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SUMMARY

Suppose that we are interested in using new biomarkers to improve prediction or diagnosis of the patient’s
clinical phenotype in addition to the conventional markers. The incremental value from the new markers
is typically assessed by averaging across patients in the entire population of interest. However, when mea-
suring the new markers is costly or invasive, an overall improvement does not justify measuring the new
markers in all patients. A more practical strategy is to utilize the patient’s conventional markers to decide
whether the new markers are needed for improving prediction of his/her health outcomes. In this article,
we propose inference procedures for the incremental values of new markers across various subgroups of
patients classified by the conventional markers. The resulting point and interval estimates can be quite
useful for medical decision makers seeking to balance the predictive or diagnostic value of new markers
against their associated cost and risk. Our proposals are theoretically justified and illustrated empirically
with two real examples.

Keywords: Biomarker, Clinical Outcome, Diagnosis, Incremental Prediction Accuracy, K-fold Cross Validation, Pre-
diction, Subgroup Analysis

1. INTRODUCTION

Biological and technological advances continually generate promising new biomarkers with the poten-
tial to improve medical care by providing more accurate, personalized predictions of health outcomes
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2 L. TIAN, T. CAI AND L.J. WEI

and diagnoses of clinical phenotypes. However, extensive use of new markers may provide only negli-
gible improvements in prediction or diagnosis, while subjecting patients to additional risks and costs. It
is therefore important to develop statistical methods that can quantify for individual patients the value
of new markers over conventional ones, especially when measuring these markers is costly or invasive.
As an example, in a recent study, the incremental values from ten new biomarkers for prediction of first
major cardiovascular events and death in a Framingham Study cohort were examined extensively (Wang
and others, 2006). There were 3209 participants in the study. They were followed for a median of 7.4
years, during which 207 participants died and 169 had a first major cardiovascular event. Based on vari-
ous prediction precision criteria, the study team found that the ten contemporary biomarkers added only
moderate overall predictive value to the classical risk factors. In contrast, other investigators studying
different populations with different prediction precision measures demonstrated that certain biomarkers
provide clinically useful prognostic information on top of, for example, the traditional Framingham risk
score for heart diseases (Ridker and others, 2002, 2007; Blumenthal and others, 2007).

Despite these often controversial findings in the literature, clinical practitioners would generally not
change their recommendation for the patient’s care with the extra marker information if the patient, for
example, has either high or very low conventional risk score. Therefore, a practically important question is
how to systematically identify patients who would benefit from the additional markers instead of evaluat-
ing these markers based only on their average incremental value across the entire population (D’Agostino
, 2006). In this article, we propose procedures to estimate the incremental values of new markers for di-
agnosis or prediction in various subgroups of patients classified by conventional markers. These, coupled
with the sampling variations of the estimates, provide a useful tool for researchers and practitioners to
decide when, after observing the conventional risk factors, the new markers are needed. In Section 2, we
describe in detail the new procedure and provide theoretical justification. In Section 3, we illustrate our
methods with two examples, one with a continuous response and the other with a binary outcome.

There are quite a few procedures in the literature for evaluating the over-all incremental value of new
markers for an entire population of interest. For example, Pepe and others (2004) compared the ROC
curves among models with and without an additional marker. Recently, Tian and others (2007) and Uno
and others (2007) proposed robust inference procedures for evaluating prediction rules. Prediction or
diagnostic precision measures, which may be used for comparing different prediction procedures, have
also been proposed and utilized, for example, by Brier (1950), Breiman and others (1984), Speigelhalter
(1986), Korn and Simon (1990), McLachlan (1992), Mittlböck and Schemper (1996), Ripley (1996),
Zhou and others (2002) and Pepe (2003).

2. ESTIMATING SUBJECT-SPECIFIC PREDICTION ERROR BASED ON RISK SCORE CONSTRUCTED
FROM CONVENTIONAL MARKERS

Let Y be a continuous or binary response variable, U be the set of its conventional marker values, and
V be the corresponding counterpart from the new markers. Our data consist of n independent copies
{(Yi, Ui, Vi), i = 1, · · · , n} from (Y,U, V ). The problem is how to use the data to identify future subjects
via U, which would benefit from the new markers for better prediction of their responses Y . Suppose that
there are no well-established rules for classifying subjects based on U for predicting Y . First, we may
estimate a center value of Y given U nonparametrically and use this estimate to construct a predictor
for Y . We then estimate the average prediction error, the “distance” between the observed response and
its predicted value over all subjects which have the same marker value U . Next, we estimate the center
of Y given U and V, and estimate the corresponding average prediction error conditional only on U .
Inferences about the improvement from the new markers can be made via these functional estimates over
U . Unfortunately, in general, we can only construct nonparametric functional estimates, which behave
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Identifying patients who need additional biomarkers for better prediction of clinical phenotype 3

reasonably well, when the dimension of U is very small and the sample size n is quite large.
A practically feasible alternative to handle this problem is to consider a parametric or semi-parametric

approach. To this end, let X be a p-dimensional vector, a function of U . Assume that the conditional mean
of Y given U can be approximated by the following working model

E(Y | U) = g1(β′X), (2.1)

where g1(·) is a smooth, strictly increasing, known function and β is an unknown vector of parameters.
Note that the first component of X is one. In this article, we deal with the interesting and challenging case
that β′X is a continuous variable.

