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Bayesian Bivariate Image Analysis with
Application to Dual Autoradiography

Timothy D. Johnson and Morand Piert

Abstract

We present a Bayesian bivariate image model and apply it to a study that was
designed to investigate the relationship between hypoxia and angiogenesis in an
animal tumor model. Two radiolabeled tracers (one measuring angio- genesis,
the other measuring hypoxia) were simultaneously injected into the animals, the
tumors removed and autoradiographic images of the tracer concentrations were
obtained. We model correlation between tracers with a mixture of bivariate nor-
mal distributions and the spatial correlation inherent in the images by means of
the celebrated Potts model. Although the Potts model is typically used for im-
age segmentation, we use it solely as a device to account for spatial correlation.
The number of classes in the model is assumed un- known and is estimated via
reversible jump MCMC, marginalizing over the number of classes for posterior
inference. We present the model and estimation method using set theory nota-
tion which will assist us in introducing a novel reallocation scheme used in the
reversible jump proposals. We also estimate the spatial regularization parameter
in the Potts model prior. Through a simulation study, we show that it is necessary
to account for both the spatial correlation and the correlation between the two
tracers.
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1 Introduction

This work is motivated by a study investigating the relationship between hypoxia and an-

giogenesis in an animal tumor model. Oxygen deficiency (hypoxia) is a common feature of

malignant tumors and has the well known effect of decreasing the sensitivity of tumors to

ionizing radiation. It has been identified as a factor for tumor progression and for resistance

to anticancer treatment. The proliferation of new vessels from pre-existing capillaries (angio-

genesis) is a key player in the pathological development of solid tumors and for their ability

to metastasize. It has long been conjectured that as solid tumors grow, the central core of

the tumor becomes necrotic due to hypoxia and that this core of hypoxic tissue is surrounded

by an annulus of tissue with high angiogenic activity. With the recent development of in

vivo tracers for hypoxia and angiogenesis, researchers are now able objectively study the

relationship between hypoxia and angiogenesis within tumors.

The study consisted of eleven Swiss nude mice. Each mouse received two xenografts

of EMT6 tumors approximately 1 mm3 to both sides of the thoracic back. Two weeks

later, the mice were injected with two radio-labeled tracers: [18F]FAZA and [125I]gluco-RGD.

[18F]FAZA (t1/2 = 109.7 min.) measures hypoxia (Piert et al., 2005) and [125I]gluco-RGD

(t1/2 = 59.4 days) measures angiogenesis (Haubner et al., 1999). Three hours later the

animals were euthanized, their tumors dissected, frozen and cut into 20 µm sections. Im-

mediately after sectioning, digital autoradiography was performed for one hour. After com-

plete decay of 18F, digital autoradiography was again performed for one hour. The resulting

image—representing 125I activity—was subtracted from the first image resulting in the “true”

18F distribution. Digital autoradiography was again performed for 24 hours to capture the

18I distribution. To account for the disparate exposure times, tracer activity in the tumor

was normalized by dividing it by tracer activity in healthy muscle tissue; after subtracting

background activity from both tumor and muscle. Henceforth the [18F]FAZA to muscle ratio

will be denote “FAZA” and the [125I]gluco-RGD to muscle ratio will be denoted “RGD”. Full
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details of the study will appear in a companion manuscript. The purpose of this article is to

present, in detail, the imaging model used to study the spatial relationship between hypoxia

and angiogenesis.

We present a Bayesian model that accounts for both the spatial correlation (the spatial

distribution of the tracers) as well as the correlation between tracers. To our knowledge, this

is the first, fully Bayesian, imaging model has been applied to dual autoradiographic images.

We model the correlation between tracers with a mixture of bivariate normal distributions.

The spatial correlation is modeled by a hidden Markov random field. The number of classes

in the mixture is assumed to be unknown and is estimated via reversible jump Markov chain

Monte Carlo (RJMCMC) simulation (Green, 1995). Our main interest is not in directly

estimating the number of classes, nor in segmentation, but rather in the distributional re-

lationship between the two tracers. Thus, we marginalize over the number of classes in our

posterior inference. We also employ the Swendsen-Wang algorithm (Swendsen and Wang,

1987). This algorithm has been shown to have superior mixing properties as opposed to

the commonly used full conditional, pixel-wise, Gibbs updates of class membership. Results

are sensitive to the regularization parameter used in our prior model, thus this parameter is

estimated from the data (however, it is commonly assumed know).

Image analysis crosses many fields of study including statistics, engineering and computer

science, to name a few. As a result, a variety of terminology has been used in the literature.

To clarify this exposition and make it accessible to a wide audience, we present the model

and estimation procedure using set theory ideas and notation, which should be familiar to

most researchers across the various fields of study. This notation will also aid in describing

our novel method for reallocating pixels to classes: which is necessary for the RJMCMC

proposals.

We begin in Section 2 by introducing the model and notation. Section 3 is devoted

to detailing our estimation of the posterior, including a description of the Swendsen-Wang

3

Hosted by The Berkeley Electronic Press



algorithm and the RJMCMC algorithm. Results from the motivating example are given

in Section 4. A simulation study and sensitivity analysis are presented in the penultimate

section. We wrap up the paper with a short discussion.

2 Bayesian bivariate image model

Our model is a Bayesian hierarchical model. Wherever possible, we use the language of set

theory to describe elements of our model. All the set theory we use can be found in Halmos

(1998). Let P denote the set of pixels in the image with N = |P|. We subscript pixels by a

single index, i = 1, 2, . . . , N . Let NK = {1, 2, . . . , K}. We suppose there is a finite hidden

Markov random field (Besag, 1974) defined on P with finite state space SK = NK . Let

ZT = (Z1, Z2, . . . , ZN) denote the image of latent states with Zi ∈ SK for all i = 1, . . . , N .

