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1 Introduction

Efficient use of the large data sets generated by gene expression microarray experiments
requires computerized data analysis approaches (1; 2). In this chapter we briefly de-
scribe and illustrate two broad families of commonly used data analysis methods: class
discovery and class prediction methods. Class discovery, also referred to as clustering
or supervised learning, has the goal of partitioning a set of objects (either the genes or
the samples) into groups that are relatively similar, in the sense that objects in the same
group are more alike than objects in different groups (3; 4). A typical application is to
generate hypotheses about novel disease subtypes (5; 6). Class prediction, also referred
to as classification or supervised learning, has the goal of determining whether an object
(usually a sample, but sometimes a gene) belongs to a certain class (7; 8). A typical ap-
plication is classification of patients into existing disease subtypes or prognostic classes
(9; 10) using gene expression information.

In our discussion, “sample” refers generically to any type of biological material that is
processed and hybridized to a chip. For example, in a study of breast cancers, the sam-
ples could represent the breast cancer tissues biopsied from a group of women. “Gene”
is used loosely to refer to the features on the arrays, such as sequences from genes or
ESTs, single oligonucleotides in Agilent arrays, oligonucleotide sets in Affymetrix arrays
and so forth. “Object” refers to the entity being clustered, and can be either a gene or a
sample, as the same algorithms can often be applied symmetrically to both. “Attribute” is

any feature of the object being clustered. If we cluster samples, genes are typically at-
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tributes, and vice versa. “Phenotype” refers to any clinical or biological characteristic of a
sample or the person or organism from which the sample is associated, such as disease
subtype, age, gender, or time to disease progression.

To demonstrate the clustering methods in this chapter, we use a gene expression
microarray dataset published by Hedenfalk and colleagues (11) and including samples
from twenty-two breast cancers, of which seven are from patients with known BRCA1
mutations, eight from patients with known BRCA2 mutations, and seven are sporadic.
Complementary DNA (cDNA) was obtained from each tumor sample and hybridized to
two channel cDNA arrays which included spots for 3226 genes and ESTs. The reference
sample was cell-line MCF-10, a nontumorigenic breast cell line. Data from this study is
available at http://www.nhgri.nih.gov/DIR/Microarray.

Statistical computing environments typically offer a rich set of alternatives for clustering
and classification. In particular the free and open source computing environment R (12)
and the associated Bioconductor (13) project cover most standard tools, a wide variety of
developmental tools and offer the flexibility for implementing custom solutions. A range
of free and open source tools can be accessed via the website www.arraybook.org. The
site http://ihome.cuhk.edu.hk/ "b400559/arraysoft.html maintains a catalog of both

free and commercial microarray data analysis software.
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2 Protocols

2.1 Clustering

Clustering techniques can be used in microarray analysis to a) facilitate visual display
and interpretation of experimental results; and b) suggest the presence of subgroups of
objects (genes or samples) that behave similarly. The input of a cluster analysis are the
gene expression values of the samples in an experiment, with no additional phenotype
information. Depending on the approach, the output can be a list of subgroups, or a
visualization that simplifies manually establishing subgroups. In some applications, un-
supervised methods are used even though phenotype information is available. The goal
is often to see how the clusters of samples that arise from an unsupervised approach

compare to the known phenotypes.

2.1.1 Distance and Similarity

To determine which objects cluster together, we must have a way of measuring how sim-
ilar, or dissimilar any two of them are. Most clustering approaches will allow as input
a matrix whose entries measure similarity, or dissimilarity, between each pair objects.
Choosing this measure is one of the most critical, yet often underappreciated, aspects
of a cluster analysis. Different measures reflect different goals, and thus can have a
strong influence on the resulting clusters. Here we discuss in detail three: the correlation

coefficient, which will bring together objects whose patterns of change are similar; the Eu-
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clidean distance, which will bring together objects whose absolute expressions are similar,
and the uncentered correlation, which achieves a compromise between the previous two.
The Pearson correlation coefficient measures the strength of a linear association be-

tween the expression levels of objects. In the case of genes j and k, it is defined by

S (e — T)(war — Tp)

Pjk = S S
V(e — 2,2 55 (e — 7)?