To estimate the regression parameters for model (2.1) which, most likely, is an approximation to the
true conditional mean of Y given U, one may use the estimator β̂ based on the simple estimating function

S1(β) =
n∑

i=1

Xi {Yi − g1(β′Xi)} , (2.2)

where {(Yi, Xi), i = 1, · · · , n} are n-independent copies of (Y, X) (Tian and others, 2007). Note that
even when (2.1) is not the true model, β̂ converges to a constant vector β0, as n → ∞. It is not clear,
however, that other standard estimators for β in (2.1) would be convergent as n gets large.

Now, consider a future independent subject with (Y, X) = (Y 0, X0). For a given β in (2.1), let
Ŷ1(β′X0) be the predictor for Y 0. For example, when Y 0 is continuous, one may let Ŷ1(β′X0) =
g1(β′X0) and when Y 0 is binary, one may predict Y 0 by a binary variable Ŷ1(β′X0) = I{g1(β′X0) >
0.5}, where I(·) is the indicator function. Other prediction rules for the binary case will be discussed
in the Example Section. To evaluate the performance of Ŷ1(β̂′X0), we first need to quantify its pre-
diction accuracy based on a “distance” between the true Y 0 and the predicted Ŷ1(β̂′X0), denoted by
D{Y 0, Ŷ1(β̂′X0)}. For example, one may let D(a, b) = |a − b|. For the binary case, this distance func-
tion is simply I(a 6= b). Other choices of distance functions will be discussed in Section 3.

Next, since clinical practitioners almost always group subjects with a “risk scoring system” for med-
ical decision making, we consider an average prediction error over a set of X’s which have “similar”
g1(β̂′X) to evaluate Ŷ1(·). To be specific, let Jz = (cz, dz) be a data-independent interval centered about
z, where z ranges over a set of possible values of g1(β′0X). The average prediction error over Jz is
D?

1(z) = E[D{Y 0, Ŷ1(β̂′X0)}| g1(β̂′X0) ∈ Jz], where the conditional expectation is taken with respect
to (Y 0, X0) and β̂. As n →∞, D?

1(z) converges to

D1(z) = E
[
D{Y 0, Ŷ1(β′0X

0)}| g1(β′0X
0) ∈ Jz

]
, (2.3)

where the expectation is taken with respect to (Y 0, X0). As a process of z, this moving average process
{D1(z)} provides a performance profile of Ŷ1(·) over all possible values of g1(β′0X). The choices of Jz

are discussed via two examples in the next section.
Now, let W be a q×1 vector, a function of U and V . Assume that a working model for the conditional

mean of Y given U and V is
E(Y | U, V ) = g2(θ′W ), (2.4)

where g2(·) is a smooth, strictly increasing, known function and θ is an unknown vector of parameters.
The first component of W is one. Again, we assume that g2(θ′W ) is a continuous variable. Let θ̂ be the
estimator for θ obtained from the following simple estimating function

S2(θ) =
n∑

i=1

Wi {Yi − g2(θ′Wi)} , (2.5)
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4 L. TIAN, T. CAI AND L.J. WEI

where Wi, i = 1, · · · , n, are n independent copies of W . Let θ0 be the limit of θ̂. Consider a future
independent (Y,X, W ) = (Y 0, X0,W 0). Let Ŷ2(θ′W 0) be the predictor constructed from (2.4) with
parameter value θ, the counterpart of Ŷ1(β′X0). For the aforementioned interval Jz, let the average pre-
diction error for Ŷ2(·) over Jz be

D2(z) = E
[
D{Y 0, Ŷ2(θ′0W

0)}
∣∣∣ g1(β′0X

0) ∈ Jz

]
, (2.6)

where the expectation is taken with respect to (Y 0, X0,W 0). Then, as a process in z,

∆(z) = D1(z)−D2(z) (2.7)

provides a global picture for identifying subgroups of patients who would benefit from the additional
markers.

To estimate D1(z) and D2(z), one may use

D̂1(z) =
∑n

i=1 D{Yi, Ŷ1(β̂′Xi)}I{g1(β̂′Xi) ∈ Jz}∑n
i=1 I{g1(β̂′Xi) ∈ Jz}

(2.8)

and

D̂2(z) =
∑n

i=1 D{Yi, Ŷ2(θ̂′Wi)}I{g1(β̂′Xi) ∈ Jz}∑n
i=1 I{g1(β̂′Xi) ∈ Jz}

, (2.9)

respectively. We then let ∆̂(z) = D̂1(z) − D̂2(z) to estimate ∆(z). In Appendix A, we show that with
the distance function D(a, b) = |a − b| or a function thereof, the above three estimators are uniformly
consistent over an interval Ω consisting of all z’s whose intervals Jz’s are properly in the support of
g1(β′0X). Similar arguments may be used for cases with other distance functions.

