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A Statistical Framework for the Analysis of
Microarray Probe-Level Data

Zhijin Wu and Rafael A. Irizarry *

Abstract

Microarrays are an example of the powerful high through-put genomics tools that
are revolutionizing the measurement of biological systems. In this and other technolo-
gies, a number of critical steps are required to convert the raw measures into the data
relied upon by biologists and clinicians. These data manipulations, referred to as pre-
processing, have enormous influence on the quality of the ultimate measurements and
studies that rely upon them. Many researchers have previously demonstrated that the
use of modern statistical methodology can substantially improve accuracy and preci-
sion of gene expression measurements, relative to ad-hoc procedures introduced by
designers and manufacturers of the technology. However, further substantial improve-
ments are possible.

Microarrays are now being used to measure diverse high genomic endpoints in-
cluding yeast mutant representations, the presence of SNPs, presence of deletions/insertions,
and protein binding sites by chromatin immunoprecipitation (known as ChlP-chip). In
each case, the genomic units of measurement are relatively short DNA molecules re-
ferred to as probes. Without appropriate understanding of the bias and variance of
these measurements, biological inferences based upon probe analysis will be compro-

mised.
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statistics at the Johns Hopkins Bloomberg School of Public Health (E-mail: rafa@jhu.edu). The work of
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Johnson and Johnson Research Foundation.
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Standard operating procedure for microarray researchers is to use preprocessed
data as the starting point for the statistical analyses that produce reported results. This
has prevented many researchers from carefully considering their choice of preprocess-
ing methodology. Furthermore, the fact that the preprocessing step greatly affects the
stochastic properties of the final statistical summaries is ignored. In this paper we
propose a statistical framework that permits the integration of preprocessing into the
standard statistical analysis flow of microarray data. WWe demonstrate its usefulness by

applying the idea in three different applications of the technology.

1 Introduction

Microarray technology measures the quantity of nucleic acid transcripts present in a
biological sample referred to as the target. To do this we take advantage of hybridiza-
tion properties of nucleic acid and use complementary molecules attached to a solid
surface, referred to as probes. The molecules in the target are labeled and a specialized
scanner is used to measure the amount of hybridization at each probe and reported as
an intensity. A defining characteristic of microarray technology is that it includes thou-
sands of probes on a relatively small surface such as a glass slide. Various manufac-
turers provide a large assortment of different platforms. Most manufacturers, realizing
the effects of optical noise and non-specific binding, include features in their arrays to
directly measure these effects. The raw or probe-level data are the intensities read for
each of these features. In practice, various sources of variation need to be accounted
for and these data are heavily manipulated before one obtains the genomic-level mea-
surements that most biologists and clinicians use in their research. This procedure is
commonly referred to as preprocessing.

The different platforms can be divided into two main classes that are differentiated
by the type of data they produce. The high density oligonucleotide platforms produce
one set of probe-level data per microarray with some probes designed to measure spe-
cific binding and others to measure non-specific binding. Affymetrix™ GeneChip®arrays
are by far the most popular product. The two-color platforms produce two sets of

probe-level data per microarray (the red and green channels) and local background
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noise levels are measured from areas in the glass slide not containing probe. No single
company or academic lab dominates this market.

The most popular microarray application of both platforms is measuring genome-
wide expression levels. In this application each gene is represented by one or more
probes that will hybridize with the RNA transcribed from that gene. In practice, re-
searchers using microarrays for this purpose start out with the probe-level data. How-
ever, most microarray products come equipped with software that preprocess these
data into higher level measurements where each gene gets assigned one value on each
array. This value is presented as the starting point for analyses that eventually lead to
the results published in the scientific literature. Examples of these higher level analy-
ses are identifying differentially expressed genes, class discovery and class prediction.
In some cases, the data manipulations performed in the preprocessing step turn out to

be rather complicated. Three steps typically carried out in preprocessing are:

1. Adjusting probe intensities for optical noise and/or non-specific binding. This

task is referred to as background correction.

2. Adjusting probe intensities to assure that measurements from different arrays are

comparable. This task is referred to as normalization.

3. When multiple probes represent a gene, summarizing the observed intensities to

attain one number for each gene. We will refer to this step as summarization.

We will refer to these as the three main preprocessing tasks. For both platform classes,
many different approaches have been proposed for each of these three steps resulting
in competing preprocessing algorithms. We will describe some of the most popular
ones in Section 2. Most of these preprocessing algorithms do not try to estimate the
measures of uncertainty that accompany the resulting gene-level expression estimates.
For example, normalization routines typically introduce correlation in gene-level mea-
surements, but this correlation is rarely taken into account in the higher level analyses.
Notice, that for researchers with the luxury of having a large number of replicate mi-
croarrays, this is not necessarily a problem because measures of uncertainty can be
estimated from the gene-level data. However, rarely is a scientist in an academic or
governmental institution in this position. Thus for most microarray experiments it be-

comes important to obtain as much information about the stochastic properties of the

3
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final summary statistics from the probe-level data. By posing appropriate models for
these data, any manipulation could be described statistically and bottom line results
can be better understood.