Define a relation on P as follows:

Definition 1 Pixels i and j are related if Zi = Zj. Call this relation R. If i and j are

related, we write iRj.

Proposition 1 R is an equivalence relation.

Corollary 1 Z partitions P via the equivalence relation R.

The proofs of these follow from the definition. Henceforth, we refer to Z as the map of

(equivalence) class labels with Zi ∈ SK ∀ i ∈ P .

Definition 2 Suppose Z partitions P into K equivalence classes. Pick one pixel from each

equivalence class. Suppose these are i1, . . . , iK. Then the kth equivalence class is denoted by

ERk, with ERk ≡ {i ∈ P : iRik}.

Definition 3 If pixel i and pixel j are adjacent to one another in the vertical or horizontal

direction, then we say pixel i and pixel j are neighbors, denoted i ∼ j.
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The prior for the class label map, Z, is the celebrated Potts distribution (Potts, 1952):

Pr(Z = z | β,K) = exp

{
−β
∑
i∼j

[1− δj(ERi)]

}/
g(β, K) (1)

with δx(A) denoting the Dirac measure that equals 1 if x ∈ A and equals 0 if x /∈ A (i.e.

δj(ERi) = 1 if and only if Zi = Zj). This distribution depends on a spatial regularization

parameter, β ≥ 0, and the number of equivalence classes, K. The norm alizing constant is

g(β, K) =
∑
z∈ZK

exp

{
−β
∑
i∼j

[1− δj(ERi)]

}
(2)

where ZK = {z : zi ∈ SK ∀ i ∈ P}: the set of all possible class label maps consisting of

K classes. Note that |ZK | = KN . Thus, even for moderate sized images and classes, the

normalizing constant is computationally intractable. For example, if K = 2 and N = 256 (a

small 16× 16 image), then |ZK | ≈ 1.16× 1077. We treat both the normalizing constant and

the number of classes as parameters, and so the normalizing constant must be estimated. In

Section 3.2 we show how this can be done.

For i ∈ SK let Ni = {j ∈ SK : j ∼ i}: the set of neighbors of pixel i. Suppose there are

K equivalence classes. The Potts distribution (1) favors class label maps where neighbors

are members of the same equivalence class. This is most easily seen by considering the

conditional distribution of a single pixel, i;

Pr(Zi = k | Z−i, β, K) = Pr(Zi = k | {Zj : j ∈ Ni}, β, K)

= exp

{
−β

∑
j∈Ni

[1− δj(ERk)]

}/∑
`∈SK

exp

{
−β

∑
j∈Ni

[1− δj(ER`)]

}
. (3)

For a fixed β, this conditional probability is proportional to 1 if jRi, ∀ j ∈ Ni; is proportional

to exp(−β) if jRi for exactly three j ∈ Ni; is proportional to exp(−2β) if jRi for exactly

two j ∈ Ni; is proportional to exp(−3β) if jRi for exactly one j ∈ Ni; and is proportional

to exp(−4β) if jRi for zero j ∈ Ni. If β > 0, we see that the Potts distribution favors

class label maps where neighbors are members of the same equivalence class. As β → ∞,

the probability of neighbors belonging to the same equivalence class increases. When β = 0,

5
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Pr(Zi = k | {Zj : j ∈ Ni}, β, K) = K−1 for all k ∈ SK which is independent of {Zj : j ∈ Ni}

(all pixels are mutually independent).

Let YT
F = (Y1F , . . . , YNF ) denote the FAZA image and YR denote the RGD image.

Define Y = (YT
F ,Y

T
R) and YT

i = (YiF , YiR). Given Z = z, we model Yi as conditionally

independent bivariate normal random variates: Yi | zi, µzi
, Σzi

∼ N(µzi
, Σzi

). Thus,

f(y | Z,µ,Σ) = (2π)−N
N∏
i=1

|Σ−1
zi
| exp[−0.5(yi − µzi

)TΣ−1
zi

(yi − µzi
)],

where µ = {µk}k∈SK
and Σ = {Σk}k∈SK

. The priors for µk and Σ−1
k , k ∈ SK , are

µk
iid∼ U([min(YF ),max(YF )]× [min(YR),max(YR)])

Σ−1
k

iid∼ W (S−1, ν1)

S ∼ W (T, ν2)

where W (A, ν) is the Wishart distribution with symmetric positive definite (SPD) scale

matrix A and ν degrees of freedom and T is a diagonal matrix with T11 = (ν1−3)(RF/ν2)
2 and

T22 = (ν1−3)(RR/ν2)
2 and RF and RR represent the range of FAZA and RGD, respectively.

Here we chose ν1 = ν2 = 10.

A priori, β ∼ G(3, 2). The number of equivalence classes, M , is given a truncated Poisson

distribution:

Pr(M = K | λ) =
λK

K!

(
40∑
k=1

λj/j!

)−1

I(K ∈ {1, 2, . . . , 40}).

We set λ = 15.

Our model accounts for spatial correlation via the Potts prior on Z and for correlation

between tracers via the bivariate normal distribution on Y.

3 Posterior estimation

In the following subsections we detail the elements needed for posterior estimation. In partic-

ular we present details of the Swendsen-Wang algorithm (Swendsen and Wang, 1987), which
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is used to efficiently update the map of equivalence class labels, Z, and of the RJMCMC

algorithm. The Swendsen-Wang algorithm can also be used to estimate ratios of the nor-

malizing constants in equation (2). These ratios are necessary for the RJMCMC proposals

and for updating the regularization parameter, β.