To make further inferences about the added value from the new markers for predicting the response,
in Appendix A, we show that the limiting distributions of the processes Ŵ1(z) = n1/2{D̂1(z)−D1(z)},
Ŵ2(z) = n1/2{D̂2(z) − D2(z)} and Ŵ(z) = n1/2{∆̂(z) −∆(z)}, are the same as those of the Gaus-
sian processes W∗

1 (z),W∗
2 (z) and W∗(z), respectively, for z ∈ Ω. Here, realizations from these three

Gaussian processes (6.3), (6.4) and (6.5) given in Appendix A can be generated easily for any interval of
z, where D̂1(z) and D̂2(z) are well-defined. In practice, one may not able to construct reasonably well-
behaved interval estimators for Dl(z), l = 1, 2, for z is the tail parts of Ω. To this end, let Ω̂ be a set of
z such that Jz ⊂ [η1, η2], where n−1

∑n
i=1 I{g(β̂′Xi) 6 η1} > d1, n−1

∑n
i=1 I{g(β̂′Xi) > η2} > d2,

and d1 and d2 are given positive numbers. Then, with the above large sample approximations, for z ∈ Ω̂,
a (1− α), 0 < α < 1, point-wise confidence interval for Dl(z), l = 1, 2, is

D̂l(z)± ξα/2σW∗
l (z). (2.10)

Here, σ2
W∗

l (z) is the variance of the random variable W∗
l (z) and ξα is the upper 100αth percentage point

of the standard normal. Furthermore, a (1− α) simultaneous confidence band for {Dl(z), z ∈ Ω̂} is

D̂l(z)± τlασW∗
l (z), (2.11)

where
pr

{
supz∈bΩ ∣∣∣W∗

l (z)/σW∗
l (z)

∣∣∣ < τlα

}
> 1− α.

To construct interval estimators for ∆(z), it is important to note that ∆̂(z) has a degenerate lim-
iting distribution when Ŷ1(β′0X) = Ŷ2(θ′0W ) for all g1(β′0X) ∈ Jz . Therefore, to obtain reasonable
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interval estimators in practice, we consider the set Ω̃ ⊂ Ω̂ such that for z ∈ Ω̃,
∑n

i=1 I{Ŷ1(β̂′Xi) 6=
Ŷ2(θ̂′Wi), g1(β̂′Xi) ∈ Jz}/

∑n
i=1 I{g1(β̂′Xi) ∈ Jz} > d3, where d3 is a given positive number. Then,

for z ∈ Ω̃, a (1− α), 0 < α < 1, point-wise confidence interval for ∆(z), is

∆̂(z)± ξα/2σW∗(z). (2.12)

Here, σ2
W∗(z) is the variance of the random variableW∗(z). Moreover, a (1−α) simultaneous confidence

band for {∆(z), z ∈ Ω̃} is
∆̂(z)± τασW∗(z), (2.13)

where
pr

{
supz∈eΩ ∣∣W∗(z)/σW∗(z)

∣∣ < τα

}
> 1− α.

Note that for the case with a continuous response Y, Ω̂ = Ω̃.
Now, since we use the entire data set to estimate the parameters in (2.1) and (2.4) and also to esti-

mate the average prediction errors (2.3) and (2.6), D̂1(·) and D̂2(·) may be significantly underestimated.
To reduce such potential bias, one may consider the commonly used K-fold cross validation scheme.
Specifically, we randomly split the data into K disjoint subsets of about equal size and label them as
Ik, k = 1, · · · ,K. For each k, we use all the observations, which are not in Ik, to estimate param-
eters in (2.1) and (2.4) via estimating functions (2.2) and (2.5), and then use the observations in Ik

to estimate prediction errors D1(·) and D2(·) with (2.8) and (2.9). Let the resulting estimators be de-
noted by D̂1k(·) and D̂2k(·), respectively. The cross validated estimators for D1(·),D2(·) and ∆(·) are
D̃1(·) = K−1

∑K
k=1 D̂1k(·), D̃2(·) = K−1

∑K
k=1 D̂2k(·) and ∆̃(·) = D̃1(·)−D̃2(·), respectively. Again,

these estimators are uniformly consistent if K is relatively small with respect to n.
In Appendix B, we show that for large n, the distributions of the processes W̃1(·) = n1/2{D̃1(·) −

D1(·)}, W̃2(·) = n1/2{D̃2(·) − D2(·)} and W̃(·) = n1/2{∆̃(·) −∆(·)} can also be approximated well
by those of W∗

1 (·),W∗
2 (·) and W∗(·), respectively. Point-wise and simultaneous confidence intervals for

D1(·), D2(·), and ∆(·) can then be constructed based on the cross validated estimates and their large
sample distributions accordingly.