Microarrays are now being used to measure diverse high genomic endpoints other
than gene expression, including yeast mutant representations, the presence of Single
Nucleotide Polymorphisms (SNPs), presence of deletions/insertions, and protein bind-
ing sites by chromatin immunoprecipitation (known as ChlP-chip). In each case, the
genomic units of measurement continue to be the probes. Without appropriate under-
standing of the bias and variance of these measurements, biological inferences based
upon probe analysis will be compromised. In Section 3 we present a general statisti-
cal framework, which consists of a stochastic model for probe-level data appropriate
for any microarray application and procedures for quantifying answers of scientific
interest that permit measuring the statistical properties introduced by the three main
preprocessing tasks. In Section 4 we give examples of the usefulness of our proposal
in three specific applications of microarray technology: detecting expressed genes, es-
timation of differential RNA expression, and identification of synthetic lethality and
fitness defects in yeast mutants. Data used in the first two examples are from a high-
density oligonucleotide platform and data used in the third example are from a two-

color platform.

2 Previouswork

Various research groups have demonstrated that statistical methodology can provide
great improvements over the ad-hoc preprocessing procedures offered as defaults by
the companies producing the arrays. The implementation of these methods have re-
sulted in useful preprocessing algorithms which have already provided better bottom-
line results for users of microarray expression arrays. Most of these procedures per-
form all three main preprocessing tasks. However, some approaches follow a step-by-
step/modular approach, and others follow a global/unified approach.

In this section we describe the additive-background-multiplicative-error (addimult)

model that has been implicitly or explicitly assumed to motivate most of the proce-
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dures described here. We will also describe some of the most popular preprocessing
methodologies. In the case of the modular approaches we will describe the different

tasks in different sub-sections.

2.1 The addimult model

After target RNA samples are prepared, labeled and hybridized with arrays, these are
scanned and images are produced and processed to obtain an intensity value for each
probe. These intensities represent the amount of hybridization for each probe. How-
ever, part of the hybridization is non-specific and the intensities are affected by optical
noise. Therefore, the observed intensities need to be adjusted to give accurate mea-
surements of specific hybridization. In this paper, we refer to the part of the observed
intensity due to optical noise and non-specific hybridization as background noise. Wu
et al. (2004) describe experiments useful for understanding background noise behav-
ior that empirically confirm that its effect is additive and its distribution has non-zero
mean.

The component of the observed intensities related to specific binding is also af-
fected by probe properties as well as measurement error. By using the log-scale
transformation before analyzing microarray data many investigators have implicitly
assumed a multiplicative measurement error model (Dudoit et al., 2002; Newton et al.,
2001; Kerr et al., 2000b; Wolfinger et al., 2001). Furthermore, various groups, for ex-
ample Li and Wong (2001), have demonstrated the existence of strong multiplicative
probe effects on the ability to measure specific signal.

Most ad-hoc preprocessing algorithms subtract background and then take the log
which arguably implies an addimult model. However, Huber et al. (2002); Cui et al.
(2003); Durbin et al. (2002); Irizarry et al. (2003a) have explicitly proposed addimult
models and motivated algorithms based on these. A general form of this model is
simply

Y =B+S, (@))

with Y the observed intensity, B the background noise component and .S the specific

binding component which includes multiplicative effects.
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2.2 Task 1: Background adjustment

As mentioned, most microarray manufacturers include features in their products de-
signed to directly measure probe-specific background components. This is done dif-
ferently in the two different platform types. In the two-color platforms an attempt is
made to measure the effect of optical noise by taking intensity measurements from
parts of the glass slide with no probe. In this case no attempt is made to measure
non-specific binding directly. In the high-density oligonucleotide technologies probes
can be specifically designed to directly measure non-specific binding and background

noise effects. Below we give more details.

2.2.1 Two-color platforms

The area between the spots containing probe in the two-color platforms is large enough
that an intensity reading can be made near each spot. Most image processing algo-
rithms provide background measurements, B¢ and B%, taken from these areas for
both the red and green scans. Apparently, the manufacturers of image processing soft-
ware assume that intensities read from the spotted areas result from target specifically
binding to probe and target attaching to glass. The values B and B* are considered
direct measurements of the effect of the latter. Different software products provide
different algorithms that determine whether an image pixel belongs to spotted area or
background and summarizes the pixel intensities for each spot. The default adjustment
is simply to subtract these values: Y& — B and Y — B, Yang et al. (2002b) demon-
strated that the way in which the background estimate is defined can have a large effect
on bottom line results. Further, these authors suggest that for some image processing
algorithms better results are obtained by ignoring the background measurements.
One obvious problem with this ad-hoc subtraction adjustment is that, in general,
B > Y for a non-trivial amount of probes. Because ultimately the log ratio is used,
the subtraction adjustment yields no usable data when B > Y. Noting this problem,
Kooperberg et al. (2002) proposed a Bayesian approach that uses pixel summary infor-
mation to define a posterior mean for S that serves as a useful background adjustment.
Two advantages are that no missing data is produced and inflated variance for low

expressed genes are avoided.
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As far as we know, no background adjustment methodology that accounts for non-

specific binding exists for this platform.

2.2.2 High density array platforms

In this platform it is common to design a probe with the intention of directly measur-
ing the effect of background noise on each probe designed to measure specific binding.
These two probe types are referred to as the mismatch (MM) and perfectmatch (PM)
respectively. The naive background adjustment approach first used by the leading
manufacturer of these arrays (Affymetrix) was to subtract the Y intensity from
the Y'M intensity. Irizarry et al. (2003a) demonstrated that the Y M — Y MM trans-
formation resulted in expression estimates with exaggerated variance and proposed a
background adjustment step that ignores the MM intensities. Irizarry et al. (2003a)
noticed various problems with the MM probes and developed a PM-only background
adjustment. Similar to the procedure defined by Kooperberg et al. (2002) they as-
sumed parametric models for B and S in model (1) and proposed the posterior mean
E[S|Y "M] as a background adjustment that resulted in a large reduction of variance of
the gene-level estimates. Wu et al. (2004) noticed that this approach introduced a small
amount of bias to attain its large gains in variance reductions. They demonstrated that
this was mainly because 1) probe-specific background effects were not modeled and
2) the model used to describe B could be improved. The first problem was addressed
by using probe sequence information to predict mean levels of non-specific binding
effects. The second problem was addressed by improving on the model used to de-
scribe B. Wu et al. (2004) demonstrated that these modifications resulted in improved

bottom line results.

