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ABSTRACT. Instrumental variables (IV) estimators are becoming increas-

ingly popular because they allow for estimating the average causal effect of an

exposure on an outcome in the presence of unmeasured confounders. Often, how-

ever, exposures are hard to measure and may carry errors which not only reflect

random noise, but also contain a systematic component. In this article, we study

the impact of such error-prone exposure measurements on IV estimators for the

average causal effect of exposure on outcome. In addition, we propose a class of

IV estimators for this effect under linear structural mean models, which correct

for possibly systematic measurement error in the presence of a baseline measure-

ment which is associated with the observed exposure and known not to modify

the causal effect of interest. Simulation studies and the analysis of a small blood

pressure reduction trial (n = 105) with treatment noncompliance confirm the ad-

equate performance of our estimators in finite samples. Our results demonstrate

that incorporating a limited amount of prior information about a weakly identified

parameter (e.g., the error mean) may yield substantial improvements.
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1 INTRODUCTION

Instrumental variables (IV) methods have a long tradition in economics and

econometrics, where they are used in connection with structural equation models.

They have more recently entered the medical, epidemiological and biostatistical

literature (for reviews, see e.g. Greenland, 2000; Martens et al., 2006). These

methods succeed in estimating the average causal effect of an exposure on an

outcome, even in the presence of unmeasured confounding, by using a so-called

instrumental variable. This is a variable (i) which is associated with the exposure;

(ii) has no direct effect on the outcome; and (iii) does not share common causes with

the outcome (Hernán and Robins, 2006). Instrumental variables arise naturally in

double-blind randomized controlled trials with treatment noncompliance because

randomization (i.e. the instrument) is associated with received treatment (i.e. the

exposure), does not affect the outcome other than through received treatment and

shares no common causes with the outcome by virtue of randomization. They

are hence frequently used to adjust for treatment noncompliance in randomized

experiments (see e.g. Goetghebeur and Vansteelandt, 2005 for a review) and for

the analysis of randomized encouragement designs (Ten Have et al., 2004). At the

same time, they are becoming increasingly popular in observational settings where

the conditions for an instrumental variable are nevertheless harder to justify. In

genetics, for instance, the random assortment of genes transferred from parents to

offspring - called ‘Mendelian randomization’ - resembles the use of randomization
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in experiments and is therefore a natural instrumental variable for estimating the

effect of genetically affected exposures on a given trait (Sheehan and Didelez, 2005).

Casas et al. (2005) use this idea to assess the influence of plasma homocysteine

level on the risk of stroke with homozygosity at a specific allele as an instrumental

variable. In most observational studies no real or natural randomization is present,

in which case the availability of an instrumental variable must be assessed on

theoretical grounds. For instance, Leigh and Schembri (2004) use the observed

cigarette price per region as an instrumental variable to estimate the causal effect

of smoking on health, assuming that the price of cigarettes may only impact health

by mediating exposure to cigarette smoke.

With the increasing popularity of IV methods, there is a growing concern as to

how these methods would fare under violations of the study design, such as mea-

surement error in the exposure. The latter concern is particularly prevalent in the

context of noncompliance adjustment in clinical trials (Dunn, 1997; Goetghebeur

and Vansteelandt, 2005) because simple measurements of noncompliance (e.g. the

number of pills removed from the pill container) are notorious for overestimating

the amount of drug actually taken (Urquhart and De Klerk, 1998).

Random measurement error on the exposure is not alarming for IV estima-

tors in linear (structural mean) models (Robins, 1994; Goetghebeur and Lapp,

1997). Indeed, these estimators continue to be asymptotically unbiased with at

most a slight loss of efficiency, when random measurement error is ignored (Goet-

ghebeur and Vansteelandt, 2005). When measurement error is systematic, tests

of the causal null hypothesis of no effect remain valid, but effect estimates may

become biased. Because systematic error is often a real concern, especially in

the noncompliance problem that motivated this research, our goal in this arti-

cle is to investigate how IV estimators for the parameters in linear (structural
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mean) models may be adjusted for systematic measurement error. Goetghebeur

and Vansteelandt (2005) show how this can be done when the average size of the

error is known (conditional on covariate values). This allows for sensitivity analy-

ses to be performed, but leaves open the question of how to estimate the average

size of the measurement error and subsequently correct for it. Because of iden-

tifiability problems, the latter can only be realized when extraneous information

is available. One common source of information is an instrumental variable for

the measurement error (Buzas and Stefanski, 1996; Carroll et al., 2004, 2006). In

contrast to the previously defined instrumental variable which we used for con-

founder adjustment, this is a pre-exposure surrogate for the observed exposure (in

the sense that it is correlated with exposure) which is known not to modify the

exposure effect of interest. Our interest in such variables stems from the fact that

other common sources of information on the measurement error (e.g. repeated

measurements or validation samples) are typically not available in the problem

setting which motivated this research.

