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Quantitative Magnetic Resonance Image
Analysis via the EM Algorithm with

Stochastic Variation

Xiaoxi Zhang, Timothy D. Johnson, and Roderick J.A. Little

Abstract

Quantitative Magnetic Resonance Imaging (qMRI) provides researchers insight
into pathological and physiological alterations of living tissue, with the help of
which, researchers hope to predict (local) therapeutic efficacy early and determine
optimal treatment schedule. However, the analysis of qMRI has been limited to
ad-hoc heuristic methods. Our research provides a powerful statistical framework
for image analysis and sheds light on future localized adaptive treatment regimes
tailored to the individual’s response. We assume in an imperfect world we only
observe a blurred and noisy version of the underlying “true” scene via qMRI,
due to measurement errors or unpredictable influences. We use a hidden Markov
Random Field to model the unobserved “true” scene and develop a maximum
likelihood approach via the Expectation-Maximization algorithm with stochastic
variation. An important improvement over previous work is the assessment of
variability in parameter estimation, which is the valid basis for statistical infer-
ence. Moreover, we focus on recovering the “true” scene rather than segmenting
the image. Our research has shown that the approach is powerful in both simu-
lation studies and on a real dataset, while quite robust in the presence of some
model assumption violations.
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pathological and physiological alterations of living tissue, with the help of which, researchers hope

to predict (local) therapeutic efficacy early and determine optimal treatment schedule. However, the

analysis of qMRI has been limited to ad-hoc heuristic methods. Our research provides a powerful

statistical framework for image analysis and sheds light on future localized adaptive treatment

regimes tailored to the individual’s response. We assume in an imperfect world we only observe a

blurred and noisy version of the underlying “true” scene via qMRI, due to measurement errors or

unpredictable influences. We use a hidden Markov Random Field to model the unobserved “true”

scene and develop a maximum likelihood approach via the Expectation-Maximization algorithm with

stochastic variation. An important improvement over previous work is the assessment of variability

in parameter estimation, which is the valid basis for statistical inference. Moreover, we focus on

recovering the “true” scene rather than segmenting the image. Our research has shown that the

approach is powerful in both simulation studies and on a real dataset, while quite robust in the

presence of some model assumption violations.
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1. Introduction

Quantitative Magnetic Resonance Imaging (qMRI) is a noninvasive tool for visualizing the

inside of living organisms, and is used to assess pathological and physiological alterations

in living tissue, such as the brain. More recently, it has been used to measure physiological

changes (such as diffusion, perfusion, vascular permeability, and metabolism) in diseased

tissue due to therapy (e.g. Cao et al. 2005; Moffat et al. 2005; Hamstra et al. 2005). With the

aid of qMRI, investigators hope to predict (local) therapeutic efficacy early during treatment

so that treatments can be tailored to the individual.

This work is motivated by a pilot qMRI study conducted at the University of Michi-

gan School of Medicine. Eleven volunteers with primary, high-grade gliomas were recruited

for the study. Prior to the initiation of radiation therapy, the volunteers underwent T1-

weighted qMRI with and without contrast enhancement. The same imaging protocol was

subsequently performed after approximately the first and third week of radiotherapy, and 1,

3, and 6 months after completion of radiotherapy. The contrast agent used was Gadolinium

diethylenetriaminepentaacetic acid (Gd-DTPA). Gd-DTPA has a molecular diameter in the

range of many chemotherapeutic molecules and hence its uptake rate can be used as a

surrogate of tumor/brain vascular permeability to these drugs (Cao et al. 2005). This was

the first study to use quantitative and high-resolution MRI to assess the effects of radiation

on the vascular permeability in tumor and healthy tissue to a molecule in the size range of

chemotherapeutic agents in high-grade gliomas (Cao et al. 2005).

Prognosis for primary high-grade gliomas is poor and advances in radiotherapy followed

by chemotherapy have failed to prolong the median survival time of these patients beyond

about 1 year after diagnosis. Chemotherapy has been largely unsuccessful due to the tight

endothelial junctions in the tumor (blood-tumor barrier, BTB) that limit the delivery of these

large chemotherapeutic molecules to the tumor cells. One of the goals of this study was to

http://biostats.bepress.com/umichbiostat/paper72



2

determine the effects, over time, of radiation therapy on the BTB relative to the blood-brain

barrier (BBB). If it can be demonstrated that radiation therapy transiently increases the

vascular permeability of the tumor to these large chemotherapeutic drugs, this may suggest

an optimal time for delivering these drugs during radiation therapy, as opposed to waiting for

the completion of radiation therapy. In this manuscript, we focus on the change in contrast

uptake from the baseline imaging study to the 3-week imaging study, as this time point is

of special interest to the investigators.

There is a large body of research on medical image analysis, in particular functional MRI

(fMRI). The fMRI analyses are typically of a time series nature (Worsley and Friston 1995).

Random Field Theory (RFT) is applied after smoothing the data with an isotropic Gaussian

filter. It assumes spatial continuity, which is reasonable for healthy volunteers in fMRI

experiments. However, qMRI in the motivating study was performed on patients with solid

mass tumors, where distinct spatial discontinuities between healthy tissue and the tumor

are visible (Figures 2a and 3a). The tumors are physiologically different from surrounding

healthy tissue, and their contrast uptake is highly heterogeneous. The smoothing techniques

that are applied in most image analyses blur tissue boundaries, and hence do not model this

feature well. Furthermore, many qMRI analyses ignore the inherent spatial correlation in

the data (at the pixel level), and treat the data as independent observations (e.g., Cao et al.