3. EXAMPLES

We use two examples to illustrate the new proposals. The first example is from a clinical trial conducted
by the AIDS Clinical Trials Group, ACTG 320 (Hammer and others, 1997). The study demonstrates that
for various response endpoints, on average the three-drug combination therapy consisting of indinarvir,
zidovudine and lamivudine, is much better than the two drug combination without indinarvir for treating
HIV infected patients. Unfortunately, even with this potent combination, some patients may not respond to
treatment, but suffer from non-trivial toxicity. Therefore, for future patients’ management, it is important
to have a reliable model for predicting patient’s treatment responses based on certain “baseline” markers.
A general conception is to use the baseline CD4 count and HIV-RNA, a measure of viral load, and the
early changes of these two markers after initiation of therapy for treatment guidance (Demeter and others,
2001). For resource-limited regions, however, the cost of obtaining HIV-RNA is relatively expensive.
Therefore, a challenging question is when we need RNA in addition to CD4 for better prediction of
patient’s response.

Recently Tian and others (2007) demonstrated that, on a population average sense, neither the baseline
nor early RNA change (from baseline to week 8) would add a clinically meaningful value for predicting
the long term change of CD4 (from baseline to Week 24), an important measure of the patient’s immune
response. Here, we try to locate a subgroup of patients, if any, who would benefit from the expensive
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6 L. TIAN, T. CAI AND L.J. WEI

marker RNA. To this end, let the response Y be the change of CD4 cell counts from Week 0 to 24, let U
consist of age, baseline CD4 and the early change in CD4, and let V consist of the baseline RNA and the
early change in RNA. For our analysis, in Models (2.1) and (2.4), we let X = (1, U ′)′, W = (1, U ′, V ′)′,
and g1(·) and g2(·) be the identity function. Also, we let Ŷ1(β′X) = β′X , Ŷ2(θ′W ) = θ′W , D(a, b) =
|a− b| and interval Jz be [z − 10, z + 10] for z ∈ Ω̂ = [15, 165]. In our analysis, we let d1 = d2 = 0.01
discussed in Section 2 for choosing Ω̂. With n = 392 sets of complete observations of (Y, U, V ), the
regression parameter estimates for Models (2.1) and (2.4) are reported in Table 1. Note that the short term
changes of CD4 and RNA are statistically highly significant.

Table 1. Estimates of the regression parameters with their standard errors and corresponding p-values for testing zero
covariate effects for the AIDS example

Age Baseline RNA RNA Change Baseline CD4 CD4 Change
Estimate -0.55 0.08 -12.06 0.03 0.68
Std Error 0.35 5.53 2.80 0.07 0.10
P-value 0.12 0.99 0.00 0.72 0.00

For both working models, we utilized 5-fold cross validation scheme discussed in Section 2 to obtain
the regression parameters and then D̃1(·), D̃2(·), and ∆̃(·). In Figure 1, we present these estimated pre-
diction errors and their differences with the corresponding 0.95 point-wise and simultaneous confidence
intervals given in (2.10)-(2.13). The values of {D̃1(z)} based on the model with age, baseline CD4 and
early change in CD4 range from 37 to 74. The values of {D̃2(z)} based on the model with additional
RNA information range from 36 to 73. The estimated differences {∆̃(z)} range from −1.7 to 6.0. These
indicate that there is no clinically meaningful gain from RNA for any subgroup of patients classified by
β̂′X . One may draw further statistical inference about the ∆(·). For example, for subjects whose score
g1(β̂′X) ∈ Jz = [40, 60], the estimated ∆̃(50) = 0.45 with 0.95 point-wise interval of (−3.25, 4.15) and
simultaneous interval of (−7.48, 8.38). Note that the results reported here are based on Jz with interval
length of 20, which is well within the intra-patient variation of CD4 measures. Various analyses have also
been done with Jz’s whose lengths range from 30 to 60. All the results lead to the same conclusion. That
is, statistically or clinically, we cannot identify a subgroup of patients who would benefit from the extra
information of HIV-RNA for prediction of the long term CD4 change.

The data for the second example is from a population of patients screened for a clinical study, called
TRACE, for treating heart failure or acute myocardial infraction (MI) (Kober and others, 1995). There
were 6676 patients screened. Each patient had six routine clinical covariates: age, creatine (CRE), occur-
rence of heart failure (CHF), history of diabetes (DIA), history of hypertension (HYP), and cardiogenic
shock after MI (KS). Moreover, each patient had an echocardiographic assessment of left ventricular sys-
tolic function which was quantified by a measure called the wall motion index (WMI). Compared with
the above six covariates, the WMI is relatively expensive to obtain. Although not every screened patient
entered the clinical trial, all patients screened were followed closely for mortality.