(1)

where z; is the gene expression for gene j in sample s and z; is the average gene ex-
pression of gene j across all samples. A symmetric definition applies to the correlation
between samples. The correlation takes values ranging from -1 (perfect negative corre-
lation) to 1 (perfect positive correlation). A correlation of 0 means that there is no linear
relationship between the two genes. For analyses that require positive similarity matrices,
it is common to use the absolute value of the correlation with the rationale that high neg-
ative and high positive correlations both may imply an underlying common mechanism.
The correlation coefficient is unitless, but is sensitive to nonlinear transformation of the
data, such as the logarithm. For non-linear relationships, the correlation coefficient may
not adequately describe similarity. Another drawback is that it may be sensitive to noise.
The Euclidean distance measures geometric distance between two objects. In the

case of genes j and k, it is defined by

di, = \| > (14 — T)* )
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A symmetric definition applies to the correlation between samples. It takes values from 0
to oo and it retains the units of the input gene expression measurements. It grows with
the number of samples included in the dataset.

The uncentered correlation (14) is similar to the Pearson correlation but is evaluated

without centering :
Zfﬂ LsjLsk
€k = — . (3
ZS 2 S 2
s=1 ij s=1 L5k

As the Pearson correlation, this is unitless, but is sensitive to absolute magnitudes as

the Euclidean distance. As a result it will be less likely to be influenced by genes whose
variation is mostly noise.

For a summary of other distance and similarity metrics, see (15).

2.1.2 Hierarchical Clustering

Hierarchical clustering is used to partition objects into a series of nested clusters (5; 6),
by contrast with approaches that find a single partition (16). To illustrate, a hierarchical
clustering analysis of both genes and samples in the Hedenfalk data is shown in Figure 1,
along with a grey scale image of gene expression levels. The similarity used is the un-
centered correlation. The hierarchy of clusters of samples is displayed using a tree-like
structure called dendrogram. Dendrograms join objects, or clusters of objects, to form
increasingly large clusters. The height at which two clusters are joined represents how
similar they are, with low heights representing high similarity. Samples in Figure 1 are

labeled by their type (BRCAL1, BRCA2, or sporadic), though these types are not used in
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constructing the dendrogram.

There are two kinds of hierarchical clustering approaches: agglomerative and divisive.
The agglomerative approach begins by assuming that each object belongs to its own
separate cluster. At the first step, the two most similar objects are combined to form a
new cluster. Then the next most similar clusters or object are combined and so forth.
This is a bottom-up approach in the sense that the clustering starts at the bottom of the
dendrogram of Figure 1 and works its way up until all objects belong to one cluster. As
part of the agglomerative approach, it is necessary to specify a linkage method, that is a
way of defining similarity of clusters based on similarities of cluster members. Some of
the commonly used linkage methods are single, average, and complete in which clusters
are linked based on the similarity of the closest members, the average similarity, and the
similarity of the furthest members.

The divisive approach works from the top of the dendrogram, where all objects belong
to one cluster. At the first step, it finds the best division of the objects so that there is
the highest similarity among objects within clusters and the most dissimilarity between
clusters. This process continues, where the best cluster partition is chosen at each step
until all objects are in their own clusters. Details of hierarchical clustering can be found in
(4).

An important consideration when applying or interpreting hierarchical clustering results
is that there is not a unique dendrogram for a given hierarchical clustering result. For each

split in a dendrogram, it is arbitrary which branch is drawn to the right or left, and users
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need to specify criteria for this choice. As such, many dendrograms can be drawn for
a given hierarchical clustering result and closeness of objects should be based on the
height at which they are joined, rather than their ordering in the dendrogram.
Preselection of genes can significantly affect clustering of samples and vice versa.
Selecting genes that show at least a certain amount of variation across samples is useful
to reduce the sensitivity of clustering results to noise variation. Selecting genes whose
variation is associated with a phenotype of interest is also common, though when that is
done the correspondence of clusters to phenotype cannot be invoked as validation of the
clustering results, as the correspondence will be inflated by the preselection. To illustrate,
compare the left panel of Figure 1, which includes all genes in the experiment, to the right
panel, where only the top 25% of genes associated with the BRCA types are included.
The dendrogram on the left has short branch links and cascading patterns, both of which
weaken the case for the existence of clusters. None of the main partitions has any relation
to the BRCA type. On the right, the branch links at the top are longer and there is some
evidence of two major clusters, which separate well the BRCA1 from the BRCA2 cases.
While in general a correspondence between clusters found by unsupervised analyses and
sample phenotypes can be taken as independent supporting evidence of the existence of
clusters of biological significance, in this case this argument would be circular, because

the sample phenotypes were used in selecting the genes for clustering.
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2.1.3 K-means Clustering and Self-Organizing Maps

K-means clustering (17) partitions objects into groups that have little variability within clus-
ters and large variability across clusters. The user is required to specify the number k& of
clusters a priori. Estimation is iterative, starting with a random allocation of objects to
clusters, re-allocating to minimize distance to the estimated “centroids” of the clusters,
and stopping when no improvements can be made. The centroid is the point whose
attributes take the mean expression level of the objects in the clusters. K-medoids clus-
tering is similar, except that the center of the clusters is defined by “medoids”, similar to
centroids, but based on medians (4). Specification of £ can be difficult, though there are
ways of gaining insight into the appropriate number of clusters, such as using principal
components analysis. A closely related approach is that of self-organizing maps (18; 7;

15), now common in in gene expression data (16).

