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Abstract

Longitudinal categorical data are common in many scientific studies, including

those of multiple sclerosis (MS), and are frequently modeled using Markov depen-

dency. Several authors have proposed random effects Markov models to account for

heterogeneity in the population. In this paper, we go one step further and study

prediction based on random effects Markov models. In particular, we show how to

calculate the probabilities of future events and confidence intervals for those probabil-

ities, given observed data on the categorical outcome and a set of covariates, and how

to update them overtime. We discuss the usefulness of depicting these probabilities

for visualization and interpretation of model results and illustrate our method using

data from a phase III clinical trial that evaluated the utility of interferon beta-1a to

MS patients of type relapsing-remitting.

KEYWORDS: Markov model, transition model, ordinal response, prediction.
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1 Introduction

Multiple sclerosis (MS) is a chronic inflammatory disease of central nervous system myelin.

In time, the disease causes disability which is measured on the ordinal expanded disability

status scale (EDSS). In MS studies, disability is often evaluated semi-annually with the aim

of estimating the probability of progression, as defined on the EDSS scale. The natural

assumption of Markov dependency provides a convenient framework for the estimation of

probabilities of various time-dependent events that are of biological interest (prediction).

Examples of such events are: reaching a certain level, being in a certain level for two

consecutive visits, reaching a group of levels and so forth. Mandel et.al. (2007) developed

methodology for analyzing these kinds of events using fixed effects transition models and

applied it to MS data. However their first-order models suffered from lack of fit, partially

due to the heterogenous nature of the disease.

Transition models for longitudinal data (Diggle et.al., 2002) express the joint distri-

bution of repeated measures as a product of conditional distributions, and are especially

useful when the ultimate goal of the analysis is that of prediction. However, when im-

portant subject specific covariates are not measured, the model explains only part of the

true heterogeneity in the data, and moreover, the Markov assumption may be violated.

One remedy is to incorporate random effects into the Markov transition model. The basic

assumption is that conditional on an observed set of covariates and an unobserved latent

variable, the sequence of the categorical variables follows a Markov chain.

Two-state Markov transition models with random effects have been studied by several

authors (Cook and Ng, 1997, Albert and Waclawiw, 1998, Albert and Follmann, 2003).

These papers assume implicitly that the distribution of the first (baseline) state is indepen-
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dent of the random effect given covariates. This strong and somewhat unnatural assumption

is relaxed in a series of papers (i.e., Aitkin and Alfó, 1998, 2003 Alfó and Aitkin, 2000)

that suggest models for the influence of the first state on the random effect’s distribution.

A related framework in which subjects transition between states according to a continuous

time Markov process, but only are observed at n time points was studied by Kalbfleisch

and Lawless (1985), and random effects were introduced to this model by Cook (1999) and

by Cook, et al. (2004).

The current paper focuses on the problem of prediction, or second stage estimation, from

random effects Markov models. It is based on estimation results derived in earlier work to

make inferences about the future of the process given its past. Specifically, let Y0, Y1, . . . , Yn

be the sequence of the categorical variables observed for a subject at the equally spanned

time points 0, 1, . . . , n, and let X be a vector of covariates. We are interested in estimating

P (Yv = y|Y0 = y0, Y1 = y1, . . . , Yn = yn, X = x) or more generally, P (Av|Y0 = y0, Y1 =

y1, . . . , Yn = yn, X = x), where the event Av is determined by (Y0, Y1, . . . , Yv), and v > n.

Only a few papers have dealt with second stage inference in the framework of transition

models. Albert (1994) and Mandel et.al. (2007) studied parameters such as mean first

passage time and probabilities of time to events, but only for fixed effects models. Albert

and Waclawiw (1998) also estimated mean first passage time in random effects models, but

only at the population level, and not based on subject specific history.

In this paper we extend the methodology of Mandel et.al. (2007) by developing methods

for estimation of time-to-event probabilities and associated confidence intervals under ran-

dom effects Markov models. Our estimates take into account subject specific history and

can be updated over time when more data are collected. In the presence of random effects,
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much more computational effort is required for deriving estimates and confidence intervals,

and more importantly, careful interpretation of estimated coefficients and predicted values

is necessary. However, proper interpretation of model results with the aid of graphical tools

presented below enables important insights to the longitudinal process studied, e.g., to the

natural history of MS.

It is important to distinguish between our usage of the term prediction to refer to

P (Yv = y|Y0 = y0, Y1 = y1, . . . , Yn = yn, X = x), and its usage in the linear and generalized

linear mixed models framework (Robinson, 1991, Jiang and Lahiri, 2006). The latter

usage of prediction is in a subject-specific sense; either the random effect is estimated or a

conditional distribution given the random effect is estimated. Thus, letting U denote the

latent random effect, the analog of prediction in the generalized linear models framework

is estimation of U |Y0 = y0, Y1 = y1, . . . , Yn = yn, X = x or P (Yt = y|Y0 = y0, Y1 =

y1, . . . , Yn = yn, X = x, U) and their associated mean squared errors. Because we do not

have many observations on each subject, and subjects are quite heterogeneous, neither of

these quantities is suitable in our setting. Instead, we integrate over the random effect

to obtain an estimate for future events that is based on observed data alone. This very

important distinction is illustrated on the MS data in Section 4.