Recently, Thune and others (2005) studied the prognostic importance of left ventricular systolic func-
tion in patients diagnosed with either heart failure or acute MI in addition to the patient’s medical his-
tory. It would be interesting to identify subpopulations that can benefit from the extra WMI measure
for predicting clinical outcomes such as mortality. Here, we let the outcome Y be a binary variable,
which is one if the patient died within five years. The five-year survival rate for this data set is approx-
imately 42%. To evaluate the incremental value of WMI, we first fit the data using Model (2.1) with
X = (1, AGE, CRE, CHF, DIA, HYP, KS), and g1(s) = exp(s)/{1 + exp(s)}. With the extra variable
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WMI, we fit a second logistic regression model with W = (X ′, WMI)′. A total of 5921 subjects have
complete predictor information. The estimates for the regression parameters with their standard errors are
reported in Table 2. Note that the WMI is highly statistically significant.

Table 2. Estimated Regression Coefficients for Model (2.1) with AGE, CRE, CHF, DIA, HYP, KS and WMI for the
screened population of TRACE study

Estimate 0.055 −0.010 0.759 0.718 0.187 1.153 −1.097
Std. Error 0.004 0.002 0.067 0.101 0.073 0.163 0.083
P-value 0.000 0.000 0.000 0.000 0.010 0.000 0.000

Next, we consider the prediction rules

Ŷ1(β′X) = I{g1(β′X) > c}, (3.1)

and
Ŷ2(θ′W ) = I{g2(θ′W ) > c}. (3.2)

Moreover, let D(a, b) = |a− b|. Now, for c = 0.5, the 5-fold cross validated estimates obtained by letting
Jz be the entire real line in (2.8) and (2.9) for the overall prediction errors E[D(Y 0, Ŷ1(β̂′X0))] and
E[D(Y 0, Ŷ2(β̂′W 0))] are 0.28 and 0.26, respectively, a modest overall incremental gain from the extra
information of WMI for the entire population of interest. To identify which subgroup of patients who
would benefit with WMI, we let Jz = [z − 0.1, z + 0.1], for z ∈ Ω̂ = [0.15, 0.82]. Here, Ω̂ is chosen by
letting d1 = d2 = 0.01 discussed in Section 2. To estimate Dl(z), l = 1, 2, and ∆(z), we used the 5-fold
cross validation to obtain D̃1(·), D̃2(·) and ∆̃(·). In Figure 2, we present these point estimates and their
corresponding 0.95 point-wise and simultaneous confidence intervals. For the interval estimation, we let
d3 = 0.01. This results in Ω̃ = [0.26, 0.76]. Note that the point estimates ∆̃(z) for z outside Ω̂ are not
reliable, and ∆̃(z) is pretty flat around 0 for z ∈ Ω̂−Ω̃, indicating that there is no evidence that WMI has a
meaningful gain outside the interval Ω̃. On the other hand, with the point and interval estimates displayed
in Figure 2(c), one may conclude that WMI is likely to be beneficial for patients with conventional risk
scores g1(β̂′X) ranging from 0.16 to 0.74. If WMI is relatively affordable to the population of interest,
then one may consider using the upper bound of the simultaneous confidence intervals to identify the
subpopulation based on ∆̃(z)+τασW∗(z) > 0 and thus conclude that patients with g1(β̂′X) ∈ [0.16, 0.86]
are likely to benefit from the WMI. On the other hand, when WMI is not quite affordable, then one may
select the region conservatively and use the lower bound of the simultaneous confidence intervals based
on ∆̃(z)− τασW∗(z) > 0 and thus conclude that patients with g1(β̂′X) ∈ [0.29, 0.63] are likely to benefit
from the WMI.

Note that for any prediction rule Ŷ , the conditional or unconditional expectation of the above distance
function D(Y, Ŷ ) consists of two discordance rates or two types of error rates. For example,D1(z) in (2.3)
is D11(z) + D10(z), where D11(z) = E[Y 0D{1, Ŷ1(β′0X

0)}| g1(β′0X
0) ∈ Jz], the discordance rate for

false negative errors, and D10(z) = E[(1− Y 0)D{0, Ŷ1(β′0X
0)}| g1(β′0X

0) ∈ Jz], the discordance rate
for false positive errors. The D20(z) and D21(z) are similarly defined. Let ∆0(z) = D10(z) − D20(z)
and ∆1(z) = D11(z) − D21(z). Oftentimes, a false negative conclusion may lead to a more serious
consequence than a false positive. Therefore, one may consider a weighted sum of ∆0(z) and ∆1(z),
∆(w, z) = w0∆0(z) + w1∆1(z), to evaluate the importance of the extra markers, where w = (w0, w1)′

and w0 and w1 are non-negative constants. For a given w, the cross validated point estimates ∆̃(w, z) and
their interval estimates for ∆(w, z) can be constructed as for ∆(z) in Section 2.
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8 L. TIAN, T. CAI AND L.J. WEI

In Figure 3(a),(b),(c) and (d), we present the point and interval estimates of ∆(w, z) for the predictors
(3.1) and (3.2) with c = 0.5 and various choices of w. Note that when w0 6= w1, even if the working model
is correctly specified, the prediction rule in (3.1) or (3.2) with c = 0.5 is not optimal with respect to the
weighted error rate. Furthermore, with the unequal weighting criterion, for some subgroups of patients,
inclusion of the extra information of WMI may significantly decrease the prediction precision.