3.1 The Swendsen-Wang algorithm

The Swendsen-Wang algorithm (Swendsen and Wang, 1987) is a special case of slice sampling

(Robert and Casella, 2005). The posterior distribution of Z given the data and all other

parameters is

Pr(Z = z | Y, µ, Σ, β, K) ∝ f(y | Z,µ,Σ)× exp

{
−β
∑
i∼j

[1− δj(ERi)]

}
. (4)

Now for each neighbor pair, i ∼ j, of pixels define a real, non-negative random variable, Vij.

Let V = {Vij}i∼j and define the conditional distribution of all Vij given Z to be uniform and

independent:

π(Vij | Z) = exp{β [1− δj(ERi)]}I(0 ≤ Vij ≤ exp{−β [1− δj(ERi)]}). (5)

Therefore,

π(V | Z) =
∏
i∼j

exp{β [1− δj(ERi)]}I(0 ≤ Vij ≤ exp{−β [1− δj(ERi)]}). (6)

Then it is easy to show that

Pr(Z = z | V, Y, µ, Σ, β, K) ∝ (7)

f(y | Z,µ,Σ)
∏
i∼j

I(0 ≤ vij ≤ exp{−β [1− δj(ERi)]}).

We can therefore sample from the joint posterior distribution of V and Z by iterating between

(6) and (7). Marginalizing over V we end up with the marginal posterior distribution of Z

given in (4).
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It is a simple matter to sample a V | Z from (6). We simply draw each Vij | Z from (5).

To sample a new Z from (7) we note the following: for β > 0, using (5) we have

Pr(Vij > exp(−β) | Z) =

∫ exp[−β(1−δj(ERi)]

exp(−β)

dVij > 0 iff δj(ERi) = 1 iff zi = zj. (8)

That is, given that Vij > exp(−β), zi and zj are constrained to be equal. We need the

following definitions, a proposition and a corollary:

Definition 4 Define a relation Q on P as follows: Pixels i and j are related (iQj) if there

exists a set of pixels {i`}L`=1 ⊂ P such that i = i1, j = i` and Vi`,i`+1
> exp(−β) for

` = 1, . . . , L− 1. If L = 1, then Vi`,i`+1
> exp(−β) holds vacuously.

Proposition 2 Q is an equivalence relation.

The proof of Proposition 2 is trivial and Q partitions P .

Definition 5 The partition defined by the equivalence relation Q on P is denoted by ZQ.

Definition 6 Suppose ZQ partitions P into C equivalence classes. Pick one pixel from each

equivalence class. Suppose these are i1, i2, . . . , iC. Then the cth equivalence class is denoted

by EQc. We note here that EQc ≡ {i ∈ P : iQic}.

Corollary 2 The partition ZQ of P defined by Q is a refinement of the partition Z of P

defined by R. That is if i ∈ EQj and i ∈ ERk then EQj ⊆ ERk.

This corollary follows from the definitions of Q and R and from (8). As a direct consequence

of Corollary 2 we have that C ≥ K.

Now the left hand side of (7) can be factored as

Pr(Z = z | V, Y, µ, Σ, β, K) =
C∏
c=1

Pr({Zi}i∈EQc
= zic | V, Y, µ, Σ, K)

×
∏
i∼j

I{0 ≤ vij ≤ exp[−β(1− δj(ERi)]},
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where {Zi}i∈EQc
= zic is shorthand notation for Zi = zic for all i ∈ EQc. Thus, each equiva-

lence class can be updated independently of all other classes:

Pr({Zi}i∈EQc
= zic | V, Y, µ, Σ, K) ∝∏

i∈EQc

|Σ−1
zic
| exp

[
−0.5(yi − µzic

)TΣ−1
zic

(yi − µzic
)
]

(9)

for zic ∈ SK . For the special case β = 0, condition (8) never holds: each pixel is its own

equivalence class (relative to Q) and thus each pixel is updated independently of all other

pixels.

3.2 Estimating ratios of the normalizing constant, g(β, K)

Evaluation of ratios of the normalizing constant, g(β, K), is necessary to compute the prior

ratio for the split and merge RJMCMC proposals and is required to draw values from the

posterior distribution of the spatial regularization parameter, β. Recall that the normalizing

constant is computationally intractable as it contains an astronomical number of summands.

Hence we stochastically estimate it for K = 1, . . . , 40 and on a grid of values for β ∈ [0, 3]

in increments of 0.01.

Stochastic estimation of the normalizing constant can be achieved efficiently by thermo-

dynamic integration (Ogata, 1989) and use of the Swendsen-Wang algorithm. Estimation

is performed prior to posterior simulation and results are stored in a matrix that can used

during posterior simulation. Details are outlined in the Appendix.

3.3 RJMCMC

We assume that the number of hidden states (equivalently the number of equivalence classes),

K, is unknown and estimate it via RJMCMC (Green, 1995; Richardson and Green, 1997;

Green and Richardson, 2002). Associated with each equivalence class, ERk, k = 1, . . . , K, is

a bivariate normal distribution with mean vector µk and covariance matrix Σk. We define

a pair of reversible jump moves: split and merge. Let R ∈ {s,m} where s denotes the
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splitting of a normal distribution into two normal distributions and m denotes a merging of

two normal distributions into one. A split move requires the parameter space to increase in

dimension by 5 (The mean of the bivariate normal distribution will be split into two new

bivariate vector means, increasing the dimension by 2, and the covariance matrix will be split

into two new covariate matrices, increasing the dimension by 3). A merge move decreases

the dimension by 5. The probabilities of proposing these moves are

Pr(R = s | K) = ck min[1,Pr(M = K + 1 | λ)/Pr(M = K | λ)]

Pr(R = m | K + 1) = ck+1 min[1,Pr(M = K | λ)/Pr(M = K + 1 | λ)].

These probabilities are similar to those proposed by Green (1995). The cks are chosen so

that Pr(R = s | K) + Pr(R = m | K) = 1.