In the next section, using ideas from linear regression models with error in

the covariates (Carroll et al., 2006), we show how an instrumental variable for the

measurement error may help to correct IV estimators for systematic error under

linear structural mean models (Goetghebeur and Lapp, 1997; Robins, 1994). In

Section 2.3, we diagnose that the error-adjusted estimator behaves poorly in small

to moderate sample sizes as compared to the standard estimator which ignores

measurement error. We show in Section 3 that this is due to the average magnitude

of the error being weakly identified at causal effects close to zero. In Section 3, we

accommodate this by incorporating weak prior information in the form of bounds

on the magnitude of the average error. This leads to estimators for the causal

effect of observed exposure with good performance in finite samples, as confirmed
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through the analysis of a small placebo-controlled hypertension trial in Section 4

and through simulation studies in Section 5. Our results offer more general insight

how to incorporate prior information about weakly identified nuisance parameters

in a frequentist analysis, in favour of precision for the target parameter.

2 ADJUSTING FOR MEASUREMENT ERROR

2.1 Assumptions

We consider a study which is designed to collect data on a scalar exposure Zi,

a scalar outcome Yi and possibly on a set of baseline (i.e. pre-exposure) covariates

Xi for independent subjects i = 1, ..., n. The goal of the study is to assess the

average effect of exposure Zi on outcome Yi, which we define as a contrast, i.e.

E(Yi − Yi0|Zi,Xi), (1)

of observed outcomes Yi and potential exposure-free outcomes Yi0 (Rubin, 1978).

The latter indicates a reference response which would have been measured for

subject i if all conditions were the same as in the considered study, but no exposure

were received (e.g. if the assigned experimental treatment contained no active

dose). Furthermore, suppose that the exposure Zi is imprecisely measured so that

the observed exposure level Wi for subject i may differ from the actual exposure

level Zi, which is unobserved.

Due to the lack of observations on Yi0 and Zi, identification of the causal effect

(1) requires assumptions, which may realistically hold, but are partly untestable.

Assumption A1 (IV assumption): measurements are available for each subject

i on an instrumental variable Ri, which satisfies the following assumptions:

1. within strata of baseline covariates Xi, E(Yi0|Xi, Ri) = E(Yi0|Xi).
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2. exclusion restriction (Angrist, Imbens and Rubin, 1996): Ri has no direct

effect on the outcome (only an indirect effect via the exposure is possible).

In double-blind randomized trials of an asymptomatic disease, one expects these

assumptions to hold for randomization Ri since patients and physicians are un-

aware of the assigned treatment (Robins, 1994).

Assumption A2 (Consistency assumption): to link exposure-free outcomes to

the observed data, we assume that Yi = Yi0 for subjects with Zi = 0.

Assumption A3 (Model assumption): the causal effect (1) obeys the linear

structural mean model (Robins, 1994)

E(Yi − Yi0|Zi,Xi, Ri) = γ(Xi, Ri;ψ
∗)Zi (2)

where γ(Xi, Ri;ψ) is a known function smooth in ψ, satisfying γ(Xi, Ri;0) =

0, and where ψ∗ is an unknown finite-dimensional parameter. For instance, in

placebo-controlled randomized experiments with Ri = 1 for subjects randomized

to the experimental arm and Ri = 0 for placebo control, we may choose

E(Yi − Yi0|Zi,Xi, Ri) = ψZiRi (3)

when subjects with Ri = 0 are not exposed to the experimental treatment. Here,

ψ expresses the expected change in outcome when those exposed to Zi = 1 would

have their exposure set to zero. When treatment effects are potentially modified

by pre-treatment covariates, one may add covariate-exposure interactions, as in

E(Yi − Yi0|Zi,Xi, Ri) = (ψ1 +ψ′
2Xi)ZiRi.

Here, ψ2 defines the change in the average effect of unit exposure per unit increase

in Xi. Note that we will restrict our development to models (2) which postulate

the causal effect to be linear in the exposure. This is because linear structural
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mean models with nonlinear exposure effects suffer from identification problems,

even in the absence of measurement error (Vansteelandt and Goetghebeur, 2005).

Assumption A4 (Measurement error assumptions): Given the difficulty in ob-

taining information about measurement error characteristics, we will assume the

availability of an instrumental variable Ti ⊆ Xi for the measurement error for each

subject i. This is surrogate for the observed exposure (in the sense that is it is con-

ditionally associated with Wi, given (Si, Ri), where Si is such that Xi ≡ (Si,Ti)),

which is measured prior to exposure and is such that it does not modify the causal

effect of received exposure on the outcome, i.e. such that

E(Yi − Yi0|Zi,Xi, Ri) = E(Yi − Yi0|Zi,Si, Ri) (4)

We thus assume that γ(Xi, Ri;ψ) = γ(Si, Ri;ψ) in (2) does not involve Ti. For

instance, in clinical trials with a run-in period during which all patients receive

placebo tablets and compliance is monitored, one possible source of such instru-

mental variable would be compliance during the run-in period. This is because

run-in compliance is likely a good surrogate for the true exposure and because,

given the actual compliance during the active study period, run-in compliance

may not further relate to the treatment effect. Ten Have et al. (2007) make a

similar assumption for disentangling direct from indirect causal effects. Note that

Ti differs from and satisfies different assumptions than the instrumental variable

Ri, which satisfies assumption A1.