The paper is organized as follows. Section 2 defines the model and reviews estimation

based on previous papers mentioned above. Section 3 deals with prediction under the mixed

effects model. It describes generation of probability estimators and their variances as a

function of time given subject-specific covariates and history. Section 4 applies the method

to data from a phase III clinical trial of MS patients. It discusses several important points

regarding interpretation of the models and provides important insights into the natural
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history of MS. Section 5 presents results of a simulation study and Section 6 completes the

paper with a discussion.

2 Preliminaries

This section gives a brief review of the construction and estimation of the Markov transition

mixed model. It also describes an identification problem that affects estimation of model

parameters, but not prediction.

2.1 The Model

Consider a discrete time Markov process over the states {1, 2, . . . , J}. Let Yiv be the state

of subject i at visit (time) v, and let Y •
iv = (Y 2

iv, . . . , Y
J
iv )′, where Y j

iv = I{Yiv = j} and

I is the indicator function. Let Ui ∼ G (with density g) denote a subject specific latent

variable and Xi ∼ H a vector of covariates. Using lower case letters for realizations of

random variables, the data for subject i having ni transitions are (yi0, yi1, . . . , yini
, xi) and

its contribution to the likelihood, Li, is given by (omitting the subscript i)

H(dx)P (Y0 = y0|X = x)

∫ ∞

−∞

n∏
v=1

P (Yv = yv|Yv−1 = yv−1, X = x, U = u)g(u|Y0 = y0, X = x)du.

(2.1)

Albert and Waclawiw (1998) assume that each Markov process is in equilibrium, and Aitkin

and Alfó (2003) specify a parametric model to the distribution of Y0|X, U . Under these

assumptions, P (Y0 = y0|X = x) is informative and should be used for likelihood-based infer-

ence. While such additional assumptions enable exploitation of more information from the

data, they cannot always be justified. Hence, our inference will be conditional on (Y0, X).

Following Aitkin and Alfó (1998), we assume that g(u|Y0 = y0, X = x) = σ−1g0([u−η′y•0]/σ)
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for some known g0, e.g., the standard normal density. Thus, given the initial state, the

random effect is independent of the covariates, and the initial state affects g only through

its location. Then, by omitting H(dx)P (Y0 = y0|X = x) and after changing variables, the

likelihood contribuion reduces to

∫ ∞

−∞

n∏
v=1

P (Yv = yv|Yv−1 = yv−1, X = x, U = σu + η′y•0)g0(u)du. (2.2)

To model the transition probabilities, suppose that

P (Yv = j|Yv−1 = k, X = x, U = u) = pk,j(β
′x + γu). (2.3)

There are two assumptions embedded in (2.3). First, the Markov model is time homo-

geneous, and second, the transition probabilities depend on X and U only through their

linear combination. The second assumption reflects our view of the random effect as repre-

senting unmeasured covariates, that if observed, would be modelled as we do the observed

covariates. The likelihood contribution becomes

∫ ∞

−∞

n∏
v=1

pyv−1,yv(β
′x + γ[σu + η′y•0])g0(u)du. (2.4)

Finally, the transition probability depends on the transition k → j according to a vector

α = (αkj)

Li =

∫ ∞

−∞

n∏
v=1

pyv−1,yv(β
′x + γ[σu + η′y•0]; α)g0(u)du. (2.5)

Note that (i) the probability of the transition k → j may be a function of components of

α other than αkj, and (ii) this vector is subject to several constraints to ensure that the

rows of the transition matrix sum to one.
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2.2 Identifiability

It is clear from (2.4) and (2.5) that (γ, σ, η) is not identifiable. This, however, does not

present a problem for estimation of β or for prediction, hence γ will be set to 1 in the

sequel, giving the final working model

Li =

∫ ∞

−∞

n∏
v=1

pyv−1,yv(β
′x + σu + η′y•0; α)g0(u)du. (2.6)

Suppose that x contains the initial state y•0. Then, it is clear from (2.6) that the

effect of y•0 as a covariate (i.e., the effect of y•0 given U = u) is not identifiable. Thus,

interpretation of η should be made with care. It seems more reasonable to tie η to the

random effect’s distribution rather than to the transition probabilities when the initial

state is somewhat arbitrary, relating to the sampling time. In that case, interpretation of

η is as the center of the random effect’s distribution and not in terms of an odds ratio.

Moreover, there is nothing special about y•0 in the discussion above, and the same reasoning

applies for any other covariate; β is not identifiable if the random effects’ density takes

the form g(u|Y0 = y0, X = x) = σ−1g0([u − η′y•0 − ζ ′x]/σ). This is quite a reasonable

form for g(u|Y0 = y0, X = x) when viewing U as an unmeasured covariate and assuming

a multivariate normal distribution for (X, U). Although interpretation of model results

is problematic, for prediction purposes this identification issue raises no difficulties since

prediction is based on β′x + γ[σu + η′y•0], which is identifiable (for given x, u and y•0).

2.3 Estimation

The likelihood of N independent subjects is given by

L =
N∏

i=1

Li =
N∏

i=1

∫ ∞

−∞

ni∏
v=1

pyiv−1,yiv
(β′xi + σu + η′y•i0; α)g0(u)du. (2.7)
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Estimation of nonlinear random effects model is done via maximization of (2.7). This is

a standard, though difficult task. A convenient and flexible routine for maximization of

the likelihood is the procedure NLMIXED in SAS, which contains several methods for in-

tegration and optimization when g0 is normal (Littell et.al., 2006). The EM algorithm is

an alternative way of maximizing L (Aitkin and Alfó, 1998) without requiring specificaion

of the distribution of the random effects. However, Agresti found that the random effect

distribution has to be extremely nonormal for the normal GLMM to suffer from bias or

inefficiency (Agresti 2002, pp 547-548). Thus, the normal model for the random effects dis-

tribution seems reasonable in most circumstances in terms of simplicity and interpretability.

