPmv(Γ, π̂u
0 )

is an affine function of λ that is either decreasing or constant. As the supre-
mum of such functions,

sup
Γ∈G

Q̂λ(Γ)

is continuous, decreasing and convex in λ. For any λ∗ ≥ 1, the affine function
Q̂λ(Γ̂

u
λ∗) must therefore be tangent to supΓ∈G Q̂λ(Γ) at λ∗ which implies

Pmv(Γ̂u
λ1

, π̂u
0 ) ≥ Pmv(Γ̂u

λ2
, π̂u

0 ), for all λ1 < λ2. (18)
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Combined with Q̂λ1(Γ̂
u
λ1

) ≥ Q̂λ1(Γ̂
u
λ2

), (18) implies the desired result:

Pm{Γu
λ1
− Γu

λ2
} ≥ λ1Pm{v(Γ̂u

λ1
, π̂u

0 )− v(Γ̂u
λ2

, π̂u
0 )} ≥ 0.

Proof of Theorem 3. Suppose Qλ is continuous on (G, d) with a unique maxi-

mum over G for each λ ≥ 1. Also suppose that Q̂λ,m(Γ) = Pm{Γ−λv(Γ, π̂u
0 )}

always has a unique maximum over G for each λ ≥ 1.
Letting ‖ · ‖G denote the supremum norm over G, note that

‖Pm − P‖G a.s.−−→ 0 (19)

since G is a VC class and

‖Pmv(Γ, π̂u
0 )− Pv(Γ, πu

0 )‖G a.s.−−→ 0 (20)

since the left side of (20) is bounded above by

sup
s∈A

|π̂u
0 (s)− πu

0 (s)|+ ‖{Pm − P}v(Γ, πu
0 )‖G

with the first term converging a.s. to 0 by assumption and the second term
converging a.s. to zero since v(Γ, πu

0 )(y) is continuous on (G, d) uniformly in
y and Theorem 2.7.11 (van der Vaart and Wellner 1996, p.164).

By (19) and (20) we have for any 1 ≤ λ∗ < ∞

sup
1≤λ≤λ∗

‖Q̂λ,m −Qλ‖G a.s.−−→ 0

and Theorem 3a follows from the argmax theorem. Note that for large enough
λ∗ we have Γu

λ = ∅ for all λ ≥ λ∗ so that convergence at λ∗ and Property 1

together imply Γ̂u
λ,m

a.s.−−→ ∅ for all λ ≥ λ∗, so the upper bound λ∗ need not
appear in the statement of Theorem 3a.

For Theorems 3b and 3c the restriction to 1 ≤ λ < λ∗ with P(Γu
λ) = δ > 0,

together with Proposition 1, ensures that the denominators of FDR, F̂DR
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and rFDR do not converge to zero. To prove Theorem 3b we can write

sup
1≤λ≤λ∗

FDR(Γ̂u
λ, π0)− F̂DR(Γ̂u

λ, π̂
u
0 )

≤ sup
1≤λ≤λ∗

FDR(Γ̂u
λ, π

u
0 )− F̂DR(Γ̂u

λ, π̂
u
0 )

≤ sup
1≤λ≤λ∗

∣∣∣∣∣
Pv(Γ̂u

λ, π
u
0 )

PΓ̂u
λ

− Pmv(Γ̂u
λ, π̂

u
0 )

PΓ̂u
λ

∣∣∣∣∣ + sup
1≤λ≤λ∗

∣∣∣∣∣
Pmv(Γ̂u

λ, π̂
u
0 )

PΓ̂u
λ

− Pmv(Γ̂u
λ, π̂

u
0 )

PmΓ̂u
λ

∣∣∣∣∣

≤ ‖Pv(Γ, πu
0 )− Pmv(Γ, π̂u

0 )‖G
inf1≤λ≤λ∗ PΓ̂u

λ

+
‖Pm − P‖G

inf1≤λ≤λ∗ P(Γ̂u
λ)Pm(Γ̂u

λ)
,

with (19), (20) and Theorem 3a, ensuring that the final two terms converge
a.s. to zero by the continuous mapping theorem. Theorem 3c can be proved
by a similar argument. Theorem 3 remains valid under weak dependence
across realizations of the hierarchical model, so long as the underlying empir-
ical processes I(y ∈ Γ) and v(Γ, πu

0 ) converge uniformly to their expectations
over G. Convergence would occur for example if genes were dependent only
within finite blocks. The assumptions of Theorem 3 are easily verified for
application to the piecewise constant model used in this paper.
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Figure 2: Comparison of the expected number of true positives rejected
as a function of estimated FDR for CEO, EAH, ODP and ANOVA tests,
as estimated from 100 simulated data sets under each of the scenarios (a)
through (d) of Storey et al. (2006).
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Figure 3: Assessment of FDR control for CEO tests in simulation scenarios
(c), (d), (a), and (b) (ordered from highest to lowest expected % rFDR at

F̂DR = 10 %).
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Figure 4: Example CEO rejection regions under simulation scenarios (a), (b)
and (c). Open gray circles correspond to true null hypotheses and solid black
circles correspond to false nulls.
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Figure 5: Comparison of multiple testing procedures applied to the detection
of differentially expressed genes in (a) the three-tissue and (b) the two-tissue
analysis of the the Spira et al. (2004) data.
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Figure 6: CEO rejection region for the smoking data of Spira et al. (2004).

θ̂ = 0 corresponds to genes with increasing expression from never to former
to current smokers. Genes with |θ̂| = π have the reverse trend in expression

across groups. β̂0 is the mean expression level across all patients.
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Figure 7: Distributions of adjusted p-values for differential expression be-
tween current and never smokers in the Spira et al. (2004) data. Each panel
corresponds to one of the nine partitions based on the null-sufficient statistic
with negative values of β̂1(Y ). The first letter of the panel label indicates

whether the first component of β̂0(Y ) is high (H), middle (M) or low (L) and

the second letter indicates the value of β̂0(Y ). Each histogram is based on
approximately 1,400 p-values.
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