2005; Moffat et al. 2005; Hamstra et al. 2005) which can lead to incorrect variance estimates

and invalid hypothesis tests.

In this manuscript we analyze qMRI data using a flexible, yet conceptually simple hidden

Markov Random Field model (MRF, Besag 1974), also known as the Potts model in the

statistical physics literature (Potts 1952). Our model avoids over-smoothing of the data

while accounting for spatial correlation. The rationale for this model is that qMRI produces

a blurred and noisy version of the underlying change in contrast uptake, due to measurement

Hosted by The Berkeley Electronic Press
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error, reconstruction error, field inhomogeneities and other unpredictable influences. The

underlying image, which we call the “true” scene, is represented as a finite number of

homogeneous regions. We assign discrete labels to the regions with the same change in

contrast uptake, and use a hidden MRF to model the spatial layout of the unobserved

labels. To fit the model, we treat these unobserved MRF labels as missing data, and compute

maximum likelihood (ML) estimates using the Expectation Maximization (EM, Dempster,

Laird, and Rubin 1977) algorithm with stochastic variation (Wei and Tanner 1990).

Previous implementations of the MRF model have problems or limitations. Either the

likelihood was incorrectly specified, the EM algorithm was incorrectly implemented, or the

spatial regularization parameter in the MRF was assumed to be known; results are highly

sensitive to the choice of this parameter. Some researchers (Chalmond 1989; Won and Derin

1992; Zhang, Modestino, and Lagan 1994; and Panjwani and Healey 1995) used the pseudo-

likelihood approach proposed by Besag (1974). Melas and Wilson (2002) pointed out that the

pseudo-likelihood approach tends to overestimate the regularization parameter of the MRF

and over-smooth the data. Zhang, Brady, and Smith (2001) and Sengur, Turkoglu, and Ince

(2006) correctly specified the likelihood, but incorrectly implemented the EM algorithm as we

discussed later. Lei and Udupa (2003) used the Iterative Conditional Mode (ICM, Besag 1974,

Besag 1986) algorithm, which they refer to as “MRF-ICM”. However, they incorrectly wrote

the joint distribution of the MRF as the product of local conditional distributions, which

in a sense emulates Besag’s pseudo-likelihood approach. These approaches maximizing the

complete-data likelihood jointly with respect to parameters and missing data, an approach

which in general lacks the consistency and asymptotic efficiency of ML (Little and Rubin

1983). Furthermore, estimates of uncertainty of the parameter estimates and the hidden MRF

labels are not provided (see also Deng and Clausi 2004). The goal of most image analyses via

MRFs is segmentation, and therefore aims at a labeling of all pixels. This optimization task

http://biostats.bepress.com/umichbiostat/paper72
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is often performed in an iterative fashion (Won and Derin 1992), or via simulated annealing

(Lakshmanan and Derin 1989). Segmentation is not of primary interest in our application.

In fact, the segmentation labels lack a strong biologically meaningful interpretation. Rather,

we are using the hidden MRF model as a way to account for spatial correlation and as a

way to perform edge-preserving smoothing of the image. It is the unobserved “true” changes

that are of scientific interest.

In this manuscript, we build on previous work on the hidden MRF model by 1) correctly

implement the EM algorithm with stochastic variation; 2) estimating the spatial regulariza-

tion parameter rather than assuming that it is known; and 3) estimating standard errors

of the parameter estimates via the Louis (1982) method. We focus on estimating the local

mean change in contrast uptake (the “true” scene) rather than segmentation.

This manuscript is organized as follows. In Section 2, we present our model and the

EM algorithm, and discuss estimated standard errors and model selection. In Section 3,

we present results from a simulation study where we investigate the sensitivity to model

assumption violations. Results from the motivating example are presented in Section 4. We

conclude by summarizing the strengths and weaknesses of our approach, and discussing

future work.

2. Model and Algorithm

2.1 Image Model

We use the following notation. Pixels (short for picture elements) will be indexed by i =

1, 2, · · · , N . If pixel i and i′ are immediately adjacent (sharing a common edge), we call

them neighbors, denoted i ∼ i′. The set of neighbors of pixel i is denoted ∂i = {i′ : i′ ∼ i}.

Associated with each pixel i are the observed pixel intensity yi and a hidden label zi. The

collection of the observed pixel intensities yT = (y1, y2 · · · , yN) is called the image (i.e.Hosted by The Berkeley Electronic Press
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the change in contrast uptake), while the collection of latent labels zT = (Z1 = z1, Z2 =

z2, · · · , ZN = zN) defined on a finite discrete state space is called a configuration. The set of

pixels with the same hidden label is referred to as a component, which can consist of disjoint

clusters of pixels.

We assume there is an M -state MRF on the state space S = {1, 2, · · · , M}. Each state is

mapped to an intensity in the “true” scene. It follows that there are MN configurations on

the configuration space SN , the number of which increases exponentially with the number

of pixels N . Our image model is a two-level hierarchical model. The higher level specifies the

spatial structure of the MRF with probability mass function

Pr(Z = z | β) = g−1(β) exp
{∑

i∼i′

β I(zi = zi′)
}

, for all z ∈ SN ,

where I(·) is the indicator function and the regularization parameter β > 0 controls the

spatial smoothness of the MRF. The normalizing constant

g(β) =
∑
z∈SN

exp
{∑

i∼i′

β I(zi = zi′)
}

has MN summands, and is not analytically tractable. Given Z = z, the observed pixel

intensities are conditionally independent with Gaussian noise on the lower level,

yi | zi = µzi
+ ei, ei ∼ N(0, σ2

zi
), for all i.