2.2 Inference

Our goal is to estimate the parameter ψ∗ indexing (2) under model A, which

is the model for the observed data (Yi,Wi, Ri,Xi) defined by assumptions A1-A4

7

Hosted by The Berkeley Electronic Press



and with the conditional density

f(Ri|Xi) known. (5)

It follows from Proposition 1 below that the average measurement error δ(Xi, Ri) ≡

E(Wi − Zi|Xi, Ri) is all that must be known for identifying ψ∗.

Proposition 1. Model A is the same model for the observed data as the con-

ditional mean independence model B defined by (5) and

E [Yi − γ(Si, Ri;ψ
∗) {Wi − δ(Xi, Ri)} |Xi, Ri]

= E [Yi − γ(Si, Ri;ψ
∗) {Wi − δ(Xi, Ri)} |Xi] . (6)

For convenience, we will assume that δ(Xi, Ri) = δ∗ is constant, although this

assumption will be straightforward to relax (see also the discussion). Our goal is

thus to estimate ψ∗ in model A when the average size δ∗ of the error is unknown.

Note that the restrictions which model A imposes on the error distribution are

very weak. First, it allows the error to be associated with both the true exposure Zi

and observed exposureWi. As such, the error model encompasses both the classical

and Berkson error model (Carroll et al., 2006). Second, by avoiding assumptions

about the conditional association between Wi and Yi, given Zi, it allows the error

to be differential (i.e. associated with outcome conditional on the exposure) (see

the proof of Proposition 1 for a more formal argument). This is important because,

for instance in a hypertension trial, patients may be more reluctant to ‘confess’

to noncompliance when their outcome (e.g. blood pressure) stayed below target

(e.g. remained high). Finally, model A makes no assumptions on the measurement

error distribution (other than restriction δ(Xi, Ri) = δ∗, which is easy to relax).

This is useful because the error distribution can be very complex. For instance,

exposures can be very small in practice, in which case the negative errors become

constrained by the fact that negative exposures (i.e. doses) are never reported.
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By Proposition 1 and the fact that ψ∗ is the same functional of the observed

data under models A and B, inference for ψ∗ is the same under both models. It

follows that the set of all consistent and asymptotically normal (CAN) estimators

for ψ∗ is the same under models A and B, where the latter can be obtained as in

Robins (1994) by solving the mean independence estimating equations

n
∑

i=1

d(Ri,Xi) [Yi − γ(Si, Ri;ψ)(Wi − δ) − q(Xi)] = 0 (7)

jointly for θ = (ψ′, δ)′, where d(Ri,Xi) = g(Ri,Xi) − E {g(Ri,Xi)|Xi} and

g(Ri,Xi) and q(Xi) are arbitrary index functions of the dimension of θ which

can be chosen in view of efficiency. In particular, the efficient score for ψ∗ under

model A is the same as the efficient score for ψ∗ under model B. When the condi-

tional variance of Yi − γ(Xi, Ri;ψ)(Wi − δ), given (Ri,Xi), is constant, the latter

is obtained by setting q(Xi) equal to

qopt(Xi) = E {Yi − γ(Si, Ri;ψ)(Wi − δ)|Xi, Ri}

and d(Ri,Xi) equal to dopt(Ri,Xi) = gopt(Ri,Xi) − E {gopt(Ri,Xi)|Xi} with

gopt(Ri,Xi) = E

{

∂γ(Si, Ri;ψ)(Wi − δ)

∂θ
|Xi, Ri

}

Theorem 1.

1. Under regularity conditions, the solution ψ̂(d, q) to (7) satisfies

√
n
(

ψ̂(d, q) −ψ∗
)

→N (0,Γ(d, q)) in distribution, where

Γ(d, q) = E−1

{

∂Ui(d, q;ψ
∗)

∂ψ

}

Var{Ui(d, q;ψ
∗)}E−1′

{

∂Ui(d, q;ψ
∗)

∂ψ

}

(8)

with d(Ri,Xi) = (dψ(Ri,Xi), dδ(Ri,Xi)) and

Ui(d, q;ψ) =

[

dψ(Ri,Xi) −
E {dψ(Ri,Xi)γ(Si, Ri;ψ)}
E {dδ(Ri,Xi)γ(Si, Ri;ψ)} dδ(Ri,Xi)

]

× [Yi − γ(Si, Ri;ψ)(Wi − δ) − q(Xi)]
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2. The average error δ∗ is not root-n estimable at ψ∗ = 0.

3. For arbitrary (d, q), Γ(dopt, qopt) ≤ Γ(d, q) where A ≤ B is defined as A−B

being semi-positive definite.

Part 1 of Theorem 1 confirms that the solution ψ̂(d, q) to (7) is a root-n CAN

estimator of ψ∗. This is even so at ψ∗ = 0 where δ∗ is not root-n estimable by

the fact that the expected derivative of the estimating function w.r.t. δ is zero at

ψ∗ = 0. Theorem 1 also shows how to calculate the efficient score Ui(dopt, qopt;ψ)

for ψ∗ in model A. For example, with binary Ri, Xi = Ti, γ(Si, Ri;ψ) = ψRi and

assuming homoscedasticity and constant randomization probabilities π = P (Ri =

1), the semi-parametric efficient score for ψ∗ is

(Ri−π) [E(Wi|Ri = 1,Xi) − E {E(Wi|Ri = 1,Xi)}] {Yi − ψ(Wi − δ)Ri − qopt(Xi)}

This score differs from the efficient score in the absence of biased measurement error

(i.e. assuming that δ∗ = 0) in that it carries the additional termE {E(Wi|Ri = 1,Xi)},

which corrects for estimation of the error mean. This term reduces the variance

of the estimating functions and, as such, encodes efficiency loss. Specifically, note

that the efficient score becomes 0 when the instrument T is uncorrelated with the

observed exposure, and hence that ψ∗ is not root-n estimable in that case. By the

same token, weak instruments for the measurement error (i.e. instruments which

are weakly correlated with observed exposure) yield unstable effect estimates.