3.3.1 Split proposal:

Suppose there are currently K classes. In the split move we propose to increase the state

space from SK to SK+1. A split move is proposed by randomly selecting a class to split: draw

a k ∈ SK uniformly (i.e. each with probability 1/K). Suppose the class to be split is ERk.

Draw u1 and u2 independently from Beta(2, 2). Draw w11, w12 and w22 independently from

Beta(3, 3). Set uT = (u1, u2), w21 = w12 and define W to be the 2× 2 matrix with elements

wij. Let 1T = (1, 1). Dimension matching is performed via moment matching. Let Σ
1/2
k

denote the square-root of the SPD matrix Σk defined as follows: suppose the eigenvalues of

Σk are λ1, λ2. Let D = diag
(√

λ1,
√
λ2

)
. Let E denote a 2 × 2 matrix whose columns are

eigenvectors of Σk. Then Σ
1/2
k = EDE−1. Now the class is split into two new classes k∗ and

k∗∗ by the following bijective transformation:

µk∗ = µk − Σ
1/2
k u

µk∗∗ = µk + Σ
1/2
k u (10)

Σk∗ = 2W �
[
Σ

1/2
k (I − uuT)Σ

1/2
k

]
Σk∗∗ = 2 (11T −W )�

[
Σ

1/2
k (I − uuT)Σ

1/2
k

]
.
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Here, A�B denotes element-wise multiplication of the two conforming matrices, A and B.

Now Σk∗ and Σk∗∗ are not necessarily SPD. If either is not SPD, we reject the split proposal.

Let µ∗T denote the new set of K + 1 means and Σ∗ denote the new set of K + 1 covariance

matrices.

Once an equivalence class is split into two new classes, pixels need to be reallocate to the

new classes. To do so, we will use the machinery from the previous section. We stochastically

reallocate all pixels from the current set of K equivalence classes to the new set of K + 1

equivalence classes. We begin with the current partition Z. Given Z we draw V∗ using (6)

with β =∞. We define∞·0 = 0 (anything times 0 equals 0). This defines a new equivalence

relation Q∗ and associated partition Z∗Q with equivalence classes E∗Qc, c = 1, . . . , C∗. We note

here that for finite β, the partition ZQ is stochastically determined via (5) and Definition

4. When β = ∞, the partition Z∗Q is deterministically determined since (5) is an improper

distribution with infinite mass at 0 when δj(ERi) = 0 (equivalently when zi 6= zj) and

is uniformly distributed on (0, 1) when zi = zj. Thus if zi = zj, V
∗
ij > exp(−∞) with

probability 1. Now we draw Z∗ with elements z∗i ∈ SK+1 using (9) with the appropriate

changes:

Pr({Z∗i }i∈E∗Qc
= z∗ic | V

∗, Y, µ∗, Σ∗, K) ∝∏
i∈E∗Qc

∣∣∣Σ−1
z∗ic

∣∣∣ exp
[
−0.5(yi − µz∗ic

)TΣ−1
z∗ic

(yi − µz∗ic
)
]
. (11)

The probability of reallocation is given by

palloc(z
∗ | V∗, Y, µ∗, Σ∗, K) =

C∗∏
c=1

Pr({Z∗i }i∈E∗Qc
= z∗ic | V

∗, Y, µ∗, Σ∗, K), (12)

while the probability of the current allocation of pixels (with elements zi ∈ SK) is given by

palloc(z | V∗, Y, µ, Σ, K) =
C∗∏
c=1

Pr({Zi}i∈E∗Qc
= zic | V∗, Y, µ, Σ, K),

Note that C∗ ≥ K. Nevertheless, it is possible that when reallocating pixels to equiva-

lence classes, we end up with less than K + 1 classes. That is, one or more classes may be

11
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empty due to the stochastic nature of the reallocation process. If this happens and the split

move is accepted, the empty class(es) either get filled during a future update of the now

current Z (with elements in SK+1) or is(are) merged with another class during a RJMCMC

merge move. Our experience is that empty classes either get filled quickly or are remove

quickly.

3.3.2 Merge proposal:

Suppose there are currently K classes. A merge move is attempted by randomly selecting

an equivalence class ERi, i ∈ SK , each with probability 1/K. Suppose it is ERk∗ . Let µk∗

denote the mean and Σk∗ denote the covariance matrix of the data corresponding to this

equivalence class. The class to be merged with ERk∗ is drawn at random from the remaining

classes with probabilities

pselect(j | k∗) ∝ 0.5

[√
(µk∗ − µj)

TΣ−1
j (µk∗ − µj) +√

(µj − µk∗)
TΣ−1

k∗ (µj − µk∗)

]
∀ j ∈ SK \ {k∗}

The right hand side is the average Mahalanobis distance of µk∗ to N(µj,Σj) and of µj to

N(µk∗ ,Σk∗). Suppose the selected class is ERk∗∗ . The resulting class will be indexed by k

with an appropriate relabeling of the other K − 1 classes, as necessary. The inverse of the

bijective transformation (10) is

µk = 0.5 (µk∗ + µk∗∗)

Σk = 0.5 (µk∗µ
T
k∗ + µk∗∗µ

T
k∗∗ + Σk∗ + Σk∗∗)− µkµ

T
k (13)

u = 0.5 Σ
−1/2
k (µk∗∗ − µk∗)

W = 0.25 (Σk∗ − Σk∗∗)�
[
Σ

1/2
k (I − uuT)Σ

1/2
k

]
+ 0.5 11T

where A � B denotes element-wise division of the two conforming matrices A and B. The

transformations (10) and (13) generalize those of Richardson and Green (1997) from the

univariate to the bivariate normal case.
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Next, we reallocate pixels to equivalence classes. We do so in the same manner as for

the split proposal. We stochastically reallocate all pixels from the current set of K classes to

the new set of K − 1 classes. Given the current partition Z, draw V∗ using (6) with β =∞.