We write µ = (µ1, · · · , µM)T and σ2 = (σ2
1, · · · , σ2

M)T, and θT = (µT, σ2T
, β).

A few comments are in order: 1) The model requires little prior knowledge about the spatial

structure of the hidden configuration, only that neighboring pixels tend to share the same

label. 2) The regularization parameter, β, controls the strength of the association between

neighbors. When β is large, the correlation between pixels is strong (neighboring pixels have

high tendency to assume the same label), and the configuration tends to be smooth. Note

that when β = 0 our model degenerates to a non-spatial Gaussian mixture model with equal

component weights, in which case pixels are independent. The spatial correlation decreaseshttp://biostats.bepress.com/umichbiostat/paper72



6

as the distance between pixels increases. 3) Although the likelihood assumes conditionally

independent Gaussian noise given the hidden labels, the data are marginally dependent.

2.2 The EM Algorithm with stochastic variation

With the introduction of the unobservable labels in the hidden MRF, the image model can

be viewed as a missing data problem. The changes in contrast uptake are the observed data

(Yobs = y) and the pixel labels are treated as missing data (Ymis = Z). This is in contrast

to most existing frequentist analyses that treat both the model parameters and the hidden

labels as unknown but fixed quantities. The complete-data log-likelihood is

lcomp(θ) = log f(y | Z = z, µ,σ2) + log Pr(Z = z | β)

= −0.5N log(2π)−
M∑

k=1

∑
i∈Dk

{
log(σk) + 0.5σ−2

k (yi − µk)
2
}

+
∑
i∼i′

βI(zi = zi′)− log g(β).

This belongs to the exponential family with complete data sufficient statistics Tk1 = Nk,

Tk2 =
∑

i∈Dk
yi, Tk3 =

∑
i∈Dk

y2
i for k = 1, 2, · · · , M , and T4 =

∑
i∼i′ I(zi = zi′). The

component with common label k is denoted as Dk = {i : zi = k} with Nk pixels.

We maximize the log-likelihood via the EM algorithm. The EM algorithm iterates between

an E-step (expectation) and an M-step (maximization). At the t’th iteration, the E-step

computes the conditional expectation of the complete-data sufficient statistics given the

observed data and current parameter estimates θ(t). The M-step updates θ = θ(t+1) as the

solution of the complete-data likelihood equations. An advantage of EM is that it avoids the

computation of the normalizing constant g(β).

The conditional expectation in the E-step in our setting is

T(t) =
∑
z∈SN

T(y,Z = z) Pr
(
Z = z | y, θ(t)

)
, (1)

where T(y,Z = z) = (T11, T12, T13, · · · , TM1, TM2, TM3, T4), and Pr
(
Z = z | y, θ(t)

)
is the

conditional distribution of the latent labels. It has MN summands, and is not analyticallyHosted by The Berkeley Electronic Press
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tractable. One solution is to stochastically approximate the expectations in the E-step as

in Monte Carlo EM (MCEM, Wei and Tanner 1990). The t’th EM iteration consists of the

following steps:

(1) E-step: Draw configurations z(1), · · · , z(St) ∼ Pr
(
Z | y, θ(t)

)
, and compute the Monte

Carlo estimates of the conditional expectation of the sufficient statistics T(y, z) given

the observed data y and current parameter estimates θ(t),

T
(t)
k1 = S−1

t

St∑
s=1

N
(s)
k , T

(t)
k2 = S−1

t

St∑
s=1

( ∑
i∈D

(s)
k

yi

)
, T

(t)
k3 = S−1

t

St∑
s=1

( ∑
i∈D

(s)
k

y2
i

)
,

for k = 1, · · · , M, and T
(t)
4 = S−1

t

St∑
s=1

{∑
i∼i′

I(z
(s)
i = z

(s)
i′ )

}
.

We draw z(s) using the Swendsen-Wang algorithm (Swendsen and Wang, 1987), an

efficient sampler specifically developed for the Potts model. It updates labels for clusters

of pixels rather than one pixel at a time as in ICM.

Since the complete-data log-likelihood consists of two distinct parts l(µ,σ2) and l(β),

the M-step has two parts:

(2) M1-step: update the Gaussian parameter estimates
(
µ(t+1), σ2(t+1))

based on the expec-

tions in the E-step,

µ
(t+1)
k = T

(t)
k2

/
T

(t)
k1 , σ2

k
(t+1)

= T
(t)
k3

/
T

(t)
k1 −

(
µ

(t+1)
k

)2
, for k = 1, 2, · · · , M.

(3) M2-step: solve the regularization parameter estimate β(t+1) from

∂lcomp

∂β
= 0, i.e. g′(β)

/
g(β) = T

(t)
4 .

Since the ratio g′(β)
/
g(β) is a monotone function of β (proof see the Appendix), any

root finding algorithm can be used for this step. http://biostats.bepress.com/umichbiostat/paper72
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2.3 Standard Errors of Parameter Estimates

We use the method of Louis (1982) to derive the asymptotic covariance matrix of the

parameter estimates based on the observed loglikelihood lobs = log f(y | θ)

I−1
obs = −

(
Eθ

∂2lobs

∂θ∂θT

)−1

.

The observed information matrix is formulated as the difference of the complete-data infor-

mation Icomp and the information for the conditional distribution of missing data given the

observed data Imis, i.e.