2.1.4 Principal Components Analysis and Multi-Dimensional Scaling

Principal Components Analysis (PCA) (19; 20; 21) and Multidimensional Scaling (MDS)
are techniques whose goal is to reduce the dimensionality of data to facilitate visualization
and additional analysis. They are often used as a preliminary step to the clustering of
large data sets and are commonly applied to gene expression data (22; 23; 24; 25; 26;
27; 28).

PCA creates summary attributes, or “components”, that are weighted averages of the

original attributes, are uncorrelated to each other, and are such that most of the variability
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in the data is concentrated in few components. During the estimation process, as many
components as there are attributes are calculated. Users select a small number, chosen
to retain a sufficient fraction of the variability. These are often plotted to visually search
for clusters. A strength of PCA is that redundant information is represented in a single
component, while a drawback is that the components may lack clear biological interpre-
tations.

The first three PC’s for the Hedenfalk data are shown in Figure 2. Here, instead of
having to visualize thousands of genes per sample, we here use three weighted averages
of genes. Together, they describe 38% of the variability in the data. The samples appear
to cluster in subgroups. When phenotype information is available, one can check putative
subgroups again the phenotype information, or gauge how the variability in expression
relates to the variability in phenotypes. For example, in the top-left panel, the sporadic
samples tend to have high values for component 2 and relatively low values for component
1. BRCA2 samples are distributed differently with most having either very low values for
component 2 or high values for both components 1 and 2. The four areas in the plot
created by the two intersecting lines are discriminating between different BRCA types.
The results for components 1 versus 3 and 2 versus 3 also show some clustering, though
these are not as clearly related to BRCA types.

MDS starts from a distance matrix between objects and finds the locations of these ob-
jects in a low dimensional space that best preserves the original distances. For example,

given objects in three dimensions, MDS may find the two dimensional map of these ob-
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jects that is most faithful to the original three-dimensional distances. The result is similar
to the PCA result: we have summary variables, the coordinates of the map, that describe
a large fraction of the variability in the gene expression measures, and that can be visually
inspected to identify clusters. Two examples of MDS as applied to gene expression data

can be found in (29; 30).

2.1.5 Limitations of cluster analysis

Clustering techniques for high dimensional data are exploratory. Their strength is in pro-
viding rough maps and suggesting directions for further study. Substantial additional work
IS necessary to provide context and meaning to groups found by automated algorithms.
This includes cross referecing of existing knowledge about genes and samples as well as
additional biological validation.

Clustering results are sensitive to a variety of user-specified inputs. The clustering of
a large and complex set of objects can, like arranging books in a collection, be planned
in different ways depending on the goals. From this perspective, good clustering tools
are responsive to users’ choices, not insensitive to them, and sensitivity to input is a
necessity of cluster analysis rather than a weakness. This also means, however, that use
of a clustering algorithm without knowledge of its workings, the meaning of inputs, and
their relationship to the biological questions of interest is likely to yield misleading results.

Clustering results are generally sensitive to small variations in the samples and the

genes chosen and to outlying observations. This means that a number of the data-analytic
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decisions made during normalization, filtering, data transformations, and so forth will have
an effect on results. When conclusions drawn from clustering go beyond simple data vi-
sualization, it is important to provide accurate assessments of the uncertainty associated
with the clusters found. Uncertainty from sampling and outliers can be addressed within
model-based approaches (31) or alternatively using resampling techniques (32; 33; 34).
The consequences of choosing among plausible alternative transformations, normaliza-
tions, and filtering should be addressed by sensitivity analysis, that is by repeating the

analysis and reporting conclusions that are consistent across analyses.

2.2 Classification

Classification techniques can be used in microarray analysis to predict sample pheno-
types based on gene expression patterns. While novel and microarray specific classifi-
cation tools are constantly being developed, the existing body of pattern recognition and
prediction algorithms provide effective tools (35). Dudoit and colleagues (36) offer a prac-
tical comparison of methods for the classification of tumors using gene expression data.
Relevant tools from the statistical modeling tradition include: discriminant analysis (37),
including linear, logistic, and more flexible discrimination techniques; tree-based algo-
rithms, such as classification and regression trees (CART) by (38) and variants; general-
ized additive models (39); and neural networks (40; 7; 41). Appropriate versions of these
methods can be used for both classification and prediction of quantitative responses such

as continuous measures of aggressiveness. Some of these methods are briefly reviewed
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here.