2.3 Task 2: Normalization

Most experiments involve the use of multiple arrays. Therefore, it is important to
remove obscuring sources of variation of non-biological origin to make data from dif-
ferent arrays comparable. These include different efficiencies of reverse transcription,
labeling or hybridization reactions, physical problems with the arrays, reagent batch

effects, and laboratory conditions. Normalization is a process for reducing this varia-
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tion.

Scatter-plots of probe intensities obtained from self-self hybridizations (same RNA
hybridized using different labels or on two separate arrays) demonstrate the existence
of non-linear dependencies. Various groups (Li and Wong, 2001; Dudoit et al., 2002;
Workman et al., 2002; Bolstad et al., 2003; Astrand, 2003) have noticed these depen-
dencies and proposed methodology for removing them. Bolstad et al. (2003) found
that methods that account for these non-linear dependencies outperform methods that
do not. Cui et al. (2003) demonstrated that sometimes the non-linear behavior can
be explained by the fact that different arrays have different background noise levels.
Furthermore, Cui et al. (2003) showed that probe intensities that are properly adjusted
for background noise, no longer show these non-liner affects and that log-scale mean

level adjustments are appropriate.

2.4 Task 3: Summarization

In some cases, multiple probes are used to represent one gene. In the high-density
oligonucleotide platforms it is typical to define probesets containing 11 to 20 probes.
In two-color platforms it is common to use only one probe per gene, although there are
many exceptions. In both platforms, because of the multiplicative measurement error,
standard operating procedure is to log the intensities before computing averages.

An important aspect of summarization is to account for the strong probe-effect
that has been empirically observed. This probe-effect was probably discovered or
predicted before the first microarray data worthy of publication were produced by
Schena et al. (1995). The system producing these arrays created probes by depositing
small drops, containing complementary DNA molecules and referred to as spots, on a
glass slide. From slide to slide the size, shape, and quality of these spots varied greatly.
Thus a comparison of hybridization intensities between two samples hybridized on two
different slides would be dominated by an unmeasurable probe effect. The solution to
this problem presented by Schena et al. (1995) was to hybridize the two samples being
compared on the same slide. By using different fluorescent dies (red and green) on
the two samples both hybridization intensities could be measured. Because the probe

effect appeared to be multiplicative, it was accounted for by computing the ratio of the
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two intensities.

The high-density oligonucleotide platforms are industrially produced and this per-
mits the construction of arrays in which each probe is very similar from array to ar-
ray. However, Li and Wong (2001) observed that in GeneChip arrays different probes
within the same probe-set provided substantially different measurements despite the
fact that they are designed to measure the same RNA transcripts. Furthermore, they
noticed that these probe effects were consistent from array to array. This implies
that some probes simply have stronger specific binding capabilities. A common ap-
proach to modeling the probe-effect is to fit a linear model to the background adjusted,
normalized, and log transformed probe intensities (Irizarry et al., 2003a; Kerr et al.,
2000b; Wolfinger et al., 2001; Chu et al., 2002). Notice that the procedure proposed
by Li and Wong (2001) is an exception.

2.5 Unified approaches

In the modular approach, the three main preprocessing tasks are divided into a set of
sequential steps. A potential disadvantage of the stepwise approach is that each step
is independently optimized without considering the effect of previous or subsequent
steps. This could lead to sub-optimal bottom-line results. Various investigators have
used the addimult model to combine the background adjustment and normalization
step into a unified estimation procedure. For example, Durbin et al. (2002), Huber
etal. (2002), Geller et al. (2003) and Cui et al. (2003) use addimult models to motivate
a transformation of the data that removes the dependence of the variance on the mean
intensity levels. However, these procedures do not define and estimate parameters that
represent quantities related to a scientific question as we wish to accomplish with our
general framework.

Some methods have been proposed to estimate, or test for, differential expression
as part of a more general estimation procedure that performs some of the main prepro-
cessing tasks. For example, Kerr et al. (2000b) propose the use of ANOVA models to
test for differential expression across different populations in two-color arrays. Their
models include parameters to account for the need for normalization. However, the

background adjustment step is performed separately. Wolfinger et al. (2001) propose
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a similar model that permits some of the effects to be random. This group developed
the equivalent approach for high-density oligonucleotide arrays (Chu et al., 2002). In
both approaches no background adjustment is performed. Hein et al. (2005) propose
a Bayesian model for high-density oligonucleotide arrays that combines background
adjustment, summarization, and permits the possibility of estimating more meaning-
ful parameters along with credibility intervals. However the normalization task is not
addressed and and probe effects are not considered in the summarization.

In the next section we propose a statistical framework that will permit us to es-
timate parameters of interest and perform all three main preprocessing tasks in one
estimation procedure. The measures of uncertainty will therefore account for the pre-

processing.

