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Bayesian Spatial Modeling of fMRI data: A
Multiple-Subject Analysis

Lei Xu, Timothy Johnson, and Thomas Nichols

Abstract

The aim of this work is to develop a spatial model for multi-subject fMRI data.
While there has been much work on univariate modeling of each voxel for single-
and multi-subject data, and some work on spatial modeling for single-subject data,
there has been no work on spatial models that explicitly account for intersubject
variability in activation location. We use a Bayesian hierarchical spatial model to
fit the data. At the first level we model “population centers” that mark the cen-
ters of regions of activation. For a given population center each subject may have
zero or more associated ”individual components”. While most previous work uses
Gaussian mixtures for the activation shape, we instead use Gaussian mixtures for
the probability that a voxel belongs to an activated region, assuming homogeneous
mean intensity within a region. Our approach incorporates the unknown number
of mixture components into the model as a parameter whose posterior distribution
is estimated by reversible jump Markov Chain Monte Carlo. We demonstrate our
method with a fMRI study of vi- sual working memory and show dramatically
better precision of localization with our method relative to the standard mass-
univariate method. Although we are motivated by fMRI data, this model could
easily be modified to handle other types of imaging data.
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1 Introduction

Among the methods for mapping brain function, functional magnetic reasonance imaging

(fMRI) is one of the most widely used. Conventionally a classical, mass-univariate approach

is used, where univariate time series models are fit independently at each voxel. These

models are used to create images of parameter estimates and test statistics, which are then

assessed for significance (Friston et al., 1995). While this is a computationally efficient

method it has several limitations. The approach does not account for the spatial nature of

the image data, and does not utilize the prior knowledge that spatially contiguous patterns

of activation are expected. Multisubject analyses are particularly problematic since, even

after registration of the subjects’ brain to a common atlas, there is residual variation in the

anatomical landmarks; further, it has been shown that even if sulci and gyri are aligned

there is variation in the functional landmarks (Morosan et al., 2001). A mass-univariate

model cannot account for any mismatch in activation location and will only detect voxels

with consistent change in activation.

In this work we develop a Bayesian hierarchical model that improves the standard meth-

ods in several ways. First, we pose an explicit spatial model for activations at the subject

level, unlike the mass-univariate method that fits each voxel independently of its neighbors.

Second, while some authors have proposed spatial models, they have only considered single

subject data; our method is for multi-subject data and accounts for intersubject hetero-

geneity in activation location about a population location. Lastly, we use a fully Bayesian

framework where all sources of uncertainty are considered and quantified.

Our work is motivated by an event-related fMRI study (Park et al., 2003). Park et al.

investigated the brain regions involved in a visual working memory task. Briefly, twenty-one

adult subjects were scanned during two separate tasks. During the “visual” task a subject

was shown a scene for six seconds and asked to memorize it. Immediately thereafter, they

were shown a small fragment of a scene and asked whether this fragment was part of the
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original scene. During the “maintenance” task, subjects were shown a scene for two seconds

and where asked to memorize it for four seconds. They were again shown a small fragment

of a scene and asked whether it was part of the original scene. The effect of interest was the

difference between neuronal activity during the four second maintenance task and the last

four seconds of the visual task. See Park et al. (2003) for full study details..

Inference on mass-univariate models is made by assessing the statistic images, where each

voxel measures evidence against the null hypothesis of no effect. A threshold is then applied

to define regions of significant activation. Various methods on how to choose the threshold

have been proposed (Genovese, Lazar, and Nichols, 2002; Nichols and Hayasaka, 2003).

While some methods find a threshold that accounts for correlation in the null hypothesis

statistic images (Worsley et al., 1996), the spatial properties of the signal are not modeled.

Recently, however, several authors have developed spatial models for the signal in fMRI data

using Bayesian methods.

Woolrich et al. (2005) develop a spatial mixture model using a discrete Markov random

field (MRF) prior on a spatial map of classification labels. For each voxel there is a binary

latent class variable denoting whether this voxel is active or inactive. Within this framework

one can calculate the posterior probability of a voxel being activated. Spatial regularization

is controlled by a parameter in the discrete MRF prior that penalizes neighboring voxels

of different classes. The spatial regularization parameter is typically assumed to be known.

However, results can be highly dependent on this parameter. Estimating this parameter is

problematic because the computational evaluation of the normalizing constant of the discrete

MRF prior is difficult, yet necessary. Hence, Woolrich et al. (2005) cleverly approximate

the discrete MRF prior with a continuous MRF prior whose normalizing constant is easily

calculated. Hartvig and Jensen (2000) also use a spatial mixture model and achieve compu-

tational feasibility by formulating the model through the marginal distribution on a small

grid of voxels. By carefully choosing prior distributions they are able to calculate the pos-
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terior distribution analytically. This provides inference that is much faster than simulation

based methods. In another paper, Hartvig (2002) proposes a regression based spatial model

using the idea of “activation centers”. The activation surface is modeled as a sum of Gaus-

sian functions with parameters describing the shape and the magnitude of the center. They

design a reversible jump algorithm to insert, delete and change an activation center given

the variance parameters are known. They estimate the variance parameters separately in a

different procedure using the distribution of some sufficient statistics.