2.4 Notation

The following notation will be used in the sequel: θ ≡ (β′, η′)′ is the vector of fixed effects,

ϑ ≡ (α′, θ′, σ)′ is a vector of length m of all unknowns, z ≡ (x′, y•0
′)′ is the vector of

observed predictors, and w ≡ θ′z + σu is the linear predictor. Depending on the context,

the transition probabilities will be denoted either by pyv−1,yv(θ
′z+σu; α), pyv−1,yv(x, u, y0; ϑ)

or pyv−1,yv(w; α). The superscript (s) will be added to denote transitions in s steps: for

example, p
(s)
k,j(x, u, y0; ϑ) = P (Yv+s = j|Yv = k, X = x, U = u, Y0 = y0; ϑ).

3 Prediction

The ultimate goal of our analysis is that of prediction of a future observation given the

past observations and covariates:

P (Yv = yv|{Yt = yt}0≤t≤n, X = x). (3.1)

7 Hosted by The Berkeley Electronic Press



Note that here, in contrast to the fixed effects case,

P (Yv = yv|{Yt = yt}0≤t≤n, X = x) 6= P (Yv−n = yv|Y0 = yn, X = x),

because the distribution of (Y0, Y1, . . . , Yv) has the Markov property only conditional on

U . Thus, the process itself provides information on the latent U , which in turn, is used to

predict future events.

Using

P (Yv = yv|{Yt = yt}0≤t≤n, X = x)

=

∫ ∞

−∞
P (Yv = yv|{Yt = yt}0≤t≤n, X = x, u)g(u|{Yt = yt}0≤t≤n, X = x)du (3.2)

=

∫ ∞

−∞
p(v−n)

yn,yv
(x, u, y0; ϑ)

∏n
t=1 pyt−1,yt(x, u, y0; ϑ)∫∞

−∞
∏n

t=1 pyt−1,yt(x, u∗, y0; ϑ)g0(u∗)du∗
g0(u)du,

(3.1) is estimated by

P̂ (Yv = yv|{Yt = yt}0≤t≤n, X = x) =

∫ ∞

−∞
p(v−n)

yn,yv
(x, u, y0; ϑ̂)

∏n
t=1 pyt−1,yt(x, u, y0; ϑ̂)g0(u)∫∞

−∞
∏n

t=1 pyt−1,yt(x, u∗, y0; ϑ̂)g0(u∗)du∗
du,

(3.3)

where ϑ̂ is an estimate of ϑ. This last integral can be calculated using numerical methods.

A natural simple way is to conduct Monte Carlo integration with respect to the assumed

known density g0. Alternatives are MCMC, which eliminates the burden of approximating

the integral in the denominator, and general numerical integration methods.

Of special interest for us is prediction for a subject without any observed transitions.

This represents a patient at diagnosis and is the analogous to prediction in a model without

random effects. For such a case, (3.3) reduces to

Pϑ̂(Yv = yv|Y0 = y0, X = x) =

∫ ∞

−∞
p(v)

y0,yv
(x, u, y0; ϑ̂)g0(u)du. (3.4)

As mentioned in Section 1, it is important to distinguish (3.1) from

P (Yv = yv|{Yt = yt}0≤t≤n, X = x, U = u). (3.5)
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The problem of estimating quantities similar to (3.5) is referred to as prediction in the mixed

model literature (Jiang and Lahiri, 2006). In using (3.5), one aims at estimating the subject

specific transition probability which is a random variable, even in a frequentist’s point of

view. A point predictor for (3.5) is P (Yv = yv|{Yt = yt}0≤t≤n, X = x, U = ûi), where ûi is

the mean or the mode of U |{Yt = yt}0≤t≤n, X = x under ϑ̂ (Booth and Hobert, 1998). Jiang

(2003) suggests the empirical best predictor E{P (Yv = yv|{Yt = yt}0≤t≤n, X = x)|U = u}

which is exactly (3.3). Thus, the point estimators of the two prediction problems are the

same, but the estimands differ. With small numbers of observations on each subject, the

utility of subject-specific parameters, such as those in (3.5) is questionable. This point will

be illustrated further in the data analysis in Section 4.

3.1 Prediction Variance

Letting ϑ̂ be the estimator of ϑ and assuming that
√

N(ϑ̂−ϑ) → N(0, Σ), we can calculate

the asymptotic variance of (3.3) and (3.4) by the delta method. Let P (x, u, y0; ϑ) be the

transition matrix evaluated at (x, u, Y0 = y0; ϑ), and let p∗(v−n)(yn, yv, P (x, u, y0; ϑ)) =

p
(v−n)
yn,yv (x, u, y0; ϑ) be the (v − n)-step transition probability as a function of the one-step

transition matrix. We have that

∂

∂ϑ
p(v−n)

yn,yv
(x, u, y0; ϑ) =

∂

∂vec(P )
p∗(v−n)(yn, yv, P (x, u, y0; ϑ))

∂

∂ϑ
vec(P (x, u, y0; ϑ)), (3.6)

where vec(P ) is the vector representation of the matrix P . The first term in the right hand

side of (3.6) can be calculated by a simple matrix multiplication as shown by Mandel et.al.