3 A general statistical framework

The first step in our proposed framework is the definition of a genomic unit of interest
or target DNA/RNA molecule of interest. For example, in expression arrays, the unit
of interest will be an RNA transcript. Then, for each genomic unit, a set of probes, that
will provide specific binding measurements for this target, are identified. Probes that
provide information about non-specific binding are also identified. Finally, answers to
scientific questions related to these genomic units can be quantified as summaries of

the parameters in the following statistical model:

h __ h h
Yyi; = Ogij + Ngij

+ St 2)

gij>

withg =1,...,Gi=1...,1,j =1,...,Jg,and h = 1,..., H. Here Y} is the
probe intensity read from a probe of type h, for target sequence g, in array 4, and probe
j. The probe intensity contains three major components: optical noise O, non-specific

binding NV, and specific binding S. These can be further decomposed into:

Ngij = exp(ugy; + &;) and (3
The mean level of non-specific binding for the j-th probe of type  related to transcript
g is represented by p’g‘j, and a measurement error that explains differences from array

10
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to array is described by ggij. The fact that the IV is strictly positive explains the
need for background adjustment. If target molecule g is present, then the specific
binding component S, is formed by an array specific constant v that explains the need
for normalization, a log-scale probe effect ¢, measurement error ¢, and a quantity
proportional to the amount of transcript exp{6}. The index h denotes the type of
probe. For example, in GeneChip arrays h = 1, 2 will correspond to PM or MM and
in two-color arrays to Red or Green.

The distribution of stochastic components in (3) will depend on the platform and
application. However, we conjecture that & follows a normal distribution in all mi-
croarray technologies. Using an experiment designed specifically to motivate a stochas-
tic model for background noise, Wu et al. (2004) demonstrate this is the case for
GeneChip arrays. Below we present evidence that the log-normal assumption applies
to two-color platforms as well. If we remove outliers, the distribution of ¢ also appears
to follow a normal distribution in many different types of data.

Notice that most parameters in model (3) are not identifiable. However, the plat-
form designs impose certain parameter constrains that allow the parameters to be iden-
tifiable. For example, in GeneChip arrays we will assume that the probe-effects qb;‘ij
does not depend on array 4 and that z/ih does not depend on the probe-type h. In two-
color platforms we will assume that ¢Zij does not depend on probe-type h. Other ap-
plication specific assumptions that make the model more parsimonious will be demon-
strated by example in Section 4.

The choice of which components in the model are random and which are fixed
will also vary from application to application. In some applications we may assume
¢g4; Tollows a normal distribution that does not depend on : or g as done by Wolfinger
et al. (2001). In cases where we assume the variance of ¢ depends on g, then assum-
ing this variance follows, for example, a gamma distribution across ¢ will add power
to the analysis. For gene-level data, these types of hierarchical models have greatly
improved results in practice, see for example, Lonnstedt and Speed (2002), Smyth
(2004), Gottardo et al. (2003), Pan et al. (2003), Kendziorski et al. (2003). Finally, in
some applications it will be useful to model 6,; with parametric models as described

in Section 4.3.
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Notice that some of the models motivating the unified preprocessing algorithms
described in Section 2 are special cases of model (3). An example is the model pro-
posed by Durbin et al. (2002) for two-color platforms. To obtain their model from
ours we need to assume N is 0 and that O is normally distributed. Instead of es-
timating @, Durbin et al. (2002) derive a transformation ¢ for which the variance of
A = t(Y®) — t(Y%) does not depend on the expectation of S and S. The differ-
ence A is used as a measure of relative expression on the two samples. Huber et al.
(2002) follow a similar approach. Unlike Durbin et al. (2002) they explicitly include
¢ and v in their model. As in Durbin et al. (2002) they assume N is 0 and consider
O to be normally distributed. Because their procedure was originally developed for
two-color arrays ¢ is absorbed into #. Using an ad-hoc robust version of maximum
likelihood estimation the parameters are estimated to derive a transformation simi-
lar to the one proposed by Durbin et al. (2002). The model described by Kerr et al.
(2000Db) is also a special case of ours. They assume Y has been background adjusted
and, therefore, that O and N are 0. They incorporate the estimation of differential
expression with the normalization step by permitting 0;@- to be constant for measure-
ments from the same population. Hein et al. (2005) use our model as well but impose
further assumptions on the distribution of the parameters. The v and ¢ parameters are
not accounted for though.

The approaches described by Durbin et al. (2002) and Huber et al. (2002) assume
O + N to be IID normal for each hybridization. As mentioned, empirical evidence
suggests that this assumption is incorrect and that a log-normality assumption is more
appropriate. This incorrect assumption has a relatively large impact on the accuracy
of expression level estimate. Figure 1 compares the resulting expression estimates ob-
tained from using the generalized-log (glog) and VSN procedures proposed by Durbin
et al. (2002) and Huber et al. (2002) respectively to the GCRMA procedure which uses
a log-normal assumption (Wu et al., 2004). We also compare these to a procedure
that does no background correction at all. The figure shows averaged log (base 2)
expression estimates plotted against known log (base 2) concentration levels for data
from an assessment experiment (described in more detail in Section 4.1.3). Appropri-

ate background adjustment will yield a straight line and, according to our model, no

12
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background adjustment will yield flat local slopes for low concentrations. Notice that
the procedures using the normality assumption are almost equivalent to not correcting

for background.

o
6-| | = NoBG &
o &
§ A glog / o5
2 + VSN
S 47 |o GCRWA
(]
2 =7
k] ==
o 2|3=2=%=" /¢
(O]
=
£
E 0
O’o
_2_
[ [ [ [ [
-2 0 2 4 6

Nominal log concentration

Figure 1. Log (base 2) expression estimates plotted against nominal log (base 2) concen-
tration in picoMolar, computed with background adjustment described in the text. To make
the curves comparable, the lines are shifted so that they have the same expression at log

concentration 8 picoMolar (3 in log base 2).