While these other methods model spatial dependence in the signal, they focus solely on

single subject analyses. We are aware of only one method for multi-subject data. Miglioretti,

McCulloch, and Zeger (2002) develop a multi-subject model for surface electrode data. Their

model is developed for binary observations that is not applicable in the current setting.

In this paper we propose a Bayesian spatial model for multi-subject fMRI data. Our

model can be used to make inference on all facets of the data, but specifically, on the

population location of activations, population prevalance of an activation at a location,

and intersubject variability in a location of activation. Throughout we consider the effect

magnitude image as the observations (or the data), one per subject. These magnitudes can

be interpreted, roughly, as map of the percent change in blood flow—an indirect measure of

neuronal activity. Although our model can be easily extended to analyze 3D data, in this

paper we will only focus on one slice of the 3D image. The top row of Figure 3 displays data

from 4 of the 21 subjects in the data set.

The paper is organized as follows. In Section 2, we introduce the spatial mixture model

in a fully Bayesian framework. In Section 3, we describe the algorithm used for posterior

inference and discuss how we summarize posterior inference in Section 4. In Section 5, we

present simulation results as well as results from our motivating example and a sensitivity

analysis. We conclude the manuscript with a discussion and ideas for future work.
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2 Model

We begin with an overview of the model and notation (with all subscripts initially sup-

pressed), after which we present the likelihood and priors in detail.

Our model is specified hierarchically. At the first level we have an unknown number of

“population centers”, µ, that are uniformly distributed within the confines of the brain. At

the second level, an unknown number of “individual component” means, η, are distributed as

isotropic Gaussian mixtures whose mixture component means are the population centers with

variances τ 2. We assume that each subject has been fit with an intrasubject fMRI signal

model, producing scalar images of the fMRI blood oxygenation level dependent (BOLD)

effect magnitude; we refer to these intrasubject summary measures as “the data”. At the

third and final level, we assume the data, y, for each subject are distributed as a Gaussian

mixture with an unknown number of mixing components whose means are θ with variances

σ2. The mixing weights for the datum at pixel v are proportional to the statistical distance

from v to η with a variance r2. There is one special component representing the constant

background intensity for each subject. We now present the details of our model.

2.1 Likelihood

We begin with the third level of the hierarchy. Let yjv be the observed effect magnitude at

pixel v, v = 1, . . . , V , for subject j, j = 1, . . . , J . We use a single index v to reference a 2D

pixel, xv = (x1v, x2v). We assume that observations are distributed as a mixture of Gaussian

components:

f(yjv | pjvl, θjl, σ2
jl, cj) = pjv0 φ(yjv; θ0, σ

2
0) +

cj∑
l=1

pjvl φ(yjv; θjl, σ
2
jl). (1)

Here, cj is the number of mixture components for subject j (not including the background

component) and φ(a; b, c2) is the density at a of a normal distribution with mean b and

variance c2. θ0 and σ2
0 represent the mean and variance of the background component. By
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introducing a latent variable ωjv with Pr(ωjv = l) = pjvl, the likelihood can be written

conditionally as

f(yjv | θ0, σ
2
0, ωjv = 0) = φ(yjv; θ0, σ

2
0) for background,

f(yjv | θjl, σ2
jl, ωjv = l) = φ(yjv; θjl, σ

2
jl) otherwise.

The latent variable ωjv can be interpreted as an allocation variable in the sense that ob-

servation yjv is assigned to one of the mixture components with probability pjvl. A pixel is

considered active if that pixel belongs to a component with index l > 0 and is inactive if

that pixel belongs to the background component (l = 0).

Let φ2(·; a,B) denote the density of a bivariate normal distribution with mean a and

covariance matrix B. The mixing weights, pjvl, take the form

pjvl ∝
{
m l = 0
φ2(xv;ηjl,Rjl) l = 1, . . . , cj

with
∑cj

l=0 pjvl = 1. Here xv is the spatial location of pixel v and ηT
jl = (η1jl, η2jl) is the mean

of individual component l, l = 1, ..., cj (we refer to the mean of the individual component

as the “component center”). Rjl = r2
jlI2 where I2 is the 2 × 2 identity matrix. The spatial

dependence of the data is captured by the weights, pjvl. Given m, the weights largely

depend on the distance from the pixel to each of the component centers. This implies that

observations that are spatially close to one another are more likely to have similar weights.

Hence, spatially close observations will be more correlated than distant observations. Note

that an observation distant from all components centers, a priori, will have probability that

it belong to the background center close to 1. Furthermore, if a pixel and component center

are coincident, then the a priori probability that this pixel belongs to the background is

approximately m/(r−2
jl /2π + m). fMRI experiments are usually designed such that only a

small percentage of the brain (roughly 1%–5%) actually shows any activity. Thus, a priori,

we set m = 19 and E(r−2
jl ) = (2π). This gives m/(E(r−2

jl )/2π + m) = 0.95, reflecting this a

priori belief.
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The number of mixing components, cj, for each subject is not known and we estimate

it along with all other parameters. A priori we assume cj is a Poisson random variate with

mean 5, for j = 1, . . . , J .