2.3 Bias-variance Trade-off

The anticipated loss of efficiency of the error-adjusted estimator raises the

question whether the bias correction of the previous section is meaningful. To this

end, we investigate the bias-variance trade-off of using the error-adjusted instead

of the standard unadjusted estimator for the causal effect ψ∗. To obtain tractable
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expressions for the mean-squared error of both estimators, we assume that Z ∼

N(µz, σ
2
z), T |Z ∼ N(ν0 + ν1Z, σ

2
t|z), Y0|Z, T ∼ N(α0 + α1Z + α2T, σ

2
0) and that

Y = Y0 + (ψ + ǫ)RZ with ǫ|Y0, Z, T ∼ N(0, σ2).

Under the working assumption of no systematic measurement error (i.e. fixing

δ∗ = 0 in equation (7) and not estimating it), the efficient score for ψ∗ is Uu(ψ) =

(0.5 − R)E(W |T,R = 1){Y − ψRW − E(Y |R = 0, T )} in model A with Xi = Ti

under the above data-generating mechanism. It follows after some algebra that

the solution ψ̂u to
∑n

i=1 Uui(ψ) = 0 has bias which can be approximated by

E−1

(

∂Uu(ψ)

∂ψ

)

E{Uu(ψ)} =
ψδ(µz + δ)

σ2
z − σ2

z|t + (µz + δ)2

where σ2
z|t = σ2

zσ
2
t|z/(ν

2
1σ

2
z + σ2

t|z) is the conditional variance of Z given T , and

asymptotic variance given by

1

n







4σ2
0 + 4α2

1σ
2
z|t + 2ψ2σ2

u + ψ2δ2

σ2
z − σ2

z|t + (µz + δ)2
+

ψ2δ2(σ2
z − σ2

z|t)
{

σ2
z − σ2

z|t + (µz + δ)2
}2







Allowing for systematic measurement error, the efficient estimator ψ̂c for ψ∗ under

model A has no asymptotic bias and asymptotic variance which equals

1

n

σ2
0 + α2

1σ
2
z|t + 0.5ψ2σ2

u

0.52(σ2
z − σ2

z|t)

Note that the bias and asymptotic variance of the estimators is inversely pro-

portional to the multiple correlation coefficient for the regression of Z on T , but

becomes infinite for the error-adjusted estimator when Z and T are uncorrelated.

Figure 1 shows the range of values δ for the average error under which the

standard estimator (which ignores measurement error) has smaller mean squared

error than the error-adjusted estimator, in function of the sample size and the

multiple correlation coefficient for the linear regression of Z on T . Specifically,
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the values of δ comprised between the solid lines indicate data-generating mecha-

nisms under which the standard estimator outperforms the error-adjusted estima-

tor in terms of mean squared error. The figure was constructed using the values

µz = 0.85, σ2
z = 0.11, ν0 = 0.75, ν1 = 0.12, σ2

t|z = 0.012, α0 = −4.4, α1 = 6.8, α2 =

−13.7, σ2
0 = 53.2, σ2

u = 0, ψ = −7.5 and σ2 = 0 which are reflective of the hyper-

tension study that we will analyze in Section 4. The figure shows that at small

sample sizes (n = 105), correction for systematic measurement error may lead to

smaller mean squared error, but only when the systematic error component is sub-

stantial (i.e. of about the size of the average exposure µz) and, at the same time,

the instrument T is strongly correlated with Z. Further note that bias correction

using the error-adjusted estimator may be practical at moderate degrees of error

and moderate correlations between T and Z, but only at very large sample sizes.

Figure 1 about here

3 INCORPORATING PRIOR INFORMATION

The previous results demonstrate the poor performance of the error-adjusted

estimator, even in settings where the sample size is moderate and good (pre-

exposure) predictors of the exposure are available. In particular, tests of the causal

null hypothesis using this approach may be much less powerful than the standard

test of the causal null (i.e. that R and Y are independent), which is immune to

measurement error on the exposure. This is surprising, considering that the score

test of ψ∗ = 0 under model A does not involve δ∗ and hence that one need not

correct for measurement error when testing the causal null hypothesis. Curiously,

it follows that one can validly and efficiently test the causal null hypothesis with-

out needing to correct for measurement error, but that a score test of ψ∗ = ψ0
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with ψ0 arbitrarily close to (but different from) 0, would require correcting for

measurement error and hence could imply a serious and sudden loss of power.