Although the proposal of using a log-normal distribution for the background noise
provides great practical improvements, the major advantage of our statistical frame-
work is that it will permit us to describe final results of scientific interest with rigorous
statistical statements. We will be able to quantify scientific questions as an exercise of
optimizing estimation of a set of model parameters. With the proper model in place,
fitting the model will produce useful estimates along with uncertainty measures that
take into account the effects of the three main preprocessing tasks. Fitting model (3) in
practice will sometimes be challenging. However, in cases where rigorous statistical
procedures are impossible to convert into deliverable useful algorithms, ad-hoc ver-
sions are possible. In these cases we can still use the model assumptions to describe

the statistical characteristics of the resulting data summaries.

13
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4 Applications

In this section we describe how our framework can be adapted to give useful solutions
to three important practical problems: detecting expressed genes, estimation of dif-
ferential RNA expression, and identification of synthetic lethality and fitness defects
in yeast mutants. In each section we briefly describe the scientific problem, the way
our framework will be implemented, a dataset used to assess the performance of our

approach, and results comparing our approach to standard ones.

4.1 Detecting expressed genes

4.1.1 Scientific problem

For any given target sample, it is not likely that transcripts from all genes are present.
Determining which transcripts are present may be of scientific interest. The Affymetrix
default software (MAS 5.0) includes an algorithm for the detection of expressed genes
using GeneChip arrays. The results are summarized as detection calls that can take the
values absent (A), marginal (M), and present (P). In our framework this can be viewed

as testing the hypothesis

E[S/ ] =0forallj=1,....J,

for each gene g on each array i. Because the variability of the M%M across g, j has been
demonstrated to be very large (Wu et al., 2004), this problem is not trivial. The solution
offered by Affymetrix implicitly assumes that ».//2" = p)1M and that SJIM = 0 for
all probes (Liu et al., 2002). Under these assumptions E[Y,; — Y, [iM] = 0 under
the null hypothesis. A Wilcoxon test on Ry = (Y, — Y M) /(Y M 4 Y MM s
performed on the .J, observations to obtain a p-valuel. The default behavior of MAS
5.0 isto assigna P, M, or A call to a p-value smaller than 0.4, between 0.4 and 0.6, and
bigger than 0.6 respectively. Liu et al. (2002) demonstrate that the algorithm works
relatively well in practice. However, in this section we demonstrate that our framework

can be used to improve this model and to save money!

IMAS 5.0 software tests the null hypothesis that median(R,)=r versus aternative hypothesis
median(R,) > 7 for apositive constant ~ as opposed to 0. The defaultis 7 = 0.015.

14
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4.1.2 Our solution

There are at least two problems with the assumptions made by Liu et al. (2002). Em-
pirical results show strong evidence that S}/ > 0 for many probes (Irizarry et al.,
2003a) and that p207 £ MM (Naef and Magnasco, 2003; Wu et al., 2004). Notice
that if we can not use the MM probes then we need to have probe-specific information
about M%W- Wu et al. (2004) describe methodology for estimating #Zij using probe
sequence information. This value is estimated with enough precision to consider it
known. If we treat Mgij as constant, then testing the null hypothesis without using the
MM probes is straight forward. Notice that GeneChip arrays include one MM for each
PM, thus PM-only arrays can represent twice as many genes at the same price or repre-
sent the same genes at half-price. We therefore refer to our approach as the half-price
procedure. Notice that the commercial arrays created by Nimblegen (Singh-Gasson

et al., 1999) do not include MM probes. The half-price procedure will permit users of

these arrays to perform detection calls.

4.1.3 Assessment data

To compare the two approaches we used Affymetrix’s spike-in experiment (Irizarry
et al., 2003b; Cope et al., 2004). In this experiment transcripts from 16 genes were
artificially added or spiked-in to a complex cRNA target at 14 different concentrations
ranging from 0 to 1024 picoMolar. Fourteen different mixtures were formed by vary-
ing the concentrations following a Latin-square design. Replicates of these mixtures
were formed and hybridized to 59 GeneChip arrays of the same type. The 16 spiked-in
genes were known not to be present in the original cRNA target thus if their spike-in
concentration was 0, then the correct detection call is A. For all other concentrations

the correct call is obviously P.

414 Results

Figure 2 demonstrates that the half-price procedure outperforms Affymetrix’s default.
This plot shows the p-values obtained across all 59 hybridizations for the different
concentration groups. Notice that, under default parameters, the Affymetrix’s detec-

tion algorithm was perfect at calling genes absent when they were truly absent, but
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—-value

performed poorly when the genes were truly present. The fact that perfect results were

obtained for the absent genes using a cut-off p-value of 0.04 suggests that the MAS

5.0 algorithm is the result of over-training on these genes. Our algorithm performs

slightly worse at absent calls but much better at present calls.
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4.2 Estimating differential expression

4.2.1 Scientific problem

Y.
S o WV I R
© concentration =1

Figure2: A) MAS5.0 p-values, obtained from testing H,: Gene g is absent, plotted against
the spiked-in nominal concentration (picoMolar). The numbers above each horizontal line
are percentages of genes with p-value exceeding these levels, i.e, the percentage of genes

that would be called present if such a cut-off is used. B) Same as A) but using p-values