For a given w, with the weighted sum prediction precision measure, w0D10(z) + w1D11(z), it is
straightforward to show that the optimal prediction rule based on X that minimizes the above criterion
is Ŷ = I{pr(Y = 1 | X) > cw}, where cw = w0/(w0 + w1). Therefore, for the present example, if
g1(β̂′X) and g2(θ̂′W ) are reasonably good approximations to E(Y |U) and E(Y |U, V ), the predictors
I(g1(β̂′X) > cw) and I(g2(θ̂′W ) > cw) are almost optimal. In Figure 4, we present the cross validated
point estimates along with the 0.95 interval estimates of ∆(w, z) with w = (1, 4)′ and (1, 9)′ when
“optimal” prediction rules are used for both models. It appears that there is minimal gain from WMI
across all sub-populations indexed by g(β̂′X) ∈ Jz for both cases.

4. REMARKS

From the results of our analysis presented in the Example Section, we find that the decision to include
or exclude the additional biomarkers for prediction of a patients’ health outcome depends heavily on the
prediction precision measure or utility function. In the cardiovascular disease arena, clinicians may rec-
ommend certain treatments to patients whose predicted 10-year risk of having a cardiovascular event is
higher than, for example, 10%. The utility or cost function for choosing this cutoff points can be rather
complex, if not impossible, to quantify. Furthermore, the utility function may vary across individuals and
hence different patients may have different optimal cutoff points for predicting patient-level outcomes.
The weighted sum of prediction error rates presented in this article is an attempt to cope with this com-
plicated cost-benefit issue. The complexities of choosing a loss function extend to the case of continuous
responses. For example, weighting absolute prediction errors according to the observed response may lead
to a more meaningful penalty in some cases than the un-weighted absolute prediction error.

The proposed methods may be extended to the case where responses are event times subjected to
censoring. Since the support of the censoring variable is usually shorter than that of the event time in
practice, we may utilize the approach taken by Uno and others (2007) and construct predictors for t-year
survival. It would be interesting to investigate whether the additional biomarkers are useful for predicting
long- or short-term survivors, with potentially different subsets of patients benefiting in each case.
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6. APPENDIX A

Large sample properties of D̂1(·), D̂2(·) and ∆̂(·)
To justify the asymptotic properties of the proposed estimators, certain smooth regularity conditions

are needed for the distance function D(·, ·) and its corresponding predictor. Here, we consider the case that
the distance function is D(Y, Ŷ ) = |Y − Ŷ | for continuous and w

(1−Y )
0 wY

1 |Y − Ŷ | for binary responses,
where w0 and w1 are given positive numbers. Furthermore, when Y is continuous, we let Ŷ1(β′x) =
g1(β′x), and Ŷ2(θ′w) = g2(θ′w), and when Y is binary, let Ŷ1(β′x) = I{g1(β′x) > constant}, and
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Ŷ2(θ′w) = I{g2(θ′w) > constant}. Similar arguments can be used to justify other cases.
Suppose that β0 and θ0 are interior points of their compact parameter spaces. Let Ω denote the set of

z such that Jz is properly contained in the support of β′0X . First, we show that the above estimators are
uniformly consistent over Ω. To this end, let Θ̂ = (β̂′, θ̂′)′ and Θ = (β′, θ′)′

D̂1(z, β) =
∑n

i=1 D{Yi, Ŷ1(β′Xi)}I{g1(β′Xi) ∈ Jz}∑n
i=1 I{g1(β′Xi) ∈ Jz} ,

D̂2(z, Θ) =
∑n

i=1 D{Yi, Ŷ2(Wi, θ)}I{g1(β′Xi) ∈ Jz}∑n
i=1 I{g1(β′Xi) ∈ Jz} ,

D1(z, β) = E[D{Y, Ŷ1(β′X)}|g1(β′X) ∈ Jz] and D2(z, Θ) = E[D{Y, Ŷ2(θ′W )}|g1(β′X) ∈ Jz]. It
follows from the uniform law of large numbers (Pollard, 1990, Ch. 8) that supz,β |D̂1(z, β)−D1(z, β)|+
supz,Θ |D̂2(z, Θ) − D2(z, Θ)| converges to 0, in probability, where the sup is taken over Ω and the pa-
rameter spaces. This, together with the convergence property of β̂ and θ̂, implies the uniform consistency
of D̂1(z) = D̂1(z, β̂) and D̂2(z) = D̂2(z, Θ̂). The consistency of ∆̂(·) follows accordingly.