2.2.1 Dimension Reduction

Because of the large number of genes that can be used as potential predictors, it is useful
to preselect a subset of genes, or composite variables, likely to be predictive and then
investigate in depth the relationship between these and the phenotype of interest. For
example, genes with nearly constant expression across all samples can be eliminated.
Additional screening can be based on measures of marginal association, such as the
ratio of within-group variation to between-group variation, or the measure used in (42),
though these can miss important genes that act in concert with others but have no strong
marginal effects.

Parsimonious representations of the data may be identified when there is knowledge
of important pathways that can be used to manually construct new and more highly ex-
planatory variables. When such knowledge is not available we need to apply discovery
techniques such as those described earlier; for example, the centroids of clusters or the
variables identified by PCA can be used as predictors. Composite variables that are
easily measurable and interpretable in terms of the original gene expression are gener-
ally preferable. Automatic approaches for preclustering variables before classification are

also useful (43).

13
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2.2.2 Evaluation of Classifiers

Classifiers based on gene expression are generally probabilistic, that is they only predict
that a certain percentage of the individuals that have a given expression profile will also
have the phenotype, or outcome, of interest. Therefore, statistical validation is necessary
before models can be employed, especially in clinical settings (44; 45).

The most satisfactory approaches to validation require the use of data other than those
used to develop the classifier. When only a single study is available, this can often be
achieved by setting aside samples for validation purposes, as illustrated by (36). Statis-
tical validation of probabilistic models (46) should focus on both refinement, that is the
ability of the classifier to discriminate between classes, and calibration, that is, the cor-
respondence between the fraction predicted and the fraction observed in the validation
sample.

An alternative to setting aside samples for validation is the so-called cross-validation.
For example, K-fold cross-validation consists of splitting the data in K subsets, and train-
ing the classifier K times, setting aside each subset in turn for validation. The average
classification rates in the K analyses is then an unbiased estimate of the correct classifi-
cation rate (47).

A potentially serious mistake is to evaluate classifiers on the same data that were
used for training. When the number of predictors is very large, a relatively large number
of predictors will appear to be highly correlated with the phenotype of interest as a result

of the random variation present in the data. These spurious predictors have no biological
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foundation and do not generally reproduce outside of the sample studied. As a result,
evaluation of classifiers on training data tends to give overly optimistic assessments of
validity. In plausible settings, classifiers can appear to have a near perfect classification
ability in the training set without having any biological relation with phenotype (48). All
aspects of learning a classifier need to be properly cross-validated to avoid inflated esti-

mates of performance.

2.2.3 Predictive Analysis of Microarrays (PAM)

A straightforward approach to classification is the nearest centroid classifier. This com-
putes, for each class, a centroid given by the average expression levels of the samples
in the class, and then assigns new samples to the class whose centroid is nearest. This
approach is similar to k-means clustering except clusters are now replaced by known
classes. With a large number of genes this algorithm can be sensitive to noise. A recent
enhancement uses shrinkage: for each gene, differences between class centroids are set
to zero if they are deemed likely to be due to chance. This approach is implemented in
the Prediction Analysis of Microarray, or PAM (49) software. Shrinkage is controlled by
a threshold below which differences are considered noise. Genes that show no differ-
ence above the noise level are removed. A threshold can be chosen by cross-validation,
as shown in Figure 3 for the Hendefalk data. High thresholds, on the right, include few
genes, and lead to classifiers that are prone to errors. As the threshold is decreased

more genes are included and estimated classification errors decrease, until they reach a

15
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bottom and start climbing again as a result of noise genes —a phenomenon known as

overfitting.

2.2.4 Top scoring pairs

Another simple and very effective tool is the top-scoring pair(s), or TSP, classifier (50). In a
two-class classification, this looks for pairs of genes such that gene 1 is greater than gene
2 in class A and smaller in class B. This handles effectively issues of normalization as the
pair provides an internal control and is likely to give generalizable results. TSP classifiers
are transparent and interpretable and provide specific hypotheses for follow-up studies.
In cancer data the TSP classifier achieves prediction rates that are as high as those
of alternative approaches which use considerably more genes and complex procedures

(50).