In this application we typically have two classes of samples (e.g. experimental and

control) and in many cases we have various replicates. We are interested in measur-

ing differential expression for each gene. Currently, the standard approach is to first

preprocess the probe-level data and then use statistical procedures developed for gene-

level data (Schena et al., 1996; Kerr et al., 2000b,a; Lee et al., 2000; Newton et al.,

2001; Wolfinger et al., 2001; Tusher et al., 2001; Dudoit et al., 2002; Chu et al., 2002;

Yang et al., 2002a; Lonnstedt and Speed, 2002) without consideration of the prepro-

cessing algorithm. In this example we will use data from GeneChip arrays.
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4.2.2 Our solution

In this context, we quantify differential expression by defining 6 = B804 + B1,4Xi,
with X; = 1 if array ¢ was hybridized to the experimental target, and X; = 0 oth-
erwise. The parameter of interest will be 3, 4. For this application we only use MM
probes to estimate 14;; and find that assuming S%M = 0 does not have the adverse
consequences that it has in the detection call application. To reduce the number of
parameters needed to represent the probe-specific mean levels we use probe sequence
information as described by Wu et al. (2004). In summary, the M;Lz‘j and ¢Zz’j are as-
sumed to be linear functions of indicator variables denoting what base (G, C, T, or A)
is in each position of the probe. We assume the base effect is a smooth function of
position and use splines with 5 degrees of freedom to model these functions. These
assumptions reduce the number of parameters from hundreds of thousands to less than
20. See Wu et al. (2004) for more details. Other minor assumptions about across and
within array correlations are described in the Appendix.

With the specifics of the model in place, we will be ready to estimate 3, 4. A possi-
bility is to obtain the MLE along with a standard error for this estimate. Alternatively,
we can pose a Bayesian model and obtain posterior distributions of the 3; ,. However,
because neither of these solutions are computationally practical we used generalized
estimating equations instead. Details of the implementation are in the Appendix.

Notice that in this framework expression level measurements for each array are
never calculated. Instead the parameter of interest is calculated along with a measure
of uncertainty that includes the effects of background adjustment, normalization, and
summarization. We refer to the procedure that leads to an estimate beta; , and its

standard error, as the unified approach.

4.2.3 Assessment data

To demonstrate the utility of the unified procedure we use data from the spike-in ex-
periment described in Section 4.1.3. Recall that the RNA samples in this experiment
were the same in all hybridizations except for the spiked-in genes. The spiked-in genes
varied in concentration, within and across arrays. This implies that we can find com-

parisons of arrays for which only 16 genes are expected to be differentially expressed.
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Furthermore, for various comparisons we had three technical triplicates in each group.
We choose comparisons of two triplicates for which the expected fold-changes, for

most of the spiked-in genes, was 2.

A MA-PA plot B ROC plot
2. < 1.0+
“““ RMA+SAM
0.8— ---- MAS5.0+SAM
1+ — Unified
A | 2061
BO. @
$0.4
_1_
0.2+
-2 0.0+ ’
T T T T T T T
0 0 20 40 60 80 100
Average log (base 2) expression False Positive

Figure 3: A) Bl,g plotted against (Bl,g + BO,g) /2. The color of each dot represents the p-
value. Yellow represents low p-value (present genes), red presents large p-value (absent
genes). The blue bars mark ¢(.995)SE and ¢(.005)SE, where ¢(.) is the cummulative
density function of Normal(0,1). Spiked-in genes are labeled as big purple points. B)
Averaged receiver operating curves from 14 comparisons of 2-condition with 3-replicates

each from the GeneChip spike-in experiment.

424 Results

Figure 3A shows Bl,g plotted against the average log expression level (taken across
the six arrays) for each gene. Notice that this provides similar information to an MA-
plot. The blue bars denote point-wise critical values for rejecting the hypothesis that
B1,4 = 0 at the 0.01 level. These critical values are computed using the fact that our
estimates are asymptotically normal. Non-spiked in genes, which are known not to be
differentially expressed, exceeding these bounds are shown with red stars. Spiked-in
genes are shown with large purple dots. We add detection call information (described

in Section 4.1) for all other points. Yellow represents low p-value (present gene), red
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represents large p-value (absent gene). In this case the null hypothesis was that the
genes were absent in all six hybridizations. A common approach used by biologist is
to filter genes with Affymetrix produced absent calls and then compute fold change
estimates. Figure 2 demonstrates that this will result in many false negatives. We
propose looking at both fold change estimates and p-values in one plot such as Figure
3A. Because we are adding P/A call information to an MA-plot we refer to this as an
MA-PA plot.

Figure 3A demonstrates that a procedure calling genes differentially expressed
when they are outside the critical value bounds, performs rather well. Figures 3B
compares our results to those obtained with the Significance Analysis of Microarray
(SAM) procedure (Tusher et al., 2001). SAM is arguable the most popular proce-
dure for detecting differentially expressed genes among biologist. This method re-
quires expression-level data, thus we demonstrate results obtained using two popu-
lar preprocessing algorithms: RMA and MAS 5.0 (Affymetrix’s default). Figure 3B
shows average ROC curves for the three procedures obtained from 14 three versus
three comparisons. To imitate real data we excluded comparisons with unrealistically
large nominal fold changes and with high nominal concentrations. Specifically, only
comparisons with nominal fold changes of 2 and nominal concentrations smaller than
4 picoMolar were included. The ROC curve demonstrates that our procedure performs
similar to RMA/SAM in terms of detecting differentially expressed genes and much
better than MAS 5.0/SAM. Figure 4 shows log fold change estimates obtained with the
three procedures and demonstrates that our unfied approach provides estimates with
less bias.