The root cause of this apparent discontinuity is the fact that, as shown in

Part 2 of Theorem 1, δ∗ is not root-n estimable at ψ∗ = 0 so that estimation of δ∗

affects the distribution of the score test statistic, even though it gets multiplied by

ψ∗ = 0 in the test statistic (i.e. even at the causal null hypothesis). In particular,

it follows from the proof of Theorem 1 that
√
n
{

δ̂(d, q) − δ
}

ψ, with δ̂(d, q) the

solution for δ to (7), is bounded in probability with strictly positive variance for

each value of ψ, suggesting that δ̂ψ fluctuates around 0, even when ψ = 0, with

decreasing variance as the sample size increases.

Similar problems of inestimability at a local point in the parameter space

have been noted in other measurement error problems (Gustafson, 2005). More

general problems of inferring a parameter ψ∗ when a nuisance parameter δ∗ is

only present under the alternative (ψ∗ 6= 0) have received some attention, mainly

in the econometrics literature (Davies, 1977, 1987; Hansen, 1992; Andrews and

Ploberger, 1994). To the best of our knowledge, attention has only been given to

testing problems in which the test statistic involves a nuisance parameter which is

unidentified at the null. Some of these approaches assume that the nuisance pa-

rameter lies within a known open set and base inference on the supremum of a score

or likelihood ratio test statistic, taken over all values of the nuisance parameters

in the chosen set (Davies, 1977, 1987). Andrews and Ploberger (1994) postulate

a prior distribution for the nuisance parameter and base inference on the average

of a score or likelihood ratio test statistic over the chosen prior distribution. Our

problem is different (a) in that our main focus is on estimation rather than testing;

and (b) that a score test for the causal null hypothesis does not involve the nui-

sance parameter. Nonetheless, inspired by the work of Davies (1977, 1987) and by
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sensitivity analyses for IV-estimators with measurement error (Goetghebeur and

Vansteelandt, 2005), we will consider estimation under the assumption that the

average error δ∗ lies within a known open set ∆. This strategy is motivated by

the fact that (a) subject-matter experts often have a rough idea about the degree

of mismeasurement (Gustafson, 2005); (b) this approach forces the estimate for δ∗

to have bounded variation around the truth, contrary to what happens under the

previous approach of Section 2.2; and (c) a little of prior information can often be

a very good thing (Gustafson, 2005). Furthermore, even when the set ∆ is chosen

excessively wide, this approach will improve the performance of error-adjusted es-

timators for ψ∗ dramatically by reducing variation in the estimates for the error

bias, especially when ψ∗ is close to zero (relative to the sample size).

3.1 Improved Error Adjustment

A first approach that we will consider under the assumption that δ∗ ∈ ∆ =

]∆l,∆u[ is to solve equations (7) with δ replaced by {I(λ < 0)∆l+I(λ > 0)∆u}λ/(1+

|λ|) and λ unknown. This guarantees estimates for δ∗ within the set ∆ and will

thus greatly improve the stability of estimators for the causal effect ψ∗. A draw-

back which will become apparent in the simulation study of Section 5, is that tests

of the causal null hypothesis may still loose substantial power under this approach

due to the fact that also λ is not root-n estimable at ψ∗ = 0. To accommodate

this, we will develop a second approach in this section, which we will recommend

for data analysis. Specifically, we propose to trade bias for precision by solving a

weighted average of the estimating functions for the standard SMM estimator and

for the error-adjusted estimator of Section 2.3. Here, we choose to weight the es-

timating functions for the standard estimator proportional to the probability that

the corresponding estimate for δ∗ falls outside the chosen set ∆. The philosophy
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behind this choice is that estimates for δ∗ will not likely fall within the set ∆ in

situations where little information on the error mean is available. Hence more

weight will be given to the standard unadjusted estimator in those cases.

For pedagogic purposes, we will explain our proposal for the case γ(Xi, Ri;ψ) =

ψRi. For notational convenience, we delete reference to the index functions (d, q)

in the estimators. For each value ψ in a chosen grid, we calculate an estimator δ̂(ψ)

for δ∗ which solves (7) for the given ψ with dδ(Ri,Ti,Xi) in place of d(Ri,Ti,Xi).

Next, we consider a weighted average of the estimating function Uψi(ψ, δ) for ψ∗

(as defined in (7) with dψ(Ri,Ti,Xi) in place of d(Ri,Ti,Xi)), evaluated at the

profile estimator δ = δ̂(ψ) and at δ = 0, respectively:

1√
n

n
∑

i=1

Ũi(ψ) ≡ 1√
n

n
∑

i=1

P̂{δ̂(ψ) ∈ ∆}Uψi{ψ, δ̂(ψ)} + P̂{δ̂(ψ) /∈ ∆}Uψi(ψ, 0)(9)

In this expression, the weights involve the estimated probability P̂{δ̂(ψ) /∈ ∆} that

δ̂(ψ) falls outside the chosen interval ∆ =]∆l,∆u[. Using a similar development as

in the proof of Theorem 1, this probability can be approximated by

P{δ̂(ψ) /∈ ∆} = 1 + Φ

(

∆l − δ

σ(ψ)/(
√
n|ψ|)

)

− Φ

(

∆u − δ

σ(ψ)/(
√
n|ψ|)

)