(2007), and the rows of the second term are

(
∂

∂α
p(·, ·, w; α) ,

∂

∂w
p(·, ·, w; α)(z′, u)

)
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where p(·, ·, w; α) is the generic form of the transition probabilities evaluated at w and α.

An illustration of a specific calculation of these derivatives for a partial proportional odds

model (see (4.1) below) is given in Appendix A. To calculate the derivative of (3.4), one

should average (3.6) with respect to g0 which can be done again by numerical integration.

Differentiation of (3.3) is more complicated, but can still be carried out analytically as

shown in Appendix B. An alternative approach for estimating the variance is based on

a simulation that replaces the analytic differentiation, but makes use of the asymptotic

properties of the parameters’ estimators:

1. Calculate ϑ̂ and Σ̂, the estimates of ϑ and Σ.

2. Sample B vectors ϑ1, . . . , ϑB from the normal distribution with parameters ϑ̂ and

Σ̂/N .

3. Calculate (3.3) with ϑb instead of ϑ̂ (b = 1, . . . , B).

4. Calculate the variance of the estimates in the previous step, or calculate confidence

intervals using their distribution.

Note the complexity of this algorithm that requires numerical integration in step 3 for each

of the simulated samples. The calculation of prediction variance for models having fixed

effects only are considerably simpler (Mandel et al., 2007).

3.2 Choice of Parameters

Simple manipulations of the estimated transition matrix enable estimation of different

parameters of interest. For example, one may be interested in estimating time until the

process first visits a certain set of states S (hitting time), or time until the first two
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consecutive visits to S. The second parameter is of great interest in MS since EDSS in

one visit may indicate a temporary progression that is much less important than sustained

progression (see Section 4). As an example, consider time until the first two consecutive

visits to S = {k : k > j}, with the aim of ultimately estimating the probability of two

consecutive visits to states larger than j before time v. To estimate these probabilities, one

should replace P = (pij) with the working (J + 1)× (J + 1) transition matrix

Qj+ =




p11 · · · p1j p1(j+1) · · · p1J 0

...
...

...
...

...
...

...

pj1 · · · pjj pj(j+1) · · · pjJ 0

p(j+1)1 · · · p(j+1)j 0 · · · 0
∑

k>j p(j+1)k

...
...

...
...

...
...

...

pJ1 · · · pJj 0 · · · 0
∑

k>j pJk

0 · · · 0 0 · · · 0 1




. (3.7)

Thus, an additional absorbing state is added to indicate the event of interest (see Mandel

et. al. (2007) for other modifications). The (k, J + 1)’th cell of Qv
j+ is the probability that

two consecutive visits to S occurred during the first v transitions when the process started

at k.

Prediction and calculation of variances or confidence intervals are based on the modified

transition matrix, Qj+. Letting q
(v)
l,k (x, u, y0; ϑ) denote the (l, k) element of Qv

j+ under ϑ for

(X = x, U = u, Y0 = y0), the probability of two consecutive visits in states > j before time

v, given the process’ history up to time n, is estimated by

∫ ∞

−∞
q
(v−n)
yn,J+1(x, u, y0; ϑ̂)

∏n
t=1 pyt−1,yt(x, u, y0; ϑ̂)∫∞

−∞
∏n

t=1 pyt−1,yt(x, u∗, y0; ϑ̂)g0(u∗)du∗
g0(u)du. (3.8)

Equation (3.8) assumes that the event {two consecutive visits in states > j} has not oc-
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curred before visit n (otherwise the probability is 1), or alternatively, that we are interested

in the probability of that event from the present time to time v. The variance is calculated

as described in Section 3.1 (see Appendix B for some technical details).

3.3 Models Without Random Effects

A model without random effects is obtained as a special case by setting u ≡ 0 and con-

sidering g0 as degenerate at zero. The averaging over the random effects is not needed,

making the calculation much simpler. Also, (3.3) reduces to (3.4), where the last observed

state carries all important information of the history of the process. Interpretation of η is

now as a coefficient of the covariate y•0, and may be omitted according to the specification

of the model.

4 Illustration - Progression of Multiple Sclerosis

The data set analyzed here is part of a double-blinded phase III clinical trial that evaluated

the utility of interferon beta-1a (Avonex) for MS patients with relapsing-remitting disease

(Jacobs et.al., 1996). It includes all patients who were accrued early enough to complete

two years of follow-up by the end of the study and who had brain MRI scans at baseline

and yearly thereafter. As seen in Table 3 of Jacobs et al. (1996), the time to sustained

progression distribution of this subgroup was the same as that of all study subjects. Visits

were scheduled to be every six months, however, actual visits deviated slightly from the

schedule. We used all visits that had a maximum discrepancy of 30 days from the schedule.

This resulted in only 16 missed visits (2.5% of the total scheduled visits), quite a small

number for such a complex study. The outcome of interest was time to sustained progres-
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Table 1: Observed transitions of MS patients between EDSS scores.

Placebo Avonex

EDSS≤1.5 EDSS=2,2.5 EDSS≥3 EDSS≤1.5 EDSS=2,2.5 EDSS≥3

EDSS≤1.5 49 23 6 50 26 3

EDSS=2,2.5 15 45 30 33 52 25

EDSS≥3 4 21 124 1 21 79

sion, defined as the time to two consecutive visits with EDSS of at least one point greater

than baseline.

The data set contains 66 individuals with a total of 290 transitions in the Avonex group

and 72 individuals with 317 transitions in the placebo group. Due to the small number of

transitions, we collapsed the EDSS values into three categories: EDSS≤ 1.5 (no disability),

EDSS of 2 or 2.5 (mild disability), and EDSS≥ 3 (moderate to severe disability). The total

number of transitions is summarized in Table 1.