Next, we show that the processes D̂1(·), D̂2(·) and ∆̂(·) after standardization are asymptotically nor-
mal. First, let T = (Y, U ′, V ′)′ and Θ̂ = (β̂′, θ̂′)′. It follows from Appendix 1 of Tian and others (2007),
n

1
2 (Θ̂−Θ0) = n−

1
2

∑n
i=1 ψ(Ti) + op(1), where ψ(T ) = {ψ1(T )′, ψ2(T )′}′,

ψ1(T ) = [E{ġ1(β′0X)XX ′}]−1X{Y − g1(β′0X)}, ψ2(T ) = [E{ġ2(θ′0W )WW ′}]−1W{Y − g2(θ′0W )},

and ġk(·) is the derivative of gk(·). Now, let Ŵ1(z, β) = n
1
2

{
D̂1(z, β)−D1(z, β)

}
and Ŵ2(z, Θ) =

n
1
2

{
D̂2(z, Θ)−D2(z, Θ)

}
. By the maximum inequality for the standard empirical processes (Pollard,

1990, Ch.9),

sup
z,β

∣∣∣∣∣Ŵ1(z, β)− n−
1
2

n∑

i=1

ξ1(z, β, Ti)

∣∣∣∣∣ + sup
z,Θ

∣∣∣∣∣Ŵ2(z, Θ)− n−
1
2

n∑

i=1

ξ2(z, Θ, Ti)

∣∣∣∣∣ → 0,

in probability, as n →∞, where

ξ1(z, β, Ti) =
I{g1(β′Xi) ∈ Jz}

[
D{Yi, Ŷ1(β′Xi)} − D1(z, β)

]

pr(g1(β′X) ∈ Jz)
,

and

ξ2(z, Θ, Ti) =
I{g1(β′Xi) ∈ Jz}

[
D{Yi, Ŷ2(Wi, θ)} − D2(z, Θ)

]

pr(g1(β′X) ∈ Jz)
.
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10 L. TIAN, T. CAI AND L.J. WEI

This, together with the above linear expansion of n
1
2 (Θ̂−Θ0), implies that

Ŵ1(z) = n
1
2

{
D̂1(z, β̂)−D1(z, β̂) +D1(z, β̂)−D1(z, β0)

}

' n
1
2

{
D̂1(z, β0)−D1(z, β0)

}
+ Ḋ(2)

1 (z, β0)′n
1
2 (β̂ − β0)

' n−
1
2

n∑

i=1

{
ξ1(z, β0, Ti) + Ḋ(2)

1 (z, β0)′ψ1(Ti)
}

(6.1)

Ŵ2(z) = n
1
2

{
D̂2(z, Θ̂)−D2(z, Θ̂) +D2(z, Θ̂)−D2(z, Θ0)

}

' n−
1
2

n∑

i=1

{
ξ2(z, Θ0, Ti) + Ḋ(2)

2 (z, Θ0)′ψ(Ti)
}

(6.2)

where Ḋ(2)
1 (z, β) = ∂D1(z, β)/∂β and Ḋ(2)

2 (z, Θ) = ∂D2(z, Θ)/∂Θ. It follows from a functional central
limit theorem (Pollard, 1990, Ch. 10) that the processes Ŵ1(·) and Ŵ2(·) converge weakly to zero-mean
Gaussian processes. The weak convergence of Ŵ(·) follows accordingly.

To approximate the distribution of the processes Ŵ1(·), Ŵ2(·) and Ŵ(·), we consider the perturbed
version of these processes. The resulting processes are

W∗
1 (z) = n

1
2

{∑n
i=1[D{Yi, Ŷ1(Xi, β̂)} − D̂1(z, β̂)]I{g(β̂′Xi) ∈ Jz}Gi∑n

i=1 I{g(β̂′Xi) ∈ Jz}
+ D̂1(z, β̂∗)− D̂1(z, β̂)

}
,

(6.3)

W∗
2 (z) = n

1
2

{∑n
i=1[D{Yi, Ŷ2(Wi, θ̂)} − D̂2(z, Θ̂)]I{g(β̂′Xi) ∈ Jz}Gi∑n

i=1 I{g(β̂′Xi) ∈ Jz}
+ D̂2(z, Θ̂∗)− D̂2(z, Θ̂)

}
,

(6.4)

and

W∗(z) = W∗
1 (z)−W∗

2 (z), (6.5)

where {G1, ..., Gn} are independent standard normal random variables that are independent of the data,
Θ̂∗ = (β̂∗

′
, θ̂∗

′
)′,

β̂∗ = β̂ +

{
n∑

i=1

ġ1(β̂′Xi)XiX
′
i

}−1 n∑

i=1

Xi

{
Yi − g1(β̂′Xi)

}
Gi

and θ̂∗ = θ̂ +

{
n∑

i=1

ġ2(θ̂′Wi)WiW
′
i

}−1 n∑

i=1

Wi

{
Yi − g2(θ̂′Wi)

}
Gi.