Iobs(θ) = Icomp(θ)− Imis(θ)

= −Eθ

(
∂2lcomp

∂θ∂θT

∣∣∣y)
− Eθ

(
∂lcomp

∂θ

∂lcomp

∂θT

∣∣∣y)
+Eθ

(
∂lcomp

∂θ

∣∣∣y)
Eθ

(
∂lcomp

∂θT

∣∣∣y)
.

It follows from the asymptotic properties of the MLE that θ̂ − θ ∼ N
(
0, I−1

obs(θ̂)
)
.

2.4 Estimating the Number of States in the Markov Random Field

Since there is no clear substantive rationale for determining the number of states in the

MRF, we use information criteria, such as the Akaike Information Criterion (AIC, Akaike

1973) and the Bayesian Information Criterion (BIC, Schwarz 1978). We run the proposed

algorithm for a range of values of M , and compute

AICM = −2lobs(θ̂M | y, M) + 2(2M + 1)

BICM = −2lobs(θ̂M | y, M) + (2M + 1) log N,

where lobs(θ̂M | y, M) is the observed log-likelihood of the model with an M -state MRF.

Smaller AIC or BIC is preferred – there does not appear to be a consensus choice between

these criteria, but in our application they lead to the same value of M . We use proper

multiple imputation (Rubin 1987) to approximate lobs(θ̂M | y, M), via the expression

l̂obs(θ̂M | y, M) ≈ D−1

D∑
d=1

lcomp(θ̂M | y, z
(d)
M , M),

Hosted by The Berkeley Electronic Press
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where θ
(d)
M (d = 1, 2, · · · , D) are drawn from the asymptotic distribution N

(
θ̂M , I−1

obs(θ̂M)
)
,

and z(d) are drawn from Pr(ZM | θ(d)
M ,y, M).

3. Results

We first conduct a simulation study under the model assumptions to evaluate the perfor-

mance of the proposed method. We then apply the algorithm when the observed image is

smoothed with various Gaussian smoothing kernels, to assess robustness to violations of the

model assumption of conditional independence. The variance of the Gaussian kernels are

specified as the spread of an (unnormalized) density at half of its maximum value (the full

width at half maximum, FWHM), an approach commonly employed in signal processing. The

FWHM is related to the standard deviation of a Gaussian distribution via the expression

σ = FWHM
/
(2
√

2 log 2). A large FWHM corresponds to wide bandwidth and results in

heavy smoothing and large spatial correlation. In the simulation studies, we use a superscript

to denote the FWHM of the Gaussian kernel used (i.e. yFWHM), and y0 means no smoothing

(i.e. conditionally independent noise). The results on the real dataset are also presented.

3.1 Simulation Study with Conditionally Independent Noise

We simulate a hidden configuration (ztrue) with ten distinct components on a 128×128 lattice,

and map it into a “true” scene µztrue = (µztrue
1

, µztrue
2

, · · · , µztrue
N

) (Figure 1 top panel). We use

light gray to denote high intensity. Under the conditionally independent noise assumption, we

add white noise to µztrue to obtain the observed image, y0. The parameters used to generate

the simulation are listed in Table 1. The signal-to-noise ratio (SNR), defined as

SNR =
difference in component mean

standard deviation of the noise
,

is 1.70.

We first fit a Gaussian mixture model (ignoring the spatial structure) with 10 components

and equal component weights. Over half of the pixels are misclassified due to the high noisehttp://biostats.bepress.com/umichbiostat/paper72
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level. There is also considerable bias in the parameter estimates (Table 1). Next, we fit

our proposed algorithm with M = 6, 7, · · · , 16, components. The initial values of µk, k =

1, 2, · · · , M, are evenly spaced over the range of the data (−11.2, 12.6). The initial values of

σk, k = 1, 2, · · · , M, are 1/(2M) times the range of the data. Ten components are selected by

both AIC and BIC. The final estimates θ̂M=10 and their standard deviations are listed in Ta-

ble 1. All 95% confidence intervals cover the true parameter values. We estimated the vector of

pixel intensities, µest.
zi

= E(µ̂Zi
| y, θ̂M=10), using Monte Carlo estimates based on 500 samples

of the hidden configuration drawn from Pr(Z | y, θ̂M=10) (Figure 1 second row). As a measure

of the difference between µtrue
z and the estimated pixel intensity µ̂est.

zi
, we compute the sum

of squared discrepancies between them, SS<est,true> =
∑N

i=1

(
µ̂zest.

i
− µztrue

i

)2

(smaller value

suggests better fit). The sum of squared discrepancy of the proposed algorithm is 298.33,

less than 2% of the sum of squares of the noise SS<obs0,true> =
∑N

i=1(y
0
i −µtrue

zi
)2 = 16539.63.

We also investigate the false positive rate (FPR) and false negative rate (FNR) under the

simulation study. The proposed algorithm uniformly produces lower FPR and FNR than

ignoring spatial correlation. Choosing an arbitrary threshold value of 5.0, the FPR and FNR

of directly thresholding the observed image y0 are 3.1% and 9.8%, compared to 0.1% and

0% when considering the spatial structure.

[Table 1 about here.]

[Figure 1 about here.]

Zhang et at. (2001) implemented an EM-type algorithm for a similar model to ours, and

we implement it for comparison. In their E-step, they compute the function

Q̃
(
θ | θ(t)

)
=

N∑
i=1

M∑
k=1

Pr
(
Zi = k | yi, θ

(t)
)
log f

(
yi, Zi = k | z∂i, θ

(t)
)

=
N∑

i=1

M∑
k=1

Pr
(
Zi = k | yi, θ

(t)
) {

log f
(
yi | Zi = k, θ(t)

)
+ log Pr

(
Zi = k | z∂i, θ

(t)
)}

.