Model (2.6) was fitted to the data with J = 3, g0 the standard normal density and

pk,j(x, u, y•0; ϑ) =
exp(αkj + β′x + η′y•0 + σu)

1 + exp(αkj + β′x + η′y•0 + σu)
− exp(αk(j−1) + β′x + η′y•0 + σu)

1 + exp(αk(j−1) + β′x + η′y•0 + σu)
,

(4.1)

where αk0 = −∞ and αkJ = ∞ (k = 1, 2, 3). This is a partial proportional odds model

that does not constrain the baseline transition matrix (assigns J − 1 parameters for each

row), but assumes proportional odds of covariates among all transitions. Parameters were

estimated by SAS procedure NLMIXED, using the Dual Quasi-Newton algorithm with

integrals evaluated by the default adaptive Gaussian quadrature. Convergence problems

13 Hosted by The Berkeley Electronic Press



were solved by first fitting models without random effects, and using the resulting estimates

as initial values for the mixed effects models.

We first estimated the model with a treatment indicator as the only component of x.

The estimated coefficient for treatment was 1.19, with estimated standard error of 0.48.

Thus, interferon beta-1a significantly decreases the probability of worsening in disability.

This finding is consistent with the results of the original study. We then estimated the

model for each arm separately, testing for the influence of patient specific covariates (i.e.,

age, sex, disease duration, brain lesion volume and brain parenchymal fraction). None of

these covariates showed a significant effect. We thus continued our analysis fitting two

separate models (one for each arm) without any covariates.

Using the estimated transition matrices, we calculated the probability of two consecutive

visits with EDSS higher than the baseline value as a function of time. This was the

definition of sustained progression used by Jacobs et.al. (1996). We used the modification

of the transition matrix given in (3.7) for the analysis.

Figure 1 depicts the probability of progression for a subject in her first visit as a func-

tion of time (six months units) stratified by arm and baseline EDSS. After two years (the

end point of the original study), the probability of sustained progression among those who

had EDSS of one at baseline is estimated as 0.44 and 0.54 for the case and control arms,

respectively. For those having EDSS of two at baseline, the difference is more pronounced,

being 0.27 for the interferon and 0.59 for the placebo patients. It appears that interferon

prevents progression for people with mild disability better than for those having no disabil-

ity. However, this may be related to the nature of the scale; a change from EDSS of one to

two is considered a smaller step than a change from two to three.
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Figure 1: Probability of progression. Placebo arm denoted by p and interferon beta-1a arm denoted by

i. The two curves for each arm show different level of baseline EDSS (1 and 2).

Jacobs et.al. (1996) estimated time to progression without conditioning on baseline

EDSS. To generate a similar estimate, one can weigh the curves according to the proba-

bility of baseline EDSS. For example, in the interferon beta-1a arm there were 18 and 29

individuals with baseline EDSS of one and two, respectively, and the overall estimate of the

probability of progression would use the weights 18/47 and 29/47. Estimating progression

of individuals with EDSS of three or higher is impossible, because EDSS values greater

than three were combined.

For comparison, models without random effects were fitted to the same data. Figure

2 presents the estimated progression curves and 95% pointwise confidence intervals for

patients in the interferon beta-1a arm who had baseline EDSS of two, and the i2 curve
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Figure 2: Probability of progression starting in state 2 of the interferon beta-1a arm under the fixed

models. Pluses and circles denote estimates with and without conditioning on the baseline EDSS (state 2

in this graph). Lines are the corresponding estimates of the 95% pointwise confidence intervals. The gray

line is the estimate under the mixed model (curve i2 of Figure 1).

of Figure 1 which is the analogous curve from the random effects model. The two curves

represent models with (pluses) and without (circles) baseline EDSS as a covariate (see

Section 3.3) and their estimated probabilities are quite similar. However, the probabilities

are considerably larger than those predicted by the random effects model (gray curve).

Under the random effects model, the estimated σ2 values are 4.86 and 5.85 for the placebo

and interferon beta-1a arms, respectively. This indicates that the heterogeneity in the data

is large and supports the choice of the random effects model. Various other publications

have found that progression is slower than that predicted by the models without random

effects (e.g., Jacobs et.al., 1996, Weinshenker et.al., 1989).
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To estimate prediction curves for patients who have history of EDSS, realizations of

curves can be generated using the posterior distribution of the random effect (given history

and covariates), as seen in (3.2). Such realizations represent the hypothetical population of

curves that the patient specific curve comes from, and their mean is the probability of pro-

gression given the data, i.e., unconditional on the random effect. Depicting curves from the

posterior distribution is a useful descriptive tool that helps to understand and to interpret

the results. To illustrate that, Figure 3 depicts 100 curves for two hypothetical subjects

in the interferon beta-1a group. The left panel represents a subject with baseline EDSS of

two and without follow-up data (i.e., at the first visit). The curve on the right represents

a subject after ten visits with EDSS history (2,2,3,2,3,2,1,2,2,2), and can be considered as

a five year update of the progression curve for the subject on the left. The mean curves

and 95% pointwise confidence intervals are depicted too. The variability of the curves on

the right is much smaller than that on the left as a result of the additional information.

The confidence intervals are not much smaller since they contain the sampling variability

of the coefficient estimators. With increasing follow-up data on the same individual, the

variability of the gray curves disappears and the graph shows the predicted (or estimated)

probability of progression of a specific subject.