Now we move on to the second and first levels of the hierarchy.

2.2 Priors

The joint prior distribution is factored hierarchically as given in the Appendix.

The priors of the component means make up the second level of the hierarchy. The prior

of each component mean, ηjl, l = 1, . . . , cj for subject j, is taken to be a mixture of cp

bivariate normals. Each component mean is associated with a particular population center,

µi, i = 1, . . . , cp:

π(ηjl | ψi,µi, τ 2
i , cp) =

cp∑
i=1

ψi φ2(ηjl;µi, τ
2
i I2). (2)

Here, the ψi are mixing weights. We also introduce another latent variable, zjl, such that

Pr(zjl = i) = ψi. Thus, conditional on zjl = i, ηjl is bivariate normal with mean µi

and covariance matrix τ 2
i I2. A natural choice for the prior on ψi is a symmetric Dirichlet

distribution: ψi | cp ∼ D(1, 1, . . . , 1) where the parameter dimension is cp − 1. The number

of population centers, cp, is a priori unspecified and is to be estimated along with all other

model parameters.

At the first level of the hierarchy, the parameter µT
i = (µ1i, µ2i) is the location of popula-

tion activation center i, i = 1, ..., cp. Let Aj denote the cross-sectional area of the given MRI

slice of the brain of subject j, j = 1, . . . , J . Set A = ∪Jj=1Aj. (We note here that, although

all subject’s data have been mapped onto a common brain atlas, due to motion artifacts and

field inhomogeneities, there are missing data. Typically, fMRI analyses are performed on the

intersection of the Aj. By taking the union, we allow for the possibility that a population

center is in a region where some subjects may have missing data.) A priori, we assume

these population activation centers follow a homogenous spatial Poisson process with rate
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λp defined over A. Thus, we can write

cp ∼ P (λpA) and π(µ1, . . . ,µcp | cp) = A−cp .

We take λp = 5A−1 reflecting our belief that the number of population centers should be

small. Note that although the prior distribution of the population centers is a homogenous

point process, it’s posterior is not necessarily. The posterior will depend, in large part, on

the posterior distribution of the ηjl.

We place inverse gamma (parametrized such that if x ∼ IG(α, β), E(x) = β/(α − 1))

priors on all variance parameters for mathematical convenience:

r2
jl ∼ IG(2π, βr), τ

2
i ∼ IG(3, βτ ), σ

2
jl ∼ IG(3, βσ), σ2

0 ∼ IG(.001, .001).

Hyperprior distributions are then placed on βr, βτ and βσ: βx ∼ G(.01, .01) where x can be

any one of r, τ, or σ. These choices result in informative priors. However, placing rather

vague hyperprior distributions on the scale parameters reduces the influence of the prior on

the posterior estimates of r2
jl, τ

2
i and σ2

jl.

It remains to specify the priors of the intensity parameters, θjl, in the likelihood specified

in equation (1). Recall that θjl, l > 0, are the mean intensity levels of the individual mixture

components for active pixels and θ0 is the mean intensity level of inactivated pixels. We

choose the following priors:

θ0 ∼ N(0, 1) and θjl ∼ trunc(0,∞)N(λθ, σ
2
θ),

where

λθ ∼ N(35, 1× 108) and σ2
θ ∼ IG(.01, .01).

Furthermore, trunc(0,∞)N(λθ, σ
2
θ) denotes the normal distribution with mean λθ and variance

σ2
θ truncated to (0,∞). Results from a sensitivity analysis are given in Section 5.3.
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3 Posterior estimation

The full posterior distribution does not have an analytic solution. Thus, the posterior distri-

bution is simulated via Markov chain Monte Carlo (MCMC) techniques, and, in particular

reversible jump MCMC (RJMCMC). RJMCMC was first introduced by Green (1995) and

can be viewed as a Metropolis-Hastings (MH) (Hastings (1970)) method adapted to varying

dimensional parameter spaces. In our example this corresponds to the addition and deletion

of a population center or an individual component.

Briefly, we propose to add a new population center or an individual component, each

with probability 0.5 and propose to delete a population center or individual component,

each with probability 0.5 at each iteration of the algorithm. We over-sample the RJMCMC

moves three times per iteration which results in better mixing. When we propose to add

an individual component the parameters defining the new component are drawn from their

prior distributions. The use of the prior distributions in proposing new values leads to a

simplification of the acceptance probability. When we propose to add a population center,

a new location µ∗ and variance τ 2
∗ are drawn from their respective priors. A new mixing

weight ψ∗ is drawn from Beta(1, cp) and its kernel cancels the Jacobian of the transformation.

We re-scale the old weights ψ′s according to ψ′ = ψ(1 − ψ∗) such that all weights sum up

to 1. The deletion move is the inverse of this construction. Conditional on the number of

population centers and individual components other parameters are updated using a Gibbs

or a random walk MH step. The variances in the proposal distribution for the MH steps

were chosen to obtain acceptance rates of approximately 35%. Following Fernandez and

Green (2002) we use the marginal expression for the likelihood and for the priors of the

ηjl, as specified in equations (1) and (2) to obtain better mixing. Details are given in the

Appendix.