Figure 4 demonstrats that for low nominal conentrations the unified has more vari-
ance. However, model based standard error estimates account for this fact. Figure 5
plots our model-based standard error estimate against observed average log intensity
for each gene. We also plot sample standard deviations of Bl,g for various strata of
the average log intensity. The model-based standard errors are very close to the sam-
ple standard errors. Notice the strong dependence of both standard error estimates on
the average log intensity. This dependence is predicted by our model. Equation (5)

in the Appendix shows that the standard error is proportional to the inverse of E[S].
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Figure 4: A) Estimated differential expression for genes with nominal fold change of 2
obtained with MAS 5.0. The x-axis shows the lower of the two nominal concentrations

involved in the comparison. B) AsA) but using RMA. C) AsA) but with our estimate BLQ.

This provides strong evidence against the claim made by many biologist that the high
variation observed for low abundance genes is a biological reality. Our calculations
show that the high variation is due to the statistical manipulations needed to correct

for background.

4.3 ldentification of synthetic lethality and fitness defects in

yeast mutants
4.3.1 Scientific problem

The Yeast Deletion strain collection was created by an international consortium of
yeast geneticists (Giaever et al., 2002) and is an invaluable resource for genetics re-
search. For each of the 6000+ genes in the yeast genome, a mutant yeast strain was
created missing that gene. Some genes are essential and thus the mutants are not vi-
able. Two unique DNA tags were incorporated into the genome of each mutant strain.
Recently, two-channel microarray technology has been developed containing the nec-
essary probes to detect the tags (Yuan et al., ????). Thus, Microarray hybridization can
be used to measure the representation of each mutant in a complex mixture of many
different mutants.

A new collection of mutant yeast that are missing two genes is being created. Of
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Figure 5: Model based (blue bars) and empirical standard deviations (red crosses) of Bljg

as described in the text.

interest is to find pairs of non-essential genes for which removing both causes lethality
or fitness to grow defects. In a typical hybridization, various tags will be missing in
the experimental target, these represent dead yeast, and present in the control target,
these represent live yeast. Mutants with fitness defects will be under-represented in

the experimental target. The tasks is to identify these tags using the microarray data.

4.3.2 Our solution

Because of financial constrains (for each of the 4000+ non-essential genes we need
a hybridization), we will typically have only one array I = 1 per query gene. As
mentioned, two tags are used to represent each gene; thus we have two probes per
mutant, i.e. J; = 2 for all i. Because the yeast mutants are either dead or alive,
we will model 93 with a two component mixture distribution. One component will
represent the dead mutant, i.e. ng = 0 for h = R, G, the other will represent the
live mutants. Figure 6A plots a density estimate of log intensities for both R and G
channels and clearly shows both alive and dead components. This figure motivates the

assumption that 93 follows a normal distribution for the alive mutants. Furthermore,
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the figures also supports our claim that fgij is normally distributed.

Once the model is fitted under these assumptions, we are ready to provide useful
summaries. To quantify the evidence for a gene being dead in the experimental target
and alive in the control, we compute a likelihood ratio comparing a model where Y 7
and Y'¢ come from different mixture components to a model where they come from
the same. For mutants that appear to be alive in both cultures we can estimate the

difference in representation 1og(9§) - 1og(9§).

4.3.3 Assessment data

One mixture of yeast DNA was split into two halves, and into each half DNA from a
few selected mutants were spiked in with known concentration ratio. The concentra-
tions were chosen so that 1) some mutants were not represented in the experimental
pool and represented in the control and 2) some mutants had known fold changes in
representation when comparing both samples. The spike-in material was introduced
into the hybridization mixture in three different concentration groups (high, medium,

and low). See Peyser et al. (2005) for more details.

4.3.4 Results

In figure 6B we show the log likelihood ratios of mutants that had the same repre-
sentation (imitating alive/alive or dead/dead) or were spiked-in only in one sample
(imitating dead/alive) plotted against the naive log-ratio statistic. This Figure shows
that the log likelihood ratio statistic clearly discriminates the dead/alive mutants from
the rest. Various of these genes would not have been detected had we used the log
ratio.

In figure 7 we show box-plots of the MLE of log(6S) — log(6%) for the genes
that were spiked in to be differentially represented stratified by concentration groups.
In this figure we also show estimates obtained using two standard preprocessing pro-
cedures. The first is what we refer to as the default procedure which background
corrects using the direct estimates of background noise and normalizes by the log ra-
tio medians. The second is the approach proposed by Dudoit et al. (2002). The figure

demonstrates our estimation procedure offers an improvement in accuracy and preci-
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sion over the other two. As in the previous example, the uncertainty introduced by the

background adjustment and normalization can be included with our result.

A Density estimates B Log likelihood ratio
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Figure 6: A) Density estimates of log intensities from the Green (dashed green line) and
Red channels (solid red line). B) Log intensity ratios plotted against the log likelihood

ratios described in the text.