Figure 3 illustrates the heterogeneity in the course of the disease and indicates that

subject-specific prediction is very difficult, almost impossible. It provides a nice platform

for understanding the distinction between (3.1) and (3.5). The quantity (3.5) is essentially

one of the gray curves appearing in the figure, while (3.1) is the average of the curves.

Thus, (3.1) is a functional of the distribution of (3.5), and can be estimated consistently

from the data.
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Figure 3: Distribution of curves of the probability of progression. One hundred realizations of the

estimated model for the interferon beta-1a arm (gray lines) with the estimated mean curve and 95%

confidence intervals based on the simulation method. Left - baseline EDSS of 2 no follow-up data; right -

ten visits with observed data (2,2,3,2,3,2,1,2,2,2).

To generate realizations of progression curves for Figure 3, a sampling algorithm from

the posterior g(u|{Yt = yt}0≤t≤n, X = x) is required. A natural choice is the MCMC

algorithm. However, for the current purpose, a rather small number of independent real-

izations is needed and a simple alternative is to use a direct sampling. Let c > supu P ({Yt =

yt}0≤t≤n|X = x, u) (for practical purposes, it is enough to approximate c by calculating

P ({Yt = yt}0≤t≤n|X = x, u) on a fixed grid). The rejection/acceptance algorithm (e.g.,

Evans and Swartz, 2000) for generating one realization is then

1. Generate independently u from g0 and v from U(0, 1).

2. If P ({Yt = yt}0≤t≤n|X = x, u) > cv stop and return u. Otherwise go back to step 1.
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visit 1 2 3 4 5 6 7 8 9 10

y0 = 1 0 .422 .586 .692 .759 .805 .838 .863 .882 .897

y0 = 2 0 .270 .407 .501 .569 .621 .662 .696 .723 .746

Table 2: Probabilities of time to two consecutive visits in a larger state.

5 Simulation

A small simulation study was conducted in order to examine the performance of the confi-

dence intervals. Transitions between three states were generated according to the Markov

model (4.1) with parameters α11 = 0, α12 = 2.2, α21 = −1.4, α22 = 1.4, α31 = −2.2,

α32 = −.85, η2 = −.5, η3 = −1 and σ = 1 (no covariates). The derived probabilities of

time to two consecutive visits in a larger state are listed in Table 2.

We considered two settings, both of which result in 300 transitions. The first was of 100

subjects each with 3 transitions and the second was of 20 subjects each with 15 transitions.

In both settings, we sampled Y0, with probability 1/3 assigned to each state. One thousand

data sets were generated for each setting, and for each, we calculated confidence intervals

for the probabilities of time to two consecutive visits in state 3 starting in state 2. We

compared the confidence intervals based on the analytical delta method to those obtained

by the simulation method described at the end of Section 3.1. For the latter approach, we

used 1000 replications and calculated both normal based intervals using the variance, and

percentile confidence intervals. We also calculated intervals for models without random

effects to illustrate the consequences of model misspecification.

Since the parameters of interest are probabilities, we used the log(-log) transformation

before generating the confidence intervals. This method is commonly used in survival
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analysis (Kalbfleisch and Prentice, 2002) and has improved performance in the fixed effects

model (Mandel, et al., 2007). Thus, the limits of our level α pointwise confidence intervals

are p̂exp{±zα/2

√
V̂ar(p̂)/[p̂ log(p̂)]}, where p̂ and V̂ar(p̂) are the estimates of the parameter and its

variance, and zα is the α percentile of the standard normal distribution.

The maximum likelihood estimate of σ2 was 0 in 120 and 18 data sets for the setting

of 100 and 20 subjects, respectively. In these cases, the estimated model is exactly the

fixed effects model. In evaluating the confidence intervals, we report the results for those

data sets with σ̂2 > 0. In addition, the information matrix of ϑ was not positive definite

in one of the data sets with 20 subjects. This data set was excluded from the evaluation

of the confidence intervals. The proportion of intervals covering the true parameters for

data sets with estimated σ2 > 0 are listed in Table 3. The confidence intervals with

100 subjects perform well, whereas those for 20 subjects are anti-conservative. This is

probably a result of the poor normal approximation for the distribution of the fixed effect

estimators in data with few subjects. Another feature of the confidence intervals is their

uneven distribution on the left and right of the true value, where most intervals that do not

include the true parameter assign values that are too small. This is less pronounced in the

percentile method, and suggests that it is mostly related to the linear approximation of the

delta method. The similarity between the analytical derivative and the simulation based

approach for the 100 subjects setting is remarkable. The simulation approach demands

more computer time, but saves the burden of calculating and programming complicated

derivatives. It also has the additional merit of eliminating the linear approximation of the

delta method.

Table 4 presents the results of fitting models without random effects for the same
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simulations reported in Table 3. As in Figure 2, both models, with and without Y0 as a

covariate, were fitted. Overall the confidence intervals perform poorly. In the setting of

100 subjects, there is a tendency of overestimation which is consistent with the finding of

the data analysis in Section 4 (see Figure 2).