9

Hosted by The Berkeley Electronic Press



4 Summarizing posterior inference

Simultaneous visualization of the joint posterior distribution of all parameters is infeasi-

ble. Instead we view the distributions of certain univariate parameters and create images

summarizing the posteriors of the various spatial parameters. In this section we review the

approaches we have used to understand our posterior and assess model fit.

We create a “Posterior Probability of Activation” image for each subject, the pixel-wise

posterior probability that a pixel is activatived. Precisely, we estimate the marginal posterior

probability that subject j has pixel v activated, Pr(ωjv > 0 | y). The Bayesian estimate of

this quantity is the marginal posterior mean of I(ωjv>0), where I(ωjv>0) = 0 if ωjv = 0 and 1

otherwise.

We create an image of the average “Individual Component Posterior”, a pixelization of

the (2D) posterior predictive density of the location of a new individual component for a

new subject. Precisely, we seek to estimate the posterior distribution of η̃, the location of a

single individual component for a randomly selected subject. At each sweep we compute the

marginal distribution (over population centers and subjects) of the individual component

locations,
∑cp

i=1 ψi φ2(xv;µi, τ
2
i I2) for each v. Averaging this over sweeps creates an estimate

of the density of η̃ | y.

The Individual Component Posterior shows the most probable locations of individual

components η and is most valuable for visualizing the spread of individual component centers

about the population centers, as parameterized by τ 2
i . Care must be taken not to over-

interpret the relative height of this image, however. As can be seen by the prior for η

(equation (2)), the mode height in the Individual Component Posterior are affected by three

things. First, all things equal, a smaller τ 2
i means a more concentrated density which will

result in a higher mode. Second, a mode’s height will grow as more subjects have components

associated with that population center; e.g. if component l is associated with center i, then

as
∑

j I(zjl=i) grows so will ψi, the mixing weight for center i. And lastly, a subject that
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requires more components to fit their profile of activation ({yjv}v) associated with center i

will also raise ψi.

We also create three images to characterize the population centers. The “Population

Center Location” image is a pixelization of the (2D) posterior rate function (counts per

pixel) for µ. We estimate this by computing the 2D histogram of {µi} for each iteration

and then average this over iterations. Note that this image does not sum to one, but rather

sums to the posterior mean number of population centers, E(cp | y).

The “Population Center Scale” image shows the standard deviation of individual compo-

nent locations about population centers. Exactly, this the posterior average of τ conditional

on a population center being in pixel v. Note here we have intentionally suppressed the

population center index i, as we marginalize over population center.

The “Population Center Prevalence” image shows the fraction of subjects that possess

a population center. To precisely define this quantity, let cij =
∑

l I(zjl=i) be the count of

individual components that subject j has for population center i. The count of subjects

with center i is then ci =
∑J

j=1 I(cij>0), and the population prevalance is ci/J . Conditional

on a population center being in pixel v, this image is the posterior average of ci/J after

marginalizing over population centers i = 1, ..., cp.

For comparison with other methods we create two other images. A “Classical t-image”

is the one-sample t-test on the BOLD effect magnitudes (yv = {yjv}j) at each voxel. To

make inference on this result, we compute an image of − log10P-values for a one-sided, one

sample t-test. The − log10 transformation makes for easier visualization, creating an image

that should be “bright” in pixels with evidence for an non-null effect magnitude.

11
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5 Results

5.1 Simulation results

To assess the performance of the proposed model, we simulated data for 10 subjects. The

size of each image was 40 × 40 pixels. The parameters in the simulation were chosen to

include different numbers of individual activation components and to include centers with

different mean intensity levels and different sizes. The top row of Figure 1 shows four of

the simulated data sets. The variance of inactivated pixels is 10 for the first 6 subjects

and 8 for the last 4 subjects. There are three population activation centers. Simulated

subjects 1 and 2 possess activations corresponding to all three centers. Subjects 3 through 7

possess activations corresponding to only two of the three population level centers. Subjects

8 through 10 possess only one activation region each. The mean intensities of these three

population level centers are 10, 20 and 25. The variance of the relative intensity for activated

pixels are, respectively, 1, 4 and 9. We set r2
jl = 6, 1 and 4 for all j for the three different

individual activation components l = 1, 2, 3 and τ 2
i = 4, 9 and 1 to obtain different sizes

and different spreads for each individual component. The actual locations of the population

centers and the individual components are summarized in Figure 2(a). We ran the chain for

10,000 iterations and discarded the first 5,000 as burn-in. The hyperparameter controlling

the background probability was set to m = 4, corresponding to an a priori probability of 0.8

of belonging to the background (see page 6, Section 2.1). Other hyperparameter values are

as given in Section 2.2.