It follows from the same arguments as given above and similar arguments as in Appendix 4 of Cai and
others (2005) that the limiting distributions of W∗

1 (·), W∗
2 (·) and W∗(·), conditional on the data, are

the same as those of Ŵ1(·), Ŵ2(·) and Ŵ(·), respectively, on Ω. Since pr(Ω̂ ⊂ Ω) → 1, the confi-
dence interval given in (2.10)is asymptotically valid for any z ∈ Ω̂. Furthermore, noting the fact that
supbΩ |W∗

l (z)/σW∗
l (z)| and supbΩ |Ŵl(z)/σcWl(z)

| are asymptotically equivalent to supΩd1,d2
|W∗

l (z)/σW∗
l (z)|

and supΩd1,d2
|Ŵl(z)/σcWl(z)

|, respectively, where Ωd1,d2 ⊂ Ω is the limit of Ω̂, the asymptotical con-

fidence band over the random region Ω̂ given in (2.11) is valid as well. Similarly, one may justify the
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validity of the confidence interval and band given in (2.12) and (2.13) by noting that Ω̃d3 , the limit of Ω̃,

is a subset of Ω and σW(z) is uniformly bounded below by a positive constant for z ∈ Ω̃.

7. APPENDIX B

Large sample properties of crossvalidated estimators

For each partition Ik, let Θ̂(−k) = (β̂′(−k), θ̂
′
(−k))

′ be the estimated Θ using data not in Ik via (2.2)
and (2.5),

D̂1k(z, β) =

∑
i∈Ik

D{Yi, Ŷ1(β′Xi)}I{g1(β′Xi) ∈ Jz}∑
i∈Ik

I{g1(β′Xi) ∈ Jz} ,

and

D̂2k(z, Θ) =

∑
i∈Ik

D{Yi, Ŷ2(θ′Wi)}I{g1(β′Xi) ∈ Jz}∑
i∈Ik

I{g1(β′Xi) ∈ Jz} .

Since K is small with respect to n, D̂1k(z, β̂(−k)) is consistent. Then, it follows from the same argument
in Appendix A, n1/2{D̂1k(z, β̂(−k))−D1(z, β0)} is asymptotically equivalent to

n−
1
2 K

n∑

i=1

I(τi = k)ξ1(z, β0, Ti) + n
1
2 Ḋ1(z, β0)(β̂(−k) − β0),

where {τi; i = 1, · · · , n} are n exchangeable discrete random variables uniformly distributed over {1, 2, · · · ,K},
independent of the data, and

∑n
i=1 I(τi = k) ≈ n/K, k = 1, · · · ,K. It follows from the same argument

in Appendix 3 of Tian and others (2007) that conditional on the observed {τi, i = 1, · · · , n}

β̂(−k) − β0 =
K

n(K − 1)

n∑

i=1

I(τi 6= k)ψ1(Ti) + op(n−1/2).

Then using the same argument in Appendix A, one can show that

W̃1(z) =
n

1
2

K

K∑

k=1

{
D̃1k(z)−D1(z)

}
=

n−
1
2

K

n∑

i=1

K∑

k=1

{
I(τi = k)Kξ1(z, β0, Ti) +

KI(τi 6= k)ψ1(Ti)
K − 1

}
.

Since
∑K

k=1 I(τi = k) = 1 and
∑K

k=1 I(τi 6= k) = K − 1, it is straightforward to show that W̃1(z)
is asymptotically equivalent to Ŵ1(z) and thus the distribution of W̃1(·) can be approximated by that of
W∗

1 (·) conditional on the partition indicators {τi, i = 1, · · · , n}. Similar arguments can be used to show
that the distributions of W̃2(·) and W̃(·) can be approximated by those ofW∗

2 (·) andW∗(·), respectively.
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Fig. 1. Point estimates forD1(·),D2(·) and ∆(·) with corresponding 0.95 point-wise (dashed lines) and simultaneous
(shaded regions) confidence intervals for the HIV example.
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Fig. 2. Point estimates forD1(·),D2(·) and ∆(·) with corresponding 0.95 point-wise (dashed lines) and simultaneous
(shaded regions) confidence intervals for the screened population of the TRACE study (the prediction with c = 0.5).
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Fig. 3. Point estimate e∆(w, ·) for ∆(w, ·) with various weights and the corresponding 0.95 point-wise (dashed lines)
and simultaneous (shaded regions) confidence intervals for the screened population of the TRACE study (the predic-
tion with c = 0.5).
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(a) w0 = 0, w1 = 1
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(c) w0 = 1, w1 = 4
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Fig. 4. Point estimate e∆(w, ·) for ∆(w, ·) with the ”optimal” weights and the corresponding 0.95 point-wise (dashed
lines) and simultaneous (shaded regions) confidence intervals for the screened population of the TRACE study.
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