6 Discussion

We have presented prediction and confidence intervals estimation in the mixed effects

Markov model framework, and have provided several graphical tools that help to inter-

pret model results. These graphs, and especially Figure 3, indicate how heterogeneous is

MS and provide a useful tool for better understanding the course of the disease. Although

we have introduced our models for time independent covariates, they can be extended to

time varying covariates. Letting xv be the values of the covariates as measured at visit v,

(2.6) is replaced by

Li =

∫ ∞

−∞

n∏
v=1

pyv−1,yv(β
′xv−1 + σu + η′y•0; α)g0(u)du, (6.1)

and estimation of ϑ follows, similar to this extension in models without random effects

(Mandel, et al., 2007). If the covariate process is external to the Markov process and its

future is known at time v, then prediction can be done as in (3.3) by

P̂ (Yv = yv|{Yt = yt}0≤t≤n, {xt}v−1
t=0 )

=

∫ ∞

−∞
p(v−n)

yn,yv
({xt}v−1

t=n, u, y0; ϑ̂)

∏n
t=1 pyt−1,yt(xt−1, u, y0; ϑ̂)g0(u)∫

u∗
∏n

t=1 pyt−1,yt(xt−1, u∗, y0; ϑ̂)g0(u∗)du∗
du,

where p
(v−n)
yn,yv ({xt}v−1

t=n, u, y0; ϑ̂) is the (yn, yv) element of the transition matrix P (xn, u, y0; ϑ)×

P (xn+1, u, y0; ϑ)× · · · × P (xv−1, u, y0; ϑ). The variance can be estimated by the simulation

algorithm discussed in Section 3.1.

21 Hosted by The Berkeley Electronic Press



Table 3: Results of simulations fitting the random effects model. Entries are the proportions of replications

in which the true parameter was to the left and to the right of the calculated confidence interval. The

methods compared are the delta method (delta), the simulation method using the variance (simulation V)

and the simulation method using the percentiles (simulation P)

visit 100 subjects with 3 transitions 20 subjects with 15 transitions

delta simulation V simulation P delta simulation V simulation P

left right left right left right left right left right left right

2 .017 .030 .018 .028 .016 .018 .019 .064 .022 .062 .023 .058

3 .017 .036 .018 .039 .016 .025 .018 .063 .021 .068 .029 .053

4 .016 .036 .017 .035 .018 .023 .021 .062 .019 .066 .032 .049

5 .010 .038 .010 .038 .020 .020 .024 .066 .015 .070 .034 .047

6 .005 .040 .007 .041 .022 .016 .021 .066 .012 .070 .038 .043

7 .002 .043 .006 .043 .018 .017 .020 .065 .011 .068 .044 .038

8 .000 .041 .001 .043 .017 .016 .020 .063 .008 .064 .044 .036

9 .000 .042 .001 .044 .014 .016 .018 .054 .007 .065 .045 .032

10 .000 .045 .000 .048 .013 .014 .019 .054 .004 .065 .054 .030
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Table 4: Results of simulations fitting the fixed effects model for replications having σ̂2 > 0. Entries are

the proportions of replications in which the true parameter was to the left and to the right of the calculated

confidence interval. Calculation of confidence intervals using the delta method.

visit 100 subjects 20 subjects

w/o y0 with y0 w/o y0 with y0

left right left right left right left right

2 .000 .089 .008 .073 .027 .444 .020 .233

3 .001 .051 .017 .049 .033 .337 .034 .189

4 .011 .030 .024 .032 .032 .240 .038 .162

5 .027 .015 .035 .023 .028 .165 .042 .128

6 .058 .005 .061 .015 .010 .099 .053 .098

7 .113 .000 .092 .008 .000 .062 .060 .085

8 .178 .000 .123 .005 .000 .040 .076 .077

9 .269 .000 .149 .003 .000 .027 .093 .062

10 .355 .000 .184 .003 .000 .015 .112 .047
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MS is known to be a heterogenous disease. Some patients experience no progression for

ten or more years (benign MS) and others experience a fast and continuous progression from

onset (primary progressive MS). The patients used in this paper are relatively homogenous,

since enrollment was subjected to the strict criteria of a phase III clinical trial. Nonetheless,

our results indicate that heterogeneity is present and it is significant. Prediction of the

random effect U would be too ambitious with the typical short follow-up data on each

subject, as well illustrated by Figure 3. In other contexts, however, predicting U and

calculating the mean squared error of prediction, using the approach of Booth and Hobert

(1998), is of both theoretical and applied interest and is a topic of current research.
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A Calculation of the Variance of Model (4.1)

To calculate the first part on the right hand side of (3.6), consider the more general map

Mv(vec(P )) = vec(P v) from RJ2
to RJ2

. Let ∆kj by a J × J matrix whose entries are all

zeros except the (k, j)’th which is one. Then, the (k−1)J + j column of ∂
∂vec(P )

Mv(vec(P ))

is given by

vec
( v−1∑

`=0

P `∆kjP
v−1−`

)
, (A.1)

where P 0 = IJ is the identity matrix of order J (Mandel et.al).

For the second part on the right hand side of (3.6), let

F (j, k, x, u, y•0; ϑ) =
∑

j′≤j

pk,j′(x, u, y0; ϑ) =
exp(αkj + β′x + η′y•0 + σu)

1 + exp(αkj + β′x + η′y•0 + σu)

for j = 1, . . . , J − 1 , k = 1, . . . , J and denote by V = diag(F (j, k, . . .)[1 − F (j, k, . . .)])

the J(J − 1) × J(J − 1) matrix containing the binomial variances in its diagonal (in the

alphabetical order of kj, i,e, 11, 12, . . . , 1J−1, 21, 22, . . . , 2J−1, . . .). Let A be a J×(J−1)

matrix with (i, i) elements equal to 1, (i, i − 1) elements equal -1 and all other entries 0.