Now draw Z∗ with elements z∗i ∈ SK−1 using (11). The probability of reallocation is given

by (12) with these same changes.

Details of the acceptance probabilities for the split and merge move are given in the

Appendix.

3.4 Updating β, µk, Σ−1
k and S

β is updated via a Metropolis-Hasting step (Hastings, 1970). Gibbs steps are used to update

S, µk, and Σ−1
k , k = 1, . . . , K. Let Nk denote the number of pixels in equivalence class k.

The updates are

1. Draw β∗ ∼ N(β, σ2) subject to β∗ ∈ [0, 3] (If β∗ /∈ [0, 3], reject the proposal). The

proposal is accepted with probability min(1, A) where

A = exp

{
(β − β∗)

∑
i∼j

[1− δj(ERi)]

}
g(β,K)/g(β∗, K) exp[2(β − β∗)](β∗/β)2.

2. Draw, for k = 1, . . . , K,

Σ−1
k ∼ W

(S +
∑
i∈ERk

(yi − µk)(yi − µk)
T

)−1

, ν1 +Nk

 .
3. For k = 1, . . . , K, draw µk ∼ N

(∑
i∈ERk

yi/Nk, Σk/Nk

)
. Reject the draw if µk /∈

[min(YF ), max(YF )]× [min(YR), max(YR)].

4. Draw

S ∼ W

(T−1 +
K∑
k=1

Σ−1
k

)−1

, ν2 +Kν1

 .
Following Higdon (1998), we alternate the Swendsen-Wang draw of Z with full conditional

Gibbs updates of Zi | Z−1, β, K (via equation (3)) to help ensure movement within large

equivalence classes, EQj.
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4 Results

We analyzed over 100 tumor slices from the eleven mice. (We were not able to register the

tumors slices, build a 3D image of the tracer intensity and treat each tumor as a single image.

There are no anatomical landmarks on the radiographs on which to register the slices and, for

many of the tumors, the slices are not contiguous. Thus we analyzed each slice independently.

However, it would not be difficult to extend our model to three dimensions.)

Of primary interest is the spatial distribution of hypoxia and angiogenesis. Unexpectedly

we found that the conjecture noted in the introduction does not hold in general: these tumors

are more heterogeneous than anticipated.

Two examples of the FAZA/RGD intensities are shown in the first row of Figures 1 and 3.

The tumors are labeled “M1S6T1” and “M2S5T2”, respectively in the figures. The marginal

posterior mean images, Ê(µ | Y ), are displayed in the second row of these figures. The

tumor displayed in Figure 1 shows, for the most part, the conjectured pattern of hypoxia

in the core of the tumor surrounded by angiogenesis. In order to obtain a clearer picture

of the pattern of hypoxia and angiogenesis, we partition the mean images into four distinct

subsets of pixels. These are the set of all pixels where both FAZA and RGD tracer activity

is high (intense hypoxia and angiogenesis); the set of all pixels where FAZA tracer activity

is low and RGD activity is high; the set of all pixels where FAZA activity is high and RGD

activity is low; and the set of all pixels where both tracer’s activity is low. Thresholds need

to be defined in order to precisely state what is meant by high or low tracer activity. For

this purpose, we define tracer active as high (low) if the estimated posterior mean intensity

is greater (less) than the empirical average intensity (averaged over all slices of all tumors).

A pixel is classified into one of these four subsets if the posterior probability that both

conditions hold is greater than 0.5. Precisely, these subsets are defined as

FAZA high/RGD high: {i ∈ P : Pr(µiF > 3.18 ∩ µiR > 4.60 | Y) > 0.5}. This set

corresponds to higher than average hypoxia and angiogenesis.
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FAZA low/RGD low: {i ∈ P : Pr(µiF < 3.18 ∩ µiR < 4.60 | Y) > 0.5}. This set

corresponds to lower than average hypoxia and angiogenesis.

FAZA low/RGD high: {i ∈ P : Pr(µiF < 3.18 ∩ µiR > 4.60 | Y) > 0.5} This set

corresponds to lower than average hypoxia and higher than average angiogenesis.

FAZA high:RGD low: {i ∈ P : Pr(µiF > 3.18 ∩ µiR < 4.60 | Y) > 0.5}. This set

corresponds to higher than average hypoxia and lower than average angiogenesis.

Pixels within the tumor boundaries that are not members of any of the above sets are colored

in black. The values 3.18 and 4.60 are the empirical average intensities of FAZA and RGD.

The third row of Figure 1 displays the partitioned image. From this image it is evident

that hypoxia is larger than the average and angiogenesis is lower than average over most of

the core of the tumor (colored yellow). Near the lower left and upper right regions of the

tumor, angiogenic activity is high and hypoxia is low (colored red) . Neither hypoxia nor

angiogenesis is present in the outer annulus of the tumor (colored blue). This is observed in

nearly every tumor. We suspect this is an artifact caused by two factors. One, the partial

volume effect (pixels near the boundary contain both healthy and diseased tissue). Two,

imprecise outlining of the tumor boundary. Also of interest is the large area where both high

levels of hypoxia and angiogenesis coexist (colored gray).

The example shown in Figure 3 tells a different story. Here, there is a region of highly

angiogenic tissue appearing preferentially in the core of the tumor surrounded by a region

of tissue that is largely hypoxic.

The harmonic mean of the posterior standard deviation of the tracers are displayed in

Figures 2 and 4. Overall, both figures show that the variability is larger for RGD than it is

for FAZA. Both images also show some evidence of negative correlation between tracers in

the core of the tumors. The tracers become more positively correlated near the periphery.