To assess convergence we started at different random initial values and found no appre-

ciable differences in the results. The bottom row of Figure 1 shows the Posterior Probability

of Activation images. Figure 2(b) shows the Individual Component Posterior. The locations

of the three major modes are close to the true population values. Also, note that the lower

left activation has the greatest intensity, reflecting that more individuals have this activation

(as can be seen in Figure 2(a)) and the variation is larger compare to the other two cen-
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ters. Figure 2(c) shows the Population Center Location image and gives similar information

about the location of the 3 population centers as does Figure 2(b). However, note that the

variability of the population locations is much smaller than the variability across subjects.

In fact, the population level information is quite precise. The posterior distribution of the

number of population activation centers, cp, has a single mode at 3—in agreement with the

true number of population centers. For comparison we display in Figure 2(d) the classical

t-image and in Figure 2(e) the − log10P-value image.

Our result is both more informative and less noisy. First, our method separately provides

inference on (1) location of population activations, (2) the consistency with which subjects

express such activations, and (3) the intrasubject spread of activations about the population

centers. The classical method can only assess consistency of signal change at each voxel.

With no spatial model, it cannot effect the smoothing of our model, nor can it account for

intersubject variability in activation location.

5.2 Real data results

We now summarize results of our model on the working memory data. We run the algorithm

for 10,000 iterations with a burn-in of 5,000, saving every 5th iteration to summarize results.

The algorithm takes approximately 105 minutes to run on a Mac 2.7 GHz PowerPC G5

processor. The algorithm was written in C++. The acceptance rate for the population

level birth/death RJMCMC is about 5%. Figure 3 shows source data (y) and the Posterior

Probability of Activation for a representative sample of subjects (1, 3, 9 and 20). The results

demonstrate our model capturing the focal signals in subjects 1, 3 and 9, but appropriately

finding no signal in subject 20.

The main focus of our work is the population level, as shown in Figure 4(a,b,c,d). Figure

4(a) displays the Population Center Location posterior; this image shows evidence of 5 to

7 population centers, localized to a a few pixels. Figure 4(b) shows the Population Center

Prevalence image; of the 5 to 7 centers, only 3 are present in more than 50% of the subjects:

13
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The bottom left and right bilateral pair of activations are in the dorsal occiptal lobe, an

area involved in visual processing; the upper left activation is in the dorsolateral prefrontal

cortex (DLPFC), an area important maintaining “on-line”, short-term representations of

information. Figure 4(c) shows the Population Center Scale image, which quantifies the

spread of individual components in terms of τ . Figure 4(d) shows the Individual Component

Posterior, which qualitatively depicts the spread of individual components about population

centers. These two previous images show that the dispers! al of individual components is

mostly homogeneous (τ ≈ 2), with only the relatively rare right frontal center having larger

spread.

Figure 4(e,f) display the classical t-image and the − log10(p) image. While these images

similarly illustrate the spread of activation between subjects, they cannot quantify the spatial

precision of the results as our method does.

5.3 Sensitivity analysis

We have studied the sensitivity of our approach to the choice of hyperprior specifications. Our

main interest is in how the population level results are related to various prior specifications.

We studied the sensitivity of the posterior to the five following scenarios:

(a) m = 19, cj ∼ P (5), j = 1, . . . , J , λp = 5A−1, ατ = ασ = 3, λθ ∼ N(35, 108), the

default setting.

(b) same as (a) but with different random seeds (different initial values).

(c) same as (a) but with m = 52
3
, which corresponds to an a priori probability that a pixel

belongs to the background center of approximately 0.85.

(d) same as (a) but with λp = 10A−1 and cj ∼ P (10), j = 1, . . . , J .

(e) same as (a) but with ατ = ασ = 2, λθ ∼ N(70, 108).

Overall we found no appreciable differences in the population level results (i.e. Figures 4(a)

through 4(d)), under all five scenarios. As expected, scenarios (a) and (b) give almost iden-
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tical results for both the individual and the population level. As m decreases the probability

that a pixel belongs to the background decreases. This encourages more individual com-

ponents at low intensity areas. Also, the posterior distribution of the population centers is

slightly influenced. We observe a shift in the posterior distribution of the number of indi-

vidual components, cj, j = 1, . . . , J , and in the distribution of the number of population

centers cp. For example under (a) the mode of the estimated marginal posterior distribu-

tion of the number of mixture components for subject 1, c1, is 6 (32% of iterations). The

estimated marginal posterior distribution of the number of population centers, cp, is highly

concentrated about its mode of 8 (79%). However, under (d)! the mode of the estimated

marginal posterior distribution of c1 becomes 7 (29%); the mode of the estimated marginal

posterior of cp remains 8, but is more diffuse (53%). This influence of the Poisson mean on

the posterior distribution of the number of components is expected, see, e.g., Green (1995).

6 Future work and discussion

We have described a Bayesian mixture model for fMRI data analysis. The method con-

siders the spatial structure of the signal, which is often ignored in frequentist approaches.

Moreover this method extends the current Bayesian spatial modeling literature in two key

ways. First, we consider multi-subject data, explictly population centers and the dispersion

of individvual’s response about those centers. Second, instead of assuming a normal shape

model for activation magnitude, we assume a normal shape model for probability of activa-

tion and assume homogeneous magnitude with component. We argue that this leads to a

more flexible yet still interpretable parameterization.