For example, for J = 3

A =




1 0

−1 1

0 −1




.
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Let B = IJ ⊗ A, where ⊗ denotes the Kronecker product, and denote by 1a the vector of

ones of length a, then

∂

∂ϑ
vec(P (x, u; ϑ)) =

(
BV, (BV 1J(J−1))⊗ (z′, u)

)
, (A.2)

which is the second part of the derivative as appeared on the right hand side of (3.6).

Equations (A.1) and (A.2) give the derivatives in terms of the elements of P while

the working transition matrix is usually a modification of P as discussed in Section 3.2.

The application (3.6) of the derivative of the transition probabilities can be used with all

references to P replaced with the modified transition matrix, say Q, and in particular,

(A.1) needs no other changes. The matrix ∂
∂ϑ

vec(Q) is obtained from the J2 ×m matrix

∂
∂ϑ

vec(P ) by summing the appropriate terms using rows of zeros for the designed 0 and 1’s

cells. As an example, consider the matrix Qj+ defined in (3.7). Let

C1 =




IJ

01,J


 , C2 =




Ij 0j,J−j

0J−j,j 0J−j,J−j

01,j 1′J−j




,

be (J + 1)× J matrices, where 0r,c is a zero matrix with r rows and c columns, and define

the (J + 1)2 × J2 matrix

C =




Ij ⊗ C1 0j(J+1),J(J−j)

0(J+1)(J−j),jJ IJ−j ⊗ C2

0(J+1),jJ 0(J+1),J(J−j)




then

∂

∂ϑ
vec(Qj+) = C

∂

∂ϑ
vec(P ),

which for the partial proportional odds model reduces to (see (A.2))

∂

∂ϑ
vec(Qj+) = C

(
BV, (BV 1J(J−1))⊗ (z′, u)

)
.
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B Derivative of (3.3)

Letting

h(yv, {yt}0≤t≤n, x, u, ϑ) = p(v−n)
yn,yv

(x, u, y0; ϑ̂)

∏n
t=1 pyt−1,yt(x, u, y0; ϑ̂)∫

u∗
∏n

t=1 pyt−1,yt(x, u∗, y0; ϑ̂)g0(u∗)du∗
,

and assuming differentiation under the integral is permitted, we have

∂

∂ϑ
Pϑ(Yv = yv|{Yt = yt}0≤t≤n, X = x)

=

∫ ∞

−∞

∂

∂ϑ
h(yv, {yt}0≤t≤n, x, u, ϑ)g0(u)du

=

∫ ∞

−∞
h(yv, {yt}0≤t≤n, x, u, ϑ)

∂

∂ϑ
log{h(yv, {yt}0≤t≤n, x, u, ϑ)}g0(u)du.

Next,

∂

∂ϑ
log{h(yv, {yt}0≤t≤n, x, u, ϑ)} =

∂

∂ϑ

[
log{p(v−n)

yn,yv
(x, u, y0; ϑ)}+

n∑
t=1

log{pyt−1,yt(x, u, y0; ϑ)}
]

+
∂

∂ϑ
log{

∫

u∗

n∏
t=1

pyt−1,yt(x, u∗, y0; ϑ)g0(u
∗)du∗}. (B.1)

Each of the components of the first two terms on the right hand side of (B.1) has the form

∂

∂ϑ
log{p(v−n)

yn,yv
(x, u, y0; ϑ)} = [p(v−n)

yn,yv
(x, u, y0; ϑ)]−1 ∂

∂ϑ
p(v−n)

yn,yv
(x, u, y0; ϑ).

To calculate the third term on the right hand side of (B.1), differentiate again under the

integral sign using

∂

∂ϑ
log{

∫

u

n∏
t=1

pyt−1,yt(x, u, y0; ϑ)g0(u)du} =

∫
u

∂
∂ϑ

∏n
t=1 pyt−1,yt(x, u, y0; ϑ)g0(u)du∫

u

∏n
t=1 pyt−1,yt(x, u, y0; ϑ)g0(u)du

and

∂

∂ϑ

n∏
t=1

pyt−1,yt(x, u, y0; ϑ) =
n∏

t=1

pyt−1,yt(x, u, y0; ϑ)×
n∑

t=1

[pyt−1,yt(x, u, y0; ϑ)]−1 ∂

∂ϑ
pyt−1,yt(x, u, y0; ϑ).

Thus, the basic term needed for the calculation is

∂

∂ϑ
p(v−n)

yn,yv
(x, u, y0; ϑ) =

∂

∂vec(P )
p∗(v−n)(yn, yv, P )

∂

∂ϑ
vec(P (x, u, y0; ϑ))
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(see (3.6)), and can be calculated as illustrated in Appendix A.

A great simplification is obtained by noticing that p∗(k, j, P ) is just the (k, j)’th cell of

P , thus, ∂
∂vec(P )

p∗(k, j, P ) = [vec(∆kj)]
′, where ∆kj is a J × J matrix whose elements are

zeros except the (k, j) cell which is 1.

To calculate the variance via the delta method, the derivative should be evaluated at

the MLE ϑ̂. This is done by repeatedly generating u from g0 and calculating the derivative

or by any other numerical integration methods.

To calculate the derivative of (3.8), the same steps as described above are applied, but

with q(·) instead of p(·) in the first term on the right hand side of (B.1). Calculation of

∂
∂ϑ

q
(v−n)
yn,yv (x, u, y0; ϑ) is a transformation of ∂

∂ϑ
p

(v−n)
yn,yv (x, u, y0; ϑ) and described in Appendix

A.
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