A correct implementation of the E-step computes the expectation of the conditional loglike-Hosted by The Berkeley Electronic Press
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lihood given the observed data, namely

Q
(
θ | θ(t)

)
=

∑
z∈SN

Pr
(
Z = z | y, θ(t)

)
log f

(
y, z | θ(t)

)
=

∑
z∈SN

Pr
(
Z = z | y, θ(t)

) {
log f

(
y | z, θ(t)

)
+ log Pr

(
Z = z | θ(t)

)}
.

Note that Q
(
θ | θ(t)

)
differs from Q̃

(
θ | θ(t)

)
in that the summation in Q extends over

M ×N terms.

The misclassification rate (MCR) from the last configuration from their algorithm is 3.7%,

compared with 1.6% for our algorithm. The estimated configuration from their approach

has many more small patches of “incorrect” labels. Moreover, their parameter estimates

generally have larger bias than our proposed method, especially in the standard deviation

estimates (Table 1). We also notice that the configuration in their approach gets stuck

after a few dozen iterations, which we think indicates slow mixing and a tendency to get

trapped in local modes. As a matter of fact, when we initialize our algorithm with their final

configuration and parameter estimates, the loglikelihood always increases. For instance in

one run it increases from −40811 to −40533.

3.2 Simulation Studies with Correlated Noise

After some algebraic manipulations, one can see that, under the conditionally independent

noise assumption, the observed intensities are marginally dependent (i.e. Corr(yi, yi′) 6= 0).

This is due to the spatial correlation induced by the MRF. However, conditional indepen-

dence is still a strong assumption. Therefore, we conduct a series of simulation studies with

varying degrees of correlated noise to assess the robustness of our model to violations of this

model assumption.

We apply Gaussian smoothing kernels with FWHM = 1, 2, 4, and 8 (σ = 0.42, 0.85, 1.70,

and 3.40) on y0. Due to space limitations, we display the results using FWHM = 2 and 8

while fixing M = 10 (Figure 1 bottom two rows). The “edge preservation” of the proposedhttp://biostats.bepress.com/umichbiostat/paper72
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method is evident, especially when FWHM = 8 (bottom row in Figure 1). However, some

local features are not recovered due to extensive smoothing (e.g. the corners are rounded).

The images in the third column in Figure 1 display the standard deviation of the estimated

pixel intensities. The larger errors occur near the boundaries of classes. Although some

smoothing is intrinsic in qMRI reconstruction algorithms, the above results suggest that

the common practice of smoothing before image analysis for noise-reduction purposes is not

necessarily when combined with our proposed method. Quantitatively, when the smoothing

is relatively local (FWHM = 1), the estimated intensities are only slightly worse than with no

smoothing (SS<est1,true> = 251.87). When the smoothing is more global (FWHM = 2, 4, 8),

the sum of squared discrepancy are large, SS<est2,true> = 2230.77, SS<est4,true> = 5592.80,

and SS<est8,true> = 12140.11.

3.3 Application

In the motivating study, eleven patients received fractionated three-dimensional conformal

radiation with a median dose of 70 Gy at 2 Gy per fraction, and underwent Gd-DTPA

contrast enhanced T1-weighted qMRI before, during, and after treatment. All images were

registered to anatomical Computed Tomography (CT) images obtained for treatment plan-

ning purpose. The natural logarithm of the ratio of the post- and pre-enhanced T1-weighted

qMRI images are used as the Gd-DTPA contrast uptake index after image normalization

(Cao et al. 2005). We use a subset of the data, i.e. the pre-radiation visit and the visit at

approximately 3 weeks after the initiation. We take the change in contrast uptake from the

baseline to the 3-week follow-up visit as a surrogate of the change in vascular permeability

(Figure 2a and 3a), which is of special interest to the investigator. To save space, we only

display the results on two patients. The other patients demonstrate similar results.

We first ignore the spatial information and pool all pixel intensities within each subject.

The observed change in contrast uptake in the tumor has much heavier tails than in theHosted by The Berkeley Electronic Press
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healthy tissue. Although a two sample t-test suggests a statistically significant difference

(p < 0.0001) between the tumor (mean 0.017 for subject 1 and −0.080 for subject 2) and

the healthy tissue (mean 0.008 for subject 1 and −0.053 for subject 2) for both patients,

the absolute difference in means is quite small—significance is driven by the extremely large

number of pixels and is most likely uninteresting. More importantly, it does not provide

information on the differential change in contrast uptake between the tumor and healthy

tissue.

We ran the proposed algorithm using several different numbers of hidden states: M =

2, 3, · · · , 14. Both AIC and BIC choose M = 3 as the best model for subject 1. The three

component mean estimates are −0.187± 0.004 (mean ± standard deviation), 0.005± 0.0005

and 0.210 ± 0.003 respectively. A negative value indicates a decrease in contrast uptake,

while a positive value indicates an increase. As stated earlier, we are interested in the

“true” changes in contrast uptake, rather than the hidden labels, which lack a biological

interpretation. Therefore, we display the estimated pixel intensities µest.
zi

= E(µ̂Zi
| y, θ̂M=3)

in Figure 2b, which clearly shows the two concentric rings in the observed image (Figure

2a). Pixels near the boundaries of components are more variable than those away from the

boundaries (Figure 2c).