2.2.5 Nearest-Neighbor Classifiers

Nearest-neighbors classifiers (51), assign samples to classes by matching the gene ex-
pression profile to that of samples whose class is known. A simple implementation is to
choose a rule for finding the £ nearest neighbors and then deciding the classification by
majority vote. Nearest-neighbor classifiers are robust, simple to interpret and implement,
and do not require, although they may benefit from, preliminary dimension reduction.
Nearest-neighbor algorithms are also used in several packages for imputation of missing

data.
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2.2.6 Support Vector Machines

Support vector machines (SVMs) (52) seek cuts of the data that separate classes effec-
tively, that is by large gaps. Technically, SVMs operate by finding a hypersurface in the
space of gene expression profiles, that will split the groups so that there is the largest
distance between the hypersurface and the nearest of the points in the groups. More
flexible implementations allow for imperfect separation of groups. See (53) and (54) for
details of SVMs and generalizations, while (55) and (56) give examples of analysis of

gene expression data using SVMs.

2.2.7 Discriminant Analysis

Discriminant analysis (57) and its derivatives are approaches for optimally partitioning a
space of expression profiles into subsets that are highly predictive of the phenotype of
interest, for example by maximizing the ratio of between-classes variance to within-class
variance. (7) and (21) give details, while (58) discusses flexible extensions of discriminant
analysis (FDA) and (59) provides a discussion of discriminant analysis in the context of

gene expression array data.

2.2.8 Classification Trees

Classification trees recursively partition the space of expression profiles into subsets that
are highly predictive of the phenotype of interest (38). They are robust, easy-to-use, and

can automatically sift large data sets, identifying important patterns and relationships. No
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prescreening of the genes is required. The resulting predictive models can be displayed
using intuitive graphical representations. An example in which classification trees have

been applied to gene expression data can be found in (60).

2.2.9 Regression-based Approaches

Linear models, generalized linear models, generalized additive models and the associated
variable selection strategies provide standard tools for selecting useful subset of genes
and developing probabilistic classifiers. A limitation of these techniques is that they cannot
generally handle more genes than there are samples. This can be circumvented using
forward selection approaches that progressively add genes to the classifier. Recent, more
accurate approaches are based on the so-called stochastic search methods (61), that
generate a sample of plausible subsets of explanatory variables. The selected subsets
are then subjected to additional scrutiny to determine the most appropriate classification
algorithm. A combination of stochastic search with principal component analysis and
other orthogonalization techniques has proven effective in high-dimensional problems (62;

63), and has recently been employed in microarray data analysis (23).

2.2.10 Probabilistic Model-based Classification

Model based classification is based on the specification of a probability distribution that
describes the variability of the expression values. Typically, this is mixture model, in
which mixture components represent known classes (64). Model-based approaches are
computation-intensive and can be sensitive to assumptions made about the probability

18
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model, but can provide a solid formal framework for the evaluation of many sources of

uncertainty, and for assessing the probability of a sample belonging to a class.

3 Summary

A wide range of alternative approaches for clustering and classification of gene expression
data are available. While differences in efficiency do exist, none of the well established
approaches is uniformly superior to others. Choosing an approach requires consideration
of the goals of the analysis, the background knowledge, and the specific experimental
constraints. The quality of an algorithm is important, but is not in itself a guarantee of
the quality of a specific data analysis. Uncertainty, sensitivity analysis and, in the case of
classifiers, external validation or cross-validation should be used to support the legitimacy

of results of microarray data analyses.
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Figure 1: Hierarchical cluster analysis of the Hedenfalk breast cancer data. The grey scale
image represents gene expression levels, with levels lower than the reference represented
by white to light gray and levels higher than the reference represented by medium gray
to black. The left panel includes all samples and genes. The right panel includes all
samples and the top 25% genes most strongly associated with the presence of BRCA1
and BRCA2 mutations. The dendrograms for genes have been omitted.
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Figure 2: The first three principal components of the Hedenfalk breast cancer data. Open
circles indicate sporadic samples, closed circles indicate BRCAL samples, and plus sym-
bols indicate BRCA2 samples. Dotted lines in the plot of component 1 versus component

2 distinguish the three types.
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Figure 3: Misclassification error of PAM classifiers on the Hedenfalk breast cancer data.
The top panel shows the overall classification error as a function of the threshold used
to set centroid differences to zero. Classifiers on the right have a higher threshold and a
more parsimonious use of genes. As the number of genes increases, the error rate de-
creases until about ten genes when the effects of overfitting offset the additional predictve
ability of adding genes, and the error rates starts increasing. The bottom panel shows the
classification error by class.
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