(10)

with δ replaced by δ̂(ψ) and σ(ψ) replaced by a consistent estimator for the stan-

dard deviation of the scaled estimating function E−1 [dδ(R, T,X)R]Uiδ(ψ, δ) for

δ∗. We define the improved error-adjusted estimator ψ̃ for ψ∗ as the value of ψ

at which the score test (9) becomes zero. Curiously, this estimator assigns much

weight to the standard estimating equations (which do not adjust for measurement

error) when the error mean is estimated to be large. This is (a) because the phi-

losophy behind the estimator is that large values for the error mean are indicative

of imprecision; and (b) because the estimating functions are designed to equal the

unadjusted estimating functions at the causal null hypothesis (see further).
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Theorem 2. Under regularity conditions and for any fixed ψ, 1√
n

∑n
i=1 Ũi(ψ)→

N (0,Σ(ψ)) in distribution, where Σ(ψ) is the variance of

P{δ̂(ψ) ∈ ∆}Uiψ(ψ, δ) + P{δ̂(ψ) /∈ ∆}Uiψ(ψ, 0) −
[

P{δ̂(ψ) ∈ ∆}

+

{

ϕ

(

∆l − δ

σ(ψ)/(
√
n|ψ|)

)

− ϕ

(

∆u − δ

σ(ψ)/(
√
n|ψ|)

)} √
n|ψ|δ
σ(ψ)

]

E {dψ(R, T )R}
E {dδ(R, T )R}Uiδ(ψ, δ)

Theorem 2 shows that for any fixed ψ, the score test (9) converges to a normal

mean zero distribution. This can be used to construct (1 − α)100% confidence

intervals for ψ∗ as the range of values ψ0 for ψ such that the two-sided score test

based on (9) does not reject the null hypothesis H0 : ψ∗ = ψ0 at the α100%

significance level. To evaluate this score test, one may replace the variance of

the score test statistic by the sample variance with P{δ̂(ψ) ∈ ∆} replaced by

P̂{δ̂(ψ) ∈ ∆}, δ by δ̂(ψ) and σ(ψ) by σ̂(ψ). The resulting confidence intervals

have the desirable feature that, asymptotically, they exclude 0 if and only if the

standard test of the causal null hypothesis (i.e., that Y⊥⊥R) rejects. Indeed, at

the null hypothesis P̂{δ̂(0) /∈ ∆} p→ 1 and hence the score test statistic becomes

1√
n

n
∑

i=1

Uψi(ψ, 0) =
1√
n

n
∑

i=1

dψ(Ri,Ti,Xi){Yi − q(Ti,Xi)} + op(1)

for an arbitrary mean zero function dψ(Ri,Ti,Xi) conditional on (Ti,Xi), which

is asymptotically equivalent to a score test of the causal null hypothesis under the

observed data model defined by restriction (5).

Unfortunately, the suggested confidence intervals are no uniform asymptotic

confidence intervals. The reason is that, at each sample size, there exists a ψ∗

depending on n which is sufficiently close to zero that the score test statistic (9) is

significantly biased as a result of bias in the estimating functions of the standard

unadjusted SMM estimator. Specifically, it follows from the proof of Theorem 2

that the improved error-adjusted estimator ψ̃ is asymptotically biased within root-

n shrinking neighbourhoods of zero (i.e. when ψ∗ = k/
√
n for some constant k)
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and may not converge to a normal distribution along such sequences. Curiously,

ψ̃ is asymptotically unbiased and normally distributed along faster converging

sequences (i.e. when ψ∗ = kn−a for some constant k and a > 1/2) and in particular

at ψ∗ = 0. The reason is that, although the probability that δ̂(ψ) ∈ ∆ now

converges to 0 and hence ψ̃ is asymptotically equivalent to the standard unadjusted

SMM estimator, ψ∗ is sufficiently close to zero to make any bias in the estimator

negligible. Likewise, ψ̃ is asymptotically unbiased and normally distributed along

slower converging sequences (i.e. when ψ∗ = kn−a for some constant k and 0 ≤

a < 1/2). The reason is that the probability of δ̂(ψ) ∈ ∆ now converges to 1

so that the improved error-adjusted estimator is asymptotically equivalent to the

error-adjusted estimator of Section 2.2, which is asymptotically unbiased.

The practical implication of the foregoing discussion is that the improved error-

adjusted estimator ψ̃ and confidence intervals have no guaranteed performance in

finite samples in the sense that, for each sample size, one can find a causal effect

ψ∗ which is close, but not too close to zero so that ψ̃ is significantly biased and

that confidence intervals for ψ∗ do not cover ψ∗ at the nominal level. This local

bias is the price we pay for estimators with smaller variability and limited loss of

power for testing the causal null hypothesis. Because this problem only appears

within 1 over root-n distances from zero and not within larger or shorter distances,

we expect adequate performance in many practical situations. However, in view

of this, we develop uniform asymptotic confidence intervals in the next section.

3.2 Uniform Asymptotic Confidence Intervals

Uniform asymptotic (1 − α)100% confidence intervals are expected to have

better finite-sample properties than the intervals of the previous section because

they guarantee the existence of a minimal sample size such that, at larger sample

17
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sizes, they cover ψ∗ with at least (1−α)100% chance regardless of the value of ψ∗.