[Figure 2 about here.]

The results from patient 2 are similar (Figure 3). Both AIC and BIC favor M = 4. The

four component mean estimates are −0.264 ± 0.004, −0.095 ± 0.001, −0.013 ± 0.001 and

0.120± 0.004 respectively.

[Figure 3 about here.]

As discussed in the introduction, large increases in contrast uptake are indicative of

heavier damage to the BTB/BBB. This suggests that chemotherapeutic agents, in the

size range of the contrast medium, may pass the BTB/BBB more easily. Hence, a largehttp://biostats.bepress.com/umichbiostat/paper72
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increase in the tumor and a small increase (or even decrease) in healthy tissue may suggest

the opportunity to deliver these agents more effectively during this window of time. An

alternative to comparing the mean change is to define a threshold of change and compare

the proportions of healthy and diseased tissue that exceed this threshold. A biologically

meaningful threshold of change has not been defined in this exploratory study, but for

illustrative purpose, we choose a threshold of 0.06.

Ignoring the spatial structure of the data and thresholding the observed change in uptake

(patient 1), regions that lie above the threshold scatter throughout the tumor/brain (41.2%

of the tumor and 19.9% of the healthy tissue, Figure 2d), much of which, we believe, is

attributable to random noise. Our proposed algorithm borrows strength from neighboring

pixels, reducing both FPR and FNR and producing a smoother image (Figure 2e). Overall,

39.4% of the tumor exceeds the threshold while only 7.6% of healthy tissue exceeds the

threshold. For patient 2, we found that 29.8% of the tumor exceeds the threshold as compared

to 3.9% of healthy tissue. The thresholded image is again smoother when we account for

spatial correlation (Figure 3e) than when we ignore it (27.3% of the tumor and 5.0% of the

health tissue exceed the chosen threshold, Figure 3d).

In the original analysis, Cao et al. (2005) divided the tumor into two regions. One region

where the pre-treatment contrast uptake was relatively large and the second region where

it was relatively small. These regions typically divided the tumor into a “core” (low initial

contrast uptake) surrounded by an annulus (high initial contrast uptake). The biological

rationale for this is that the core of the tumor is typically hypoxic (low oxygen content)

due to a lack of blood supply, while the annulus of the tumor is rich in blood supply due

to angiogenesis (new blood vessel growth, that is typically disorganized in tumors and thus

leaky). Hypoxia is known to have a protective effect against damage due to both radiation and

chemotherapy. Thus, both radiation and chemotherapy will have some effect on the annulus

Hosted by The Berkeley Electronic Press
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of the tumor and relatively little effect on the hypoxic core—which is then a source of tumor

regrowth. Hence, the focus was on demonstrating that radiation therapy has a transient,

albeit small, effect on the core of the tumor with respect to increasing the contrast uptake.

If one could predict when this small increase takes place, it may then provide rationale for

initiating chemotherapy; thus allowing for more effective control of the tumor core.

To divide the tumor into these two regions, Cao et al. (2005) use one standard deviation

above the average contrast uptake in the healthy tissue that received a total dose less than

10 Gy. This number was then used to divide the tumor into initially enhanced (high contrast

uptake) and initially non-enhanced regions (low contrast uptake). This criterion is arguably

low. Furthermore, a large portion of healthy tissue, that receiving more than 10 Gy, is

ignored, as is the spatial correlation inherent in the data. We take a different approach to

dividing the tumor. First, we run the proposed algorithm on the baseline contrast uptake

image and divide the tumor into initially enhanced and non-enhanced regions based on the

95th percentile of the estimated healthy tissue contrast uptake. As seen in Figure 2f and 3f,

the initially enhanced tumor area (in light gray shade) roughly corresponds to an annulus

surrounding the non-enhanced area—the core (in medium gray shade). We also note that,

in both patients, there is a thin outer annulus of non-enhancing tumor. We suspect that

this may be caused by two sources of error. One, the tumor outlines were obtained from a

radiation oncologist for radiation planning purpose and therefore may contain a thin margin

outside the observed tumor region (to ensure that all the tumor received a uniform dose of

radiation). Secondly, this may be caused by volume averaging (pixels near the edge of the

tumor contain both diseased and healthy tissue). Nevertheless, we include this region as part

of the initially non-enhanced region in our analysis.

For patient 1, 59.1% of the initially non-enhanced tumor region has an increase in contrast

uptake above the threshold, 0.06, compared to 14.4% in the initially enhanced region (Figure

http://biostats.bepress.com/umichbiostat/paper72
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4). Similarly, for patient 2, 54.5% of the initially non-enhanced tumor region has a change

in uptake that exceeds the threshold, compared to 12.6% in the enhanced region (Figure 5).

[Figure 4 about here.]

[Figure 5 about here.]

Admittedly, the choice of 95th percentile for defining the initially enhanced and non-

enhanced tumor regions is ad-hoc. We performed a small study to address the sensitivity

of our results to this choice. Our tumor division was based on the 95th percentile of the

contrast uptake in healthy tissue. We compared our results to those using the 90th and

97.5th percentiles. The percentages of the initially enhanced and non-enhanced regions of

the tumors that exceed the various thresholds are given in Table 2. From this table, it is

evident that our results are not highly sensitive to the choice of threshold over the range of

thresholds studied.

[Table 2 about here.]