Room does not permit us to show results from all 100+ slices. However, there was much

heterogeneity across the tumors as well as across slices of a single tumor. Many tumors
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show evidence of a core that is both poorly oxygenated and has high angiogenic activity.

Some of these cores are surrounded by hypoxic tissue and others surrounded by tissue high

in angiogenic activity. Others appear to be well oxygenated and lack angiogenic activity. No

general summary of the spatial distribution of FAZA and RGD could be ascertained. These

results call for further investigation. They also suggest that in vivo imaging of tracer uptake

in tumors may be useful in tailoring cancer treatment to the individual. For example, tumors

that show mostly angiogenic activity should be treated with an anti-angiogenic drug.

Overall, the RJMCMC algorithm performed quite well. Most of the autoradiographs

that we analyzed had acceptance rates on the order of 5% to 18% for the split and merge

moves, combined. However, there were a handful of cases that had acceptance rates as low

as 0.5%. We believe part of the success of the RJMCMC acceptance rates is a result of the

way we reallocate pixels to the new set of classes. Each equivalence class, ERk, is refined to

a new set of equivalence classes (via the relation Q∗), and the pixels in these new classes

are reallocated independently of other classes. The components of the refinement tend to be

much smaller than the original components. Thus the algorithm easily accepts new small

components and easily merges these components. In fact, our first attempt was to reallocate

pixels as proposed by Green and Richardson (2002). They update only those pixels in the

class chosen to be split or the two classes chosen to be merged. Reallocation of pixels for a

merge move is deterministic. For a split move, they perform a raster scan on those pixels to

be reallocated to the two new classes. Each pixel being updated conditionally on the class

value of its neighbors that have already been updated. For our application, performance of

the reversible jump algorithm was extremely poor, using their reallocation strategy, and so

we abandoned it in search of a better reallocation scheme for our application.
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5 Simulation study and sensitivity to priors

5.1 Simulation study

We conduct a simulation study to assess the performance of our model against various models

with simpler structure. In particular, we compare the bias of parameter estimates from our

model, to our model with the number of classes fixed, a priori, at four; to a spatial model

where the correlation between the two images is assumed to be zero; and to a bivariate model

where the spatial structure of the data is ignored. We also compare the misclassification rates

of these models. The classification is based on partitioning the images into the four subsets

defined in the previous section. Further, we compare the empirical misclassification rate by

assuming no model and determining which data points fall into the four subsets (here the

subsets are based solely on the observed intensities at a pixel being larger (smaller) than

their respective empirical averages).

We create twenty bivariate images by partitioning a 100× 100 grid into sixteen 25× 25

regions. For each image, two regions are selected at random, without replacement, and

populated with draws from one of eight bivariate normal distributions. Parameter values for

these distributions are listed at the bottom of Table 1. An example of one of these twenty

data sets is shown in Figure 5.

Bias results from this simulation study are given in Table 1. From this table, we see

that our proposed model is the least biased of the four. The non-spatial, bivariate model

estimates the variances quite well, but does not estimate the means or the correlation very

well. The other two models have quite large biases for all parameters.

Overall misclassification rate results are similar to the bias results. The misclassification

rate is smallest for our model. In the simulation study, we assume that the empirical average

threshold of the two tracers are both 0.4. The average misclassification rates are listed

in Table 2. The classification results from the simulated data set shown in Figure 5 are

displayed in Figure 6.
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We also perform a similar study generating uncorrelated images. We compare our bi-

variate image model with the spatial model assuming an uncorrelated covariance structure.

Overall, nothing substantive is lost use the bivariate image model. Bias results and misclas-

sification rates (not shown) are quite similar between the two models.

5.2 Sensitivity analysis

For the RJMCMC algorithm, the number of parameters has been shown to be sensitive

to the prior on the number of, in the present case, equivalence classes (Green,1995). To

investigate this sensitivity, we change the prior on the number of equivalence classes. Recall

that the number of equivalence classes has a truncated Poisson prior with parameter λ =

15. We investigate the sensitivity to this prior when we change λ to 10 and to 20. The

resulting posterior distributions of the number of equivalence classes are displayed in Figure

7. Although the posterior of the number of equivalence classes is sensitive to its prior, the

partitioned images are rather insensitive due in large part to model averaging. For the first

data set, only 1.29% and 1.16% of the pixels are classified differently when λ changes from 15,

to 10 and 20, respectively. For the second, only 1.47% and 0.79% of the pixels are classified

differently when λ changes from 15, to 10 and 20, respectively.

6 Conclusion

We have developed a Bayesian bivariate image model that is useful in analyzing the spatial

distribution of hypoxia and angiogenesis in an animal tumor model. The results from this

study suggest tumors are more heterogeneous in their spatial distribution of angiogenic

activity and hypoxia than previously thought. This also suggests that in vivo imaging of

tumors can aid in the individualized treatment of solid tumors. Tumors that are largely

angiogenic should be treated with anti-angiogenic agents, tumors that are largely hypoxic

should be treated with hypoxia targeted treatments, while heterogeneous tumors should be
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treated with a combination of treatments.

Posterior estimation takes about 60 minutes (50,000 samples from the posterior are used

for estimation after a burn-in of 10,000) on a Macintosh Quad 2.5 GHz PowerPC G5 com-

puter. The code was written in the C programming language. The dimension of each

marginal image is 100 × 100. The down-side of our model and estimation procedure is the

time it takes to estimate the log ratios of normalizing constants, λK(a, b). There are 12,040

points on the 2D grid at which we estimate these ratios. It takes approximate 48 hours of

CPU time to estimate these ratios. We note here that this the estimation was done once for

a 100×100 bivariate image. Our estimation procedure is performed over the entire 100×100

image, including both tumor and non-tumor tissue. We do not compute the ratios for every

individual tumor. After estimation, we mask out the non-tumor regions.