One of the limitations of our work is that we assumes spherical Gaussians in our spatial

mixture models. For future work, we can use elliptical shape activations using general

variance-covariance structures for some of the variance parameters. Another limitation is

the computational intensity. The present method took about 105 minutes on a MAC 2.7 GHz
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PowerPC G5. Although this is not excessive, with larger 3D images the compute time my be

excessive. One avenue to explore would be to parallelize the code. With the proliferation of

compute clusters, it would be a simple matter to schedule individuals to separate nodes. All

population parameters would then be processed at each iteration after the scheduler returns

results from the individuals. Another possible avenue would a Variational Bayes approach

(Attias, 2000), which would provide approximate posterior means and variances.

The flexibility of our model does make for some interpretive limitations. While most users

of fMRI conceive of activation “loci” (x,y,z locations), in our model the population centers

are random variables µ whose distribution can’t easily be summarized. We visualize this

distribution with the Population Center Location posterior rate function image, inspecting

for modes and assessing the spread about modes.

Likewise, at the subject level, the mixture components are not summarized by loci, but

by the Individual Component Posterior density image. While this image is valuable for

visualizing the intrasubject spread of activation, the intensity of a peak confounds three

things: The scale of intersubject spread, the population prevalance of activation, and the

rate of individual components per subject. This can be observed by inspecting the prior for

η (Eqn. (2)). All things equal, a smaller τ 2
i results in a more concentrated density which will

result in a higher mode. Second, the intensity of a mode will grow as more subjects have

evidence for that population center; e.g. if component l is associated with center i, then as∑
j I(zjl=i) grows so will ψi, the mixing weight for center i. And lastly, a subject that requires

more components to fit their profile of activation ({yjv}v) associated with center i will also

raise ψi.

Finally, a limitation of our model is that we do not have explicit linking of population

centers to individual components. A fMRI practitioner would ideally like to point to popu-

lation loci X and ask “which subjects have evidence for that loci, and what is the pattern

of activation in each subject corresponding to that loci.” For any one MCMC sweep this
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connection is known through latent variables zjl and ωjv, but cannot be easily summarized

over different sweeps as the number and location of population centers may change.

In future work we would like to address these short commings, perhaps by introduc-

ing new latent variables that specifically correspond to investigators notions of activation

loci. For example, we could define a loci as “nearest center µi to anatomical landmark X”.

Alternatively, local maxima on the classical t-statistic image could be used to label popu-

lation centers; once population centers are identifiable, they can be used to track summary

measures of interest.
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Appendix

Posterior Distribution

By combining the likelihood function and the prior distributions all together the posterior

distribution can be written as

π
(
{θjl}, {ηjl}, {µi}, {ψi}, {σ2

jl}, {r2
jl}, {τ 2

i }, {cj}, cp, βr, βτ , βσ, λθ, σ2
θ | y

)
∝ f

(
y | {θjl}, {ηjl}, {σ2

jl}, {r2
jl}, {cj}

)
π ({θjl} | {cj})

π
(
{ηjl} | {ψi}, {µi}, {τ 2

i }, {cj}
)
×

π ({ψi} | λψ, cp) π ({µi} | cp) π
(
{σ2

jl} | βσ, {cj}
)
π
(
σ2

0 | βσ0

)
π
(
{τ 2
i } | βτ , cp

)
×

π
(
{r2

jl} | αr, βr, cp
)
π ({cj}) π (cp) π (βr)π (βτ ) π (βσ) π (λθ) π

(
σ2
θ

)
=

n∏
j=1

V∏
v=1

(
pjv0(2πσ

2
0)−1/2 exp

[
−0.5(yjv − θ0)

2/σ2
0

]
+

cj∑
l=1

pjvl(2πσ
2
jl)
−1/2 exp

[
−0.5(yjv − θjl)2/σ2

jl

])
×

(2π)−1/2 exp
(
−0.5θ2

0

) n∏
j=1

cj∏
l=1

(2πσ2
θ)
−1/2 exp

[
−0.5(θjl − λθ)2/σ2

θ

]
I(θjl > 0)×

n∏
j=1

cj∏
l=1

cp∑
i=1

ψi(2πτ
2
i )−1 exp

[
−0.5(ηjl − µi)T (ηjl − µi)/τ 2

i

]
×

Γ(cpλψ)

Γ(λψ)cp

cp∏
i=1

ψ
λψ−1
i

cp∏
i=1

[
β3
τ

Γ(3)
(τ 2
i )−3−1 exp

(
−βτ/τ 2

i

)]
×

n∏
j=1

cj∏
l=1

[
β2π
r

Γ(2π)
(r2
jl)
−2π−1 exp

(
−βr/r2

jl

) β3
σ

Γ(3)
(σ2

jl)
−3−1 exp

(
−βσ/σ2

jl

)]
×

10−6

Γ(10−3)
(σ2

0)−10−3−1 exp
(
−10−3/σ2

0

) 10−4

Γ(10−2)
β10−2−1
r exp

(
−10−2βr

)
×

10−4

Γ(10−2)
β10−2−1
τ exp

(
−10−2βτ

) 10−4

Γ(10−2)
β10−2−1
σ exp

(
−10−2βσ

)
×

(2π108)−1/2 exp
(
−0.5(λθ − 35)2/108

) 10−4

Γ(10−2)
(σ2

θ)
−10−2−1 exp

(
−10−2/σ2

θ

)
×

[5cp exp(−5)/cp!]