4. Conclusion

We have proposed an image smoothing algorithm suitable for qMRI data with edge preser-

vation. Compared to previous work on similar models, we show how to correctly implement

the stochastic variation of the EM algorithm. More importantly, we quantify the uncertainty

in parameter estimates; previous work targets the hidden labels and point estimation of

parameters without attempting to quantify this uncertainty. Furthermore, we emphasize the

estimate of the true change in contrast uptake rather than the hidden labels, which are hard

to interpret. The performance of the proposed method is satisfactory in both simulation

studies and on real data. The model is rather robust to violations of the model assumption.

Although the algorithm works fine under moderate smoothing of the observed image asHosted by The Berkeley Electronic Press
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shown in Section 3.2, the results degrade as the smoothing becomes heavy. We therefore

suggest that no additional smoothing of the data be performed after image reconstruction.

The EM algorithm is only guaranteed to converge to a local maximum, and the complexity

of the data may imply multiple local maxima. There are stochastic variations of the EM

algorithm other than the one discussed here, which are of possible interest, such as the

Stochastic EM algorithm (Celeux and Diebolt 1985) and Stochastic Approximation EM

(Delyon, Lavielle, and Moulines 1999). The basic idea of the stochastic variation is to inject

random noise into the deterministic update of EM in the hope that the noise will “push” the

method away from a local trap and hence lead to a better solution. Some of our preliminary

work on the Stochastic EM algorithm suggests similar performance. Although the stochastic

variation alleviates some of the trapping, it does not necessarily find all local maxima.

We have focused on model selection, and ignored the uncertainty in this selection. It is

possible that a single best model does not exist. Therefore, model averaging is a direction

worth exploring. Buckland, Burnham and Augustin (1997) suggested several ad hoc non-

Bayesian approaches to account for model uncertainty. The smoothed AIC estimator is later

embraced by Burnham and Anderson (2002), Claeskens and Hjort (2003), and Hjort and

Claeskens (2003). It essentially constructs a weighted average of parameters of interest across

candidate models, where the weight is proportional to the exponent of AIC, i.e. wm ∝

exp{−AICm/2}. In our application, we have done some preliminary work in this direction.

We first compute the estimated intensities µest.
zi

for each sub-model indexed by M . We then

apply the above weight to obtain a weighted average across a series of sub-models. However, in

our applications, the AIC for the best model is considerably smaller than that for competing

models, so model averaging does not make a practical difference. As alternatives to the

deterministic nature of the EM algorithm, there are stochastic approaches for similar models

using evolutionary algorithms. Destrempes, Mignotte, and Angers (2005) extended the earlier

http://biostats.bepress.com/umichbiostat/paper72
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work by Francois (2002) using the Exploration/Selection/Estimation procedure, although we

have not explored these alternatives.

We are currently working on a parallel Bayesian analysis of our proposed image model

where the distribution of the number of hidden labels is estimated via reversible jump MCMC

(Green, 1995). In the Bayesian framework, model averaging is a natural, and often argued,

method of parameter estimation as model uncertainty is accounted for in the estimates.

In this manuscript we have concentrated in the change of contrast uptake from baseline

to the three week visit, identified as a key visit. The data actually consist of a baseline

image study and five follow-up image studies. Thus, modeling both the spatial and temporal

aspects of the study is also of great interest.
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Appendix

As stated in section 2, the normalizing constant

g(β) =
∑
z∈SN

exp
{

β
∑
i∼i′

I(zi = zi′)
}

can not be evaluated analytically. Therefore in what follows, we define a set of quantities to

numerically approximate it.

Let w denote the number of neighboring pairs on the lattice, i.e.

w = |{i ∼ i′ : i, i′ = 1, 2, · · · , N}| ,

where |A| is the cardinality of a set A. We define

U(z | β) =
∑
i∼i′

I(zi = zi′).

It is clear that 0 6 U(z | β) 6 w for all z. We further use aj(0 6 j 6 w) to denote the number

of configurations with j pairs of same-labeled neighbors, i.e. aj = |{z : U(z | β) = j}|. By

definition, we have
∑w

j=0 aj = MN . Hence, the normalizing constant can be rewritten as

g(β) =
∑w

j=0 aj exp(βj). Assume U is a random variable with probability mass function

Pr(U = j|β) =
aj exp(βj)∑w

j′=0 aj′ exp(βj′)
, for 0 6 j 6 w.

The moment generating function (m.g.f.) of U is

MU(t) = EβetU =

∑w
j=0 aje

tj exp(βj)∑w
j′=0 aj′ exp(βj′)

with rth derivative

drMU(t)

dtr
=

∑w
j=0 jraje

tj exp(βj)∑w
j′=0 aj exp(βj′)

.

We claim the rth cumulant of U , kr, is the rth derivative of log g(β), i.e. kr = dr

dβr log g(β).Hosted by The Berkeley Electronic Press
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Specifically, when r = 1, 2, 3 we have

k1 =
M ′

U(t)

MU(t)

∣∣∣∣
t=0

=

∑w
j=0 jaje

tj exp(βj)∑w
j′=0 aj′etj′ exp(βj′)

∣∣∣∣∣
t=0

=

∑w
j=0 jaj exp(βj)∑w
j′=0 aj′ exp(βj′)

=
g′(β)

g(β)
=

d

dβ
log g(β)

k2 =
MU(t)M ′′

U(t)− {M ′
U(t)}2

{MU(t)}2

∣∣∣∣
t=0

=

∑w
j=0 aje

tj exp(βj)
∑w

j=0 j2aje
tj exp(βj)− {

∑w
j=0 jaje

tj exp(βj)}2

{
∑w

j′=0 aj′etj′ exp(βj′)}2

∣∣∣∣∣
t=0

=

∑w
j=0 j2aj exp(βj)

∑w
j=0 aj exp(βj)− {

∑w
j=0 jaj exp(βj)}2

{
∑w

j′=0 aj′ exp(βj′)}2

=
g(β)g′′(β)− {g′(β)}2

{g(β)}2
=

d2

dβ2 log g(β)

k3 =
{MU(t)}2M ′′′

U (t)− 3MU(t)M ′
U(t)M ′′

U(t) + 2{M ′
U(t)}3

{MU(t)}3

∣∣∣∣
t=0

=
{g(β)}2g′′′(β) + 3g(β)g′(β)g′′(β)− 2{g′(β)}3

{g(β)}3
=

d3

dβ3 log g(β)

and so forth.