As a result of good mixing properties in the RJMCMC algorithm and model averaging,

we are able to account for the variability due to the uncertainty in the model (that is, in the

number of equivalence classes). As a result, this leads to improved parameter estimation and

quantification of model uncertainty (Robert, 2001). The simulations studies suggest that the

level of complexity in our model and estimation procedures are both necessary to reduce bias

and to appropriately account for the correlation between the two tracers. Furthermore, little

is lost if simpler models hold.

Appendix

Estimating the normalizing constant

The outline of the estimating procedure follows the general method found in Gelman and

Meng (1998) with appropriate notational changes. For a given K, we wish to estimate the
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log ratio of normalizing constants λK(a, b) ≡ ln[g(b,K)/g(a,K)] for b > a ≥ 0. Now

d ln[g(β,K)]

dβ
=

d ln
(∑

z∈ZK
exp

{
−β
∑

i∼j[1− δj(ERi)]
})

dβ

=
∑
z∈ZK

d
dβ

exp
{
−β
∑

i∼j[1− δj(ERi)]
}

∑
z∈ZK

exp
{
−β
∑

i∼j[1− δj(ERi)]
} × exp

{
−β
∑

i∼j[1− δj(ERi)]
}

exp
{
−β
∑

i∼j[1− δj(ERi)]
}

= −
∑
z∈ZK

{
Pr(Z = z | β, K)

∑
i∼j

[1− δj(ERi)]

}

= −Eβ

{∑
i∼j

[1− δj(ERi)]

}
.

Therefore,

λK(a, b) =

∫ b

a

d ln[g(β,K)]

dβ
dβ = −

∫ b

a

Eβ

{∑
i∼j

[1− δj(ERi)]

}
dβ. (14)

In order to estimate λK(a, b), we have two integrals to evaluate. The inner integral, or

expectation, is estimated via MCMC. We use the Swendsen-Wang algorithm under the as-

sumption that there is no likelihood term. That is, in (7) we set f(y | Z, µ, Σ) = 1. Thus,

(9) becomes Pr({Zi}i∈EQc
= zic | V, K) = K−1 for zic ∈ SK : each equivalence class is up-

dated independently with equal probability that it takes one of the K class labels. After a

burn-in of 1000 iterations we average
∑

i∼j[1 − δj(ERi)] over the next 1000 iterations. The

outer integral in equation (14) is evaluated numerically using the trapezoidal rule. The ratio

is calculated for K = 1, . . . , 40 and β = 0, 0.01, . . . , 3. For values of a and b not on the grid

on which the (inner) expectation is evaluated, we linearly interpolate.

For the RJMCMC proposal, the ratio ln[g(β,K)/g(β,K + 1)] is required. This can be

evaluated using the fact that ln[g(0, K)] = ln
∑

z∈ZK
1 = N lnK and the following identity:

ln[g(β, K)/g(β,K + 1)] = λK(0, β)− λK+1(0, β) + ln[g(0, K)] + ln[g(0, K + 1)].
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RJMCMC split and merge proposals

Let

Σ
1/2
k =

[
ψ11 ψ12

ψ12 ψ22

]
.

Then the determinant of the Jacobian of the transformation (10) is

det(J) = 1024(ψ11 + ψ22)(ψ11ψ22 − ψ2
12)

2 ×

{[ψ11(u1 − 1) + ψ12u2][ψ11 + ψ11u1 + ψ12u2]− ψ2
12} ×

{[ψ12(u1 − 1) + ψ22u2][ψ12 + ψ12u1 + ψ22u2]− ψ2
22} ×

{ψ11ψ12(u
2
1 − 1) + ψ11ψ22u1u2 + ψ12[ψ12u1u2 + ψ22(u

2
2 − 1)]}.

Suppose there are currently K classes. The acceptance probability for a split proposal is

given by min(1, As) where

As = Rprop ×Rprior ×Rlikeli × |det(J)| .

Rprop is the proposal ratio, given by

Rprop =
ck+1 (K + 1)

ck λ
× K pselect(k

∗∗ | k∗)
K + 1

× palloc(z | V∗, Y, µ∗, Σ∗, K)

palloc(z∗ | V∗, Y, µ∗, Σ∗, K)
×

[b(u1; 2, 2) b(u2; 2, 2) b(w11; 3, 3) b(w12; 3, 3) b(w22; 3, 3)]−1 .

The first term in Rprop is the ratio Pr(R = m | K + 1)/Pr(R = s | K). The second

term is the ratio of selecting two classes to merge (when there are K + 1) classes to that of

selecting a class to split (when there are K classes). The third term is the ratio of allocation

probabilities. The fourth term accounts for the random draws of the five new parameters

necessary for dimension matching where b(x;α, β) is the density of a beta random variable,

x, with parameters α and β.
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Rprior is the prior ratio, given by

Rprior =
λ

K + 1
× [(max YF −min YF )(max YR −min YR)]−1 ×

w−1(Σk∗ , ν1, S)w−1(Σk∗∗ , ν1, S)w−1(Σk, ν1, S)×

exp
{
−β
∑

i∼j[1− δj(E∗Ri)]
}/

g(β, K + 1)

exp
{
−β
∑

i∼j[1− δj(ERi)]
}/

g(β, K)
.

The first term in Rprior is the prior ratio of the number of classes. The second term is the

prior ratio of the means and the third term is the prior ratio of the covariance matrices. We

note that w−1(Ψ; ν, S) is the inverse Wishart density at Ψ with ν degrees of freedom and

scale matrix S. The last term is the prior ratio of the class label maps.

Rlikeli is the likelihood ratio, given by

Rlikeli =
N∏
i=1

∣∣∣Σ−1
Z∗

i

∣∣∣ exp[−0.5(yi − µz∗i
)TΣ−1

z∗i
(yi − µz∗i

)]∣∣Σ−1
Zi

∣∣ exp[−0.5(yi − µzi
)TΣ−1

zi
(yi − µzi

)]
.