Following ideas in Robins (2005), we construct such intervals by first constructing,

for each ψ, an asymptotic uniform (1 − ǫ)100% confidence interval C(ψ) for δ∗,

where the choice of ǫ < α will be discussed later. Because we assume the parameter

space for δ∗ to be ∆, a conservative asymptotic interval C(ψ) may be obtained as

{

δ̂(ψ) ± zǫ/2
σ̂(ψ)

|ψ|√n

}

∩ ∆

where σ̂(ψ) is a consistent estimator for σ(ψ). It follows from Theorem 5.1 in

Robins (2005) that an asymptotic uniform (1− α)100% confidence interval for ψ∗

may now be obtained as the set of ψ-values for which

inf
δ∈C(ψ)

|Var−1/2{Uψi(ψ, δ)}
1√
n

n
∑

i=1

Uψi(ψ, δ)| < z(α−ǫ)/2

The optimal choice of ǫ that leads to confidence intervals of minimum length is

difficult to determine (Robins, 2005). In this article, we propose to choose ǫ in

function of ψ as 0.5α|ψ|/(1 + |ψ|). This choice guarantees that C(ψ) will equal ∆

for ψ∗ = 0 and equal a (1−α/2)100% confidence interval for δ∗ at causal effects ψ∗

far from 0. The philosophy behind this choice is that estimates for δ∗ will be highly

imprecise at causal effects close to zero and hence, given that the parameter space

for δ∗ is bounded, we expect no difference between 100% confidence intervals and

(1 − α)100% confidence intervals for δ∗ at ψ∗ = 0. As such, we need not offer the

significance level for ψ∗ at small causal effects and will thus get narrower intervals

in return. Specifically, the proposed confidence intervals have the feature that they

involve no correction for measurement error at ψ∗ = 0, which is desirable because

there is no bias due to measurement error at ψ∗ = 0.
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4 DATA ANALYSIS

We analyze data from a placebo-controlled randomized hypertension trial

which enrolled some 300 hypertensive patients (Goetghebeur and Lapp, 1997).

After a run-in period of 4 weeks where all patients received placebo tablets, they

were randomized to 4 weeks of one of two active treatments (A or B) or placebo.

All treatments were prescribed at one tablet per day. Here, we analyze the sub-

set of 105 patients randomized to A or placebo, for whom treatment compliance

was electronically measured, ignoring 5 patients who had missing diastolic blood

pressure or pill counts.

An intent-to-treat analysis reveals an average difference in blood pressure re-

duction of 7.5 mmHg (95% CI 4.0; 11.0) without adjustment. This reveals the

effect of assignment to treatment A (instead of placebo) on expected diastolic

blood pressure reduction from baseline (i.e. the time of randomization). Primary

interest lies however in the effect of received treatment on average blood pressure

reduction. We will therefore fit model (3) with Yi the blood pressure reduction

over the active study period, Zi the average number of prescribed pills taken, and

Xi the age of patient i. Assuming that compliance measurements are free of sys-

tematic error, we estimate that the average blood pressure reduction would have

been 9.6 mmHg (95% CI 3.5; 11.8) smaller over the study period among those who

choose to take on average one pill per day, had they not taken the exposure.

Because this study was not designed to correct for measurement error, no nat-

ural instrumental variables for the measurement error have been recorded. Our

analysis is hence for illustrative purposes only and will use age as an instrumental

variable in the measurement error analysis. Age was chosen because effect mod-

ification through age is not anticipated (nor observed) in this study population,

which consists of middle aged hypertensive patients (5th, 95th percentiles: 41 and
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69 years). A more adequate analysis would use placebo compliance during the

run-in period (which was not recorded here) as an instrumental variable. Using

the error-adjusted estimator of Section 2.2, we estimate a larger treatment effect

of 27.0 mmHg (95% CI -91.2; 145.2). To improve this imprecise result, we im-

pose the weak assumption that the average error is smaller than 0.25. We believe

this assumption to be reasonable, given that the observed percentage of assigned

dose taken (i.e. the observed exposure) is 0.85 (i.e., 85%) on average. Choosing

∆ = [−0.25, 0.25] thus allows for 30% of the observed average exposure to be due

to systematic error. Using the improved error-adjusted estimator for inference, we

estimate a slightly smaller effect of 9.0 mmHg (95% CI 4.4; 17.4) as compared

to the standard analysis. As predicted by the theory, the estimate is less precise

than the unadjusted estimator, but still significantly different from 0 at the 5%

significance level. The uniform asymptotic 95% confidence interval (2.7; 16.8) has

a more guaranteed performance in finite samples. To investigate the sensitivity

of our result to the choice of ∆, Figure 2 shows the improved error-adjusted es-

timate, along with uniform 95% confidence intervals in function of the maximum

error mean ∆u, with ∆ = [−∆u,∆u], and reveals reasonable stability. Comparison

with the sensitivity analysis results of Goetghebeur and Vansteelandt (2005) shows

that the error-adjustment described in this article reduces uncertainty.