The above property provides the basis for approximating g′(β)
g(β)

= d
dβ

log g(β) via a Taylor

expansion around β0:

d

dβ
log g(β) ≈ d

dβ
log g(β0) + (β − β0)

d2

dβ2 log g(β0) + · · ·+ 1

r!
(β − β0)

r dr+1

dβr+1 log g(β0)

= k1 + (β − β0)k2 + · · ·+ 1

r!
(β − β0)

rkr+1.

By pre-calculating g(β) on a set of grid points for a range of M , we are able to interpolate

the normalizing constant on non-grid points. Because d
dβ

(g′(β)
g(β)

) = d2

dβ2 log g(β) = k2 is the

second cumulant (variance) of a random variable U , which is always nonnegative, the above

property also suggests the ratio g′(β)
/
g(β) is a monotonically increasing function of β.
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Figure 1. Simulation studies: the “true” scene (top), the observed images (left), the
estimated pixel intensities (middle), and the associated standard deviation (right) when
FWHM = 0, 2 and 8 from the second to fourth row (M = 10).
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Figure 2. Results on patient 1: (a) observed change in contrast uptake (light shades
standing for large increase); (b) estimated intensity µest.

zi
= E(µ̂Zi

| y, θ̂M=3) and (c) standard

deviation SD(µ̂Zi
| y, θ̂M=3); thresholded image (d) with and (e) without consideration of

spatial structure; (f) baseline enhanced and non-enhanced tumor regions.
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Figure 3. Results on patient 2: (a) observed change in contrast uptake (light shades
standing for large increase); (b) estimated intensity µest.

zi
= E(µ̂Zi

| y, θ̂M=4) and (c) standard

deviation SD(µ̂Zi
| y, θ̂M=4); thresholded image (d) with and (e) without consideration of

spatial structure; (f) baseline enhanced and non-enhanced tumor regions.
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Figure 4. Histogram of observed (top) versus estimated (bottom) change in contrast
uptake in the healthy tissue (left), initially non-enhanced (middle) and enhanced (right)
tumor regions (patient 1).
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Figure 5. Histogram of observed (top) versus estimated (bottom) change in contrast
uptake in the healthy tissue (left), initially non-enhanced (middle) and enhanced (right)
tumor regions (patient 2).
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Table 1
True and estimated parameter values under conditionally independent noise.

Comp. Mean Standard Deviation
label(k) µk µk

a µ̃k µ̂k(SD × 102) σk σk σ̃k σ̂k(SD × 102)

1 -8.50 -5.86 -8.56 -8.56 (4.77) 1.00 2.09 0.94 0.94 (6.44)
2 -5.95 -4.34 -6.00 -5.94 (3.79) 1.00 1.04 0.96 1.00 (5.43)
3 -4.25 -2.89 -4.31 -4.26 (2.19) 1.00 1.04 0.97 0.98 (3.10)
4 -2.55 -1.68 -2.56 -2.53 (2.19) 1.00 0.88 0.98 0.99 (3.11)
5 -0.85 -0.79 -0.85 -0.85 (1.81) 1.00 0.76 0.98 0.99 (2.63)
6 0.85 0.25 0.84 0.84 (1.72) 1.00 0.64 0.99 1.00 (2.44)
7 2.55 1.21 2.58 2.55 (3.02) 1.00 0.79 0.95 0.96 (4.16)
8 4.25 2.19 4.31 4.24 (2.29) 1.00 1.08 0.99 1.00 (3.30)
9 5.95 4.29 6.04 5.96 (3.44) 1.00 0.94 0.91 0.94 (4.55)
10 8.50 6.03 8.53 8.50 (5.29) 1.00 1.97 1.01 1.05 (7.88)

aµk and σk are estimates via a finite mixture model ignoring the spatial structure in the data, µ̃k and σ̃k are estimates via Zhang

et al. (2001) method, while µ̂k and σ̂k are estimates via the proposed algorithm.

http://biostats.bepress.com/umichbiostat/paper72
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Table 2
Observed and estimated percentage of pixels in the initially enhanced and non-enhanced tumor region under various

thresholds (90/95/97.5th percentile of healthy tissue contrast uptake before radiotherapy) with and without consideration of
the spatial structure.

Percentile of Patient 1 Patient 2
healthy tissue Enhanced(%) Non-enhanced(%) Enhanced(%) Non-enhanced(%)

at baseline Obs. Pred. Obs. Pred. Obs. Pred. Obs. Pred.

90th 17.1 16.9 64.2 60.1 11.5 14.0 53.2 55.8
95th 14.7 14.4 62.1 59.1 10.2 12.6 51.6 54.5

97.5th 12.5 12.5 59.8 56.8 9.4 11.5 49.9 53.1
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