The acceptance probability for a merge proposal, assuming there are currently K classes,

is given by min(1, A−1
s ) with K and K + 1 replaced by K − 1 and K, respectively, in Rprior

and in the first two terms of Rprop.
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Table 1: Bias results from simulation study. Entries in the table are the average bias from
the 20 simulations for 4 different models. The true parameter values for the eight classes are
listed at the bottom of the table.

Class
Parm. Model 1 2 3 4 5 6 7 8
µF Spat, Bivar -0.002 0.010 0.009 0.006 -0.003 0.009 0.018 -0.006

Spat, Bivar, K = 4 -0.274 -0.135 0.293 0.154 -0.122 0.733 0.198 -0.810
Spat, Uncorr 0.148 -0.133 -0.124 0.143 -0.718 0.716 0.717 -0.718
Non Spat, Bivar -0.222 0.263 0.244 -0.243 -0.511 0.527 0.511 -0.529

µR Spat, Bivar -0.009 -0.003 0.002 0.020 -0.009 -0.006 0.006 0.007
Spat, Bivar, K = 4 -0.421 0.215 0.118 -0.149 -0.056 -0.641 0.130 0.811
Spat, Uncorr 0.125 0.124 -0.127 -0.120 -0.713 -0.712 0.716 0.713
Non Spat, Bivar -0.240 -0.243 0.236 0.253 -0.505 -0.522 0.501 0.528

σF Spat, Bivar -0.042 -0.039 -0.042 -0.041 -0.014 -0.027 -0.021 -0.006
Spat, Bivar, K = 4 0.140 0.157 0.142 0.158 0.045 0.146 0.042 0.162
Spat, Uncorr 0.503 0.478 0.478 0.503 0.506 0.475 0.475 0.506
Non Spat, Bivar -0.040 -0.043 -0.045 -0.042 0.006 -0.011 -0.020 -0.003

σR Spat, Bivar -0.049 -0.040 -0.042 -0.039 -0.009 -0.027 -0.018 -0.008
Spat, Bivar, K = 4 0.142 0.129 0.113 0.148 0.011 0.118 0.022 0.151
Spat, Uncorr 0.477 0.477 0.489 0.489 0.475 0.475 0.488 0.487
Non Spat, Bivar -0.048 -0.049 -0.045 -0.049 -0.009 -0.015 -0.019 0.000

ρ Spat, Bivar 0.020 -0.019 0.022 -0.021 0.000 -0.011 0.012 -0.003
Spat, Bivar, K = 4 0.647 -0.642 0.586 -0.705 0.069 -0.565 0.126 -0.677
Spat, Uncorr 0.750 -0.750 0.750 -0.750 0.750 -0.750 0.750 -0.750
Non Spat, Bivar 0.817 -0.843 0.797 -0.861 0.437 -0.449 0.433 -0.464

True Parameter Values
Class µF µR σF σR ρ Class µF µR σF σR ρ

1 0.5 0.5 1.0 1.0 -0.75 2 1.5 1.5 1.0 1.0 -0.75
3 -0.5 0.5 1.0 1.0 0.75 4 -1.5 1.5 1.0 1.0 0.75
5 -0.5 -0.5 1.0 1.0 -0.75 6 -1.5 -1.5 1.0 1.0 -0.75
7 0.5 -0.5 1.0 1.0 0.75 8 1.5 -1.5 1.0 1.0 0.75
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Table 2: The mean misclassification and odds ratio of misclassification for the 20 simu-
lated data sets. The odds ratio of misclassification is defined as the ratio of the odds of
misclassification for the last 4 models to the odds of our model, model 1.

Mean
Model Misclass. O.R.

Spatial, Bivariate 0.25% -
Spatial, Uncorrelated 6.43% 25.33
Spatial, Bivariated, K = 4 29.29% 212.76
Empirical, data 39.17% 269.71
Non-Spatial, Bivariate 42.97% 316.32
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Figure 1: Slice M1S6T1. The top row shows the FAZA and RGD observed intensities. The
posterior mean intensity images are displayed in the middle row. The bottom image displays
the subregions of the tumor where both FAZA and RGD intensity are high (gray), where
both are low (blue), where FAZA is high (yellow) and where RGD is high (red).
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M1S6T1: Ê(σσF | Y)
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M1S6T1: Ê(ρρ | Y)

20

40

60

80

20 40 60 80

−0.1

0.0

0.1

0.2

0.3

0.4

Figure 2: Posterior estimates of the standard deviations (slice M1S6T1) of the tracers as
well as the correlation between them.
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Figure 3: Slice M2S5T2. The top row shows the FAZA and RGD observed intensities. The
posterior mean intensity images are displayed in the middle row. The bottom image displays
the subregions of the tumor where both FAZA and RGD intensity are high (gray), where
both are low (blue), where FAZA is high (yellow) and where RGD is high (red).
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Figure 4: Posterior estimates of the standard deviations (slice M2S5T2) of the tracers as
well as the correlation between them.
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Figure 5: An example of one of the simulated data sets. The top row shows the simulated
images. The bottom row displays the marginal (ignoring the spatial structure) data.
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Figure 6: Classification results for the simulated data shown in Figure 5. Clearly, our
proposed model outperforms the others in this example. Note that the spatial bivariate
model with K = 4 completely misses on of the classes (gray). Gray: Both higher than 0.4.
Blue: Neither higher than 0.4. Yellow: X higher, Y lower. Red: X lower, Y higher.
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Figure 7: Posterior estimates of the number of equivalence classes. As the prior parameter
λ increases from 10 to 15 to 20, the distributions shift to the right.
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