Figure 2 about here

5 SIMULATION STUDY

To investigate the behaviour of the error-adjusted estimators in finite samples

with ψ∗ possibly close to zero, we conducted simulation experiments. Each ex-

periment was based on 5000 replications of random samples of size 105 (i.e. the
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sample size of the blood pressure study) or 1000, generated as follows. In each ex-

periment, the instrument T for the measurement error was normal with mean 0.83

and standard deviation 0.14 and R was independently generated from a Bernoulli

distribution with success probability 0.5. The true exposure Z and exposure-free

response were generated as Z = T +0.32ǫZ and Y0 = −4.4+6.8Z−7.3T +7.3ǫ0 for

independent standard normal variates ǫZ , ǫ0. Finally, we generated Y as Y0 +ψRZ

and the observed exposure W as W = Z + U where U ∼ N(δ, 0.01).

Table 1 about here

Table 1 summarizes the results for estimation of ψ using i) the standard IV es-

timator which ignores systematic measurement error (STD); (ii) the error-adjusted

estimator of Section 3.1 (IV1); iii) the error-adjusted estimator of Section 3.3 which

guarantees estimates for δ to stay within ∆ = [∆l,∆u] with ∆u = −∆l equal to 0.5,

0.25 or 0.05, by defining δ = {I(λ < 0)∆l+ I(λ > 0)∆u}λ/(1+ |λ|) for unknown λ

(IV2); the improved error-adjusted estimator of Section 3.3 with the same choices

for ∆ (IV3). In addition, the table shows uniform asymptotic 95% confidence in-

tervals (UI) corresponding to these choices. The results for the different estimators

are as predicted by the theory. The error-adjusted estimator (IV1) is extremely

variable at small sample sizes, but performs adequately at larger sample sizes, even

at ψ = 0. Estimator (IV2) is less variable, although still substantially less precise

than the standard unadjusted estimator. Figures 3 and 4 show that estimator

(IV1) is normally distributed in moderate sample sizes, even at ψ = 0, but not

in small samples. It also shows that the improved error-adjusted estimator (IV3)

is much less variable than the error-adjusted estimator (IV1). While the former

follows a normal distribution in small samples, deviations from normality appear

in larger sample sizes as a result of convergence to a normal distribution not being

uniform in ψ. By the same token, the improved error-adjusted estimator is more
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biased than the error-adjusted estimator in larger samples, and even than the stan-

dard IV estimator in some scenarios. Informally, this happens because data sets

which carry evidence for causal effects close to zero, yield estimated probabilities

of δ̂(ψ) ∈ ∆ close to zero. The bias then arises because the small estimated causal

effects in such data sets will be more attracted towards the estimates obtained

from a standard structural mean analysis (which ignores measurement error) than

large estimated causal effects. Additional simulations (not displayed) have shown

that, as predicted by the theory, this bias and deviation from normality disappears

again in larger sample sizes. Furthermore, note that the confidence intervals for

the improved error-adjusted estimator retain their coverage despite these devia-

tions, although there is a tendency for the approach to be conservative. Finally, as

predicted by the theory, the uniform confidence intervals are conservative and also

wider on average than those obtained via the improved error-adjusted estimator.

The impact of narrower intervals ∆ = [−0.25, 0.25] was large at small sample

sizes, but moderate at large sample sizes. For instance, confidence intervals based

on the improved error-adjusted estimator had an average length of 8.42 (instead of

13.3) and coverage of 97.0% (instead of 97.7%) in small samples and 4.35 (instead

of 4.83) and 98.0% (instead of 97.8%), respectively, in large samples. The impact

of ∆ = [−0.05, 0.05] not including the error mean was to induce bias of the order

of magnitude of the standard unadjusted estimator. The 95% confidence intervals

based on the improved error-adjusted estimator and uniform 95% confidence in-

tervals then no longer cover at the nominal rate. Coverage of those intervals was

still better than the coverage of 95% confidence intervals based on the standard

unadjusted estimator, but at the expense of being wider.

Figures 3 and 4 about here
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6 CONCLUSIONS

We have proposed a general procedure to correct IV estimators for system-

atic error in the exposure when an instrumental variable for the measurement

error is available. This procedure complements the sensitivity analysis approach

of Goetghebeur and Vansteelandt (2005) and is especially attractive when the

instrumental variables assumption (A4) is likely to be met. This is the case in

placebo-controlled randomized trials with noncompliance where measurements on

run-in placebo compliance may very well meet assumption (A4). With concern for

compliance mismeasurement, recording run-in compliance may thus be favourable.

On theoretical grounds and on the basis of simulation experiments, we rec-

ommend the improved error-adjusted estimator of Section 3.1. This estimator

was designed so that adjustment for measurement error does not compromise the

power of tests of the causal null. This is attractive, knowing that standard tests of

the causal null hypothesis (i.e., that the instrument R is independent of outcome)

ignore exposure measurements and are thus valid in the presence of measurement

error. Because the proposed estimator does not converge uniformly to a normal

distribution, we recommend the uniform confidence intervals of Section 3.2.

For illustrative purposes, we have developed this work under structural mean

models which assume linear exposure effects that are not modified by pre-exposure

covariates. Extensions to linear structural mean models that allow for effect mod-

ification by baseline covariates are methodologically straightforward, but compu-

tationally more demanding. Finally, we believe our results to be more broadly

useful as they suggest, in line with Gustafson (2005), that incorporating a little

prior information on a weakly identified nuisance parameter may yield substantial

efficiency improvements for the target parameter. In addition, they indicate how