cp∏
i=1

I(µi ∈ ∪nj=1Aj)
n∏
j=1

[5cj exp(−5cj)/cj!] .
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Details of the MCMC algorithm

Current parameter values will be referred to by name and proposed parameters will be

referred to by name superscripted with a prime (′). Details of the MCMC steps are given

below. Each step is classified as a reversible jump step (RJ), a Metropolis-Hastings step

(MH) or a Gibbs (Gibbs) step.

1. Birth of a population center: RJ.

A population center birth is proposed with probability 0.5. Suppose there are cp

centers. Generate µ′cp+1, and τ 2′
cp+1 from their prior distributions:

µ′cp+1 ∼ uniform on ∪Jj=1 Aj and τ 2′

cp+1 ∼ IG(3, βτ )

Draw ψ′cp+1 ∼ Beta(1, cp) and re-scale the existing weights using ψ′i = ψi(1−ψ′cp+1) for

i = 1, . . . , cp. Set µ′i = µi and τ 2′
i = τ 2

i for i = 1, . . . , cp. Accept the new population

center with probability

min

{
1,

5

(cp + 1)2

J∏
j=1

cj∏
l=1

∑cp+1
i=1 ψ′i φ2(ηjl;µ

′
i, τ

2′
i I2)∑cp

i=1 ψi φ2(ηjl;µi, τ
2
i I2)

}
.

2. Death of a population center: RJ.

The death of a population center is proposed with probability 0.5. Randomly choose

a center from the set {1,...,cp}. Suppose it is j. Set ψ′i = ψi/(1 − ψj) for all i ∈

{1, . . . , cp} \ {j} and relabel the indices 1, . . . , cp − 1. Set µ′i = µi and τ 2′
i = τ 2

i for

i = 1, . . . , cp − 1. Accept the death of this population center with probability

min

{
1,
cp

2

5

J∏
j=1

cj∏
l=1

∑cp−1
i=1 ψ′iφ2(ηjl;µ

′
i, τ

2′
i I2)∑cp

i=1 ψiφ2(ηjl;µi, τ
2
i I2)

}
.

3. Birth of an individual component: RJ.

For each subject j, a birth of a component is proposed with probability 0.5. Suppose

there are cj components for subject j. Proposed parameters are drawn from their prior

distributions:

r2′

j, cj+1 ∼ IG(2π, βr), σ2′

j, cj+1 ∼ IG(3, βσ)
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Pr(z′j, cj+1 = i) = ψi,
[
η′j, cj+1 | z′j, cj+1 = i

]
∼ N(µi, τ

2
i ), θ′j, cj+1 ∼ trunc(0,∞)N(λθ, σ

2
θ).

Calculate p′jvl for all v, l and j = 1, . . . , cj + 1. The acceptance probability is

min
{

1, 5(cj + 1)−2(likelihood ratio)
}
.

4. Death of an individual component: RJ.

For each subject j, a death of a component is proposed with probability 0.5. Suppose

there are cj components for subject j. Randomly choose a component, j, from the set

{1, ..., cj}. Calculate p′jvl for all v, l and j = 1, . . . , cj − 1 and relabel the components

1, . . . , cj − 1. The acceptance probability is

min
{

1, cj
25−1(likelihood ratio)

}
.

5. Update µi for all i = 1, . . . , cp: MH.

Propose µ′
i from N(µi, σ

2
µI2). Set µ′j = µj for all j 6= i. Accept with probability

min

{
1,
I(µ′i ∈ ∩Jj=1Aj)

I(µi ∈ ∩Jj=1Aj)

J∏
j=1

cj∏
l=1

∑cp
i=1 ψiφ2(ηjl;µ

′
i, τ

2
i I2)∑cp

i=1 ψiφ2(ηjl;µi, τ
2
i I2)

}
.

6. Update ηjl for all j = 1, . . . , J and l = 1, . . . , cj: MH.

For subject j, component l, propose η′jl ∼ N(ηjl, ση
2I2). Calculate p′jvl. Set η′kl = ηkl

for all k 6= j and all l = 1, . . . , cj. Accept with probability

min

{
1, (likelihood ratio)×

∑cp
i=1 ψiφ2(η

′
jl;µi, τ

2
i I2)∑cp

i=1 ψiφ2(ηjl;µi, τ
2
i I2)

}
.

7. Update τ 2
i for all i = 1, . . . , cp: Gibbs.

Let Di be the set of individual components with zjl = i and let NDi be the number of

individual components in Di.

Draw τ 2
i ∼ IG(NDi + 3, 0.5

∑
jl∈Di(ηjl − µi)

T (ηjl − µi) + βτ ).
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8. Update r2
jl for all j = 1, . . . , J and l = 1, . . . , cj: MH.