5 Discussion

We have presented a general statistical framework useful for the analysis of microarray
data. We believe it is general enough for it to be relevant in any microarray application,
and targeted enough to be useful in practice. We have demonstrated the usefulness of
our proposal with three examples from three very different applications and two dif-
ferent platforms. These examples are not intended to be final solutions to the specific
problems we presented but rather examples of the usefulness of the proposed frame-
work. An immense amount of useful work has been published in the statistics literature
for both preprocessing and higher-level analyses of microarray data. Our hope is that
our work will serve as a useful infrastructure that will permit the integration of these

two bodies of work.
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Figure 7: A) Box-plot of log fold change estimates using the default preprocessing ago-

rithm for the low, medium, and high concentration groups. The fourth box-plot shows the

log fold change estimates of genes that were not spiked-in. B) As A) but with a popular

aternative preprocessing algorithm. C) As A) but with our model-based estimate.

Appendix

5.1 Generalized Estimating Equations for GeneChip spike-
in experiment

To define the model we let Y ; = (Y15, Yy25, - - - Yyijs - - -, Yyr;)" denote the vector
of PM intensities for probe j across the samples < = 1,...,1. Similarly Ng;, Sy;,
&,4i» €45 denote the vectors for probe j across samples corresponding to the definition
Wiy .osvy) and @y (¢gjs Pgi»---)-

the variance in optical noise and, as explained in the next section, adjust for it by

in model (3), v (v1,v9,... We ignore

subtracting the minimal intensity on each array. We write the optical-noise-adjusted

intensities as

ng Ngj + ng

exp{pug; + &5} + exp{v + gy + X160 + ey}

Here & = (01, 0,)’ is the vector of the log scale expression in the two conditions,

X is the design matrix.

24

http://biostats.bepress.com/jhubiostat/paper73



We compute plug-in estimators for u, ¢4; and v using data from the entire array
as described in the next section. We use probe sequence information to predict y;.
However the probe effects are not completely accounted for by that linear function
base effect. Therefore, considering the same probes are used across arrays, we allow
the measurement error to be correlated: var(¢,;) = $V, where Y = 02 and ©J}, =
pyo2 fori # i var(eg;) = X9, where X5 = 02 and Xf, = p o2 fori # i’. The N
and S notation denote the non-specific and specific components. We assume £ and e
follow normal distribution and the mean of variance of Y,; is determined accordingly.

We then estimate @ for each gene j using the following generalized estimating

equation:
OEg[Yy)l ., —
Agi(0) = =577V g
The asymptotic variance of 4 is
D*lQDfll

where
OEg, Y,
_D — E {AgJ(QO) 0800[/ gj] }

Q = E {Ay;(00)varg, (Yg;) Ag;(60)'}

We estimate D and €2 with

A1 7 OEg[Yy;]
D= jZAgj(e)Ta

A1 )
Q= < Ag; (O)vary(Yy;) Ag; ()

Although the number of probes in a probe set is not very large, Figure 5 shows that
the estimated variance based on this asymptotic result fits the observed variance quite
well.

An interesting application of these results is that we can illustrate the relationship
between the asymptotic variance and the magnitude of 8. We consider the simplest

null case where 8 = (0,6, ...,0)’, v; = 0 and all probes in this probeset has the same
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probe effect. We consider a simple k-control/k-treatment comparison, therefore X7 is

the matrix

To simplify notations we use y1 = E[Ng;;], 72 = E[Sgij], V = var(Yy;), W =
cov(Yyi;, Yyir;). The normal assumption about e implies v = #*%+75/2 and 922 —

~9. Therefore

2 2 | K[V +(k—1)W 2w
A:EXTaD:@I2X27Q:fY_22 [ ( ) ]
4 4 4 KXW K[V + (k — )W)

The asymptotic variance of 6 is then

E[V + (k—1)W] k2w

DDV «x 72_2
kW K[V + (k—1)W]

and the variance of 6; — 0y o (V — W) /~3. Using the normal assumption again, we
have V = ~2(e"% — 1) +~2(e”s — 1) and W = 'y%(eplvalz\f —-1)+ ’y%(epsa% —1).

This implies

R R 2 0'12\, _ pNO']QV 2 a% _ pgo'%
Var(01 _ 92) o 7 (6 € ) —;72 (6 e )
Y2

: (%)

which predicts that the variance of estimated differential expression converges to a
constant as expression levels increases (- increases) and is approximately propor-

tional to 1/52 when S is small.

5.2 Ad-hoc plug-in estimates

For our example, we assume O;; is constant and form an estimate O, using the min-
imum observed intensity on each array. We do this because the variance of O;; is
negligible compared to the variance of V,;; (Wu et al., 2004). To estimate /.,;;, probe
affinities «,; are computed using probe sequence as described in Wu and Irizarry
(2004). We assume that j.;; is a smooth function A of these affinities, i.e. ug; =
h(cygj), and estimate p4;; through estimating %. Specifically, a loess curve is fit to the
log(YMM _ () versus ™M scatter plot to obtain /. The yu,;; are then estimated

as ﬁi(aZM ). The residuals from the loess fit are used to estimate the variance of &,
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aQN. To estimate the correlation coefficient p,,, we identify a subset of probes with
log(YPM — O) less than the corresponding /. The target mRNAS of these probes are
likely to be absent and log(Y " —(0) ~ N . We obtain sample variance of each probe
across arrays and use 62 to denote the mean of these variances. p, is calculated as
(62 —62)/52.

To estimate X% we first identify a subset of probe sets with high expression level
such that log(PM) ~ log(.S). Within each probe set we estimate the sample variance
of log(P M) and use the mean as the estimate of og. To estimate p, we use a similar
approach as for p,: from a subset of probes with strong signals, we obtain sample
variance of each probe across arrays and set 630 as the mean of those variances. pg is

~2 ~2 ~2
calculated as (6% — 6% )/5%.
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