For subject j, component l, propose log r2′
jl ∼ N(log r2

jl, σ
2
r). Calculate p′jvl for all v.

Accept with probability

min
{

1, (r2
jl/r

2′

jl)
2π exp[βr(r

−2
jl − r

−2′

jl )](likelihood ratio)
}
.

9. Update ψ1, . . . , ψcp : Gibbs.

Draw ψ1, ψ2, ... ,ψcp from D(1 +ND1 , ..., 1 +NDcp ).

10. Update zjl for all j = 1, . . . , J and l = 1, . . . , cj: Gibbs.

Draw zjl according to Pr(zjl = i | .) ∝ ψiφ2(ηjl;µi, τ
2
i I2).

11. Update ωjv for all j = 1, . . . , J and all pixels v: Gibbs.

Draw ωjv from Pr(ωjv = l | .) ∝ pjvlφ(yjv; θjl, σ
2
jl).

12. Update σ2
jl for all j = 1, . . . , J and l = 1, . . . , cj: Gibbs.

Let Gjl denote the set of pixels with ωjv = l for subject j. Let NGjl be the number of

voxels in Gjl. Draw σ2
jl ∼ IG(0.5NGjl + 3, 0.5

∑
v∈Gjl(yjv − θjl)

2 + βσ).

13. Update σ2
0: Gibbs.

Let G0 denote the set of pixels with ωjv = 0 for subject j.

Draw σ2
0 ∼ IG

(
0.5
∑J

j=1NGj0 + 10−3, 0.5
∑J

j=1

∑
v∈Gj0(yjv − θ0)

2 + 10−3
)
.

14. Update θjl for all j = 1, . . . , J and l = 1, . . . , cj: Gibbs.

Draw θjl ∼ N (mv, v) , where

m = σ−2
θ λθ + σ−2

jl

∑
v∈Gjl

yjv and v =
(
σ−2
jl NGjl + σ−2

θ

)−1
.

Accept if θ′jl > 0.

15. Update θ0: Gibbs.
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Draw θ0 ∼ N (mv, v) , where

m = σ−2
0

J∑
j=1

∑
v∈Gj0

yjv and v =

(
σ−2

0

J∑
j=1

NGj0 + 1

)−1

.

16. Update βσ: Gibbs.

Draw βσ ∼ G(3
∑J

j=1 cj + 0.01,
∑J

j=1

∑cj
l=1 σ

−2
jl + 0.01).

17. Update βτ : Gibbs.

Draw βτ ∼ G(3cp + 0.01,
∑cp

i=1 τ
−2
i + 0.01).

18. Update βr: Gibbs.

Draw βr ∼ G(2π
∑J

j=1 cj + 0.01,
∑J

j=1

∑cj
l=1 r

−2
jl + 0.01).

19. Update λθ: Gibbs.

Draw λθ ∼ N(mv, v), where

m = σ−2
θ

J∑
j=1

cj∑
l=1

θjl + (35)1e−8 and v = (σ−2
θ

J∑
j=1

cj + 1e−8)−1.

20. Update σ2
θ : Gibbs.

Draw σ2
θ ∼ IG(0.5

∑J
j=1 cj + 0.01, 0.5

∑J
j=1

∑cj
l=1(θjl − λθ)2 + 0.01).
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Figure 1: Top row: The intensity data from 4 simulated subjects. Bottom row: The marginal
posterior probability of activation: Pr(ωjv > 0 | y).
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Figure 2: Simulation results. (a) True locations of population and individual locations for
simulation. Note that not all subject have centers for each population center. (b) Individual
Component Posterior. Note how each component has varying scale, depicting the variation in
intrasubject spread of activation about population centers. (c) Population Center Location
image. Note the precision of the location of population centers, especially relative to the
spread of Individual Component Posterior. (d) Classical one-sample t-test and (e) − log10P-
values both show greater noise and poorer localization than our method.
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Figure 3: Top row: The intensity data from slice 21 for 4 subjects. Bottom row: The
marginal posterior probability of activation: Pr(ωjv > 0 | y).

Hosted by The Berkeley Electronic Press



(a) Population Center Location

10

20

30

40

50

60

10 20 30 40 50

0.0

0.1

0.2

0.3

0.4

(b) Population Center Prevalence

10

20

30

40

50

60

10 20 30 40 50

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(c) Population Center Scale

10

20

30

40

50

60

10 20 30 40 50

0.0

0.5

1.0

1.5

2.0

2.5

3.0

(d) Individual Component Posterior

10

20

30

40

50

60

10 20 30 40 50

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

(e) Classical t−image

10

20

30

40

50

60

10 20 30 40 50

−6

−4

−2

0

2

4

6

(f) −− log10((p)) image

10

20

30

40

50

60

10 20 30 40 50

0

1

2

3

4

5

6

Figure 4: (a) posterior distribution of population center locations; (b) proportion of subjects
containing evidence for a population center; (c) standard deviation of individual components
about population centers; (d) posterior-predictive density of individual center locations p(η̃ |
y); (e) classical t-image; (f) minus log base 10 p-values from the t-image (− log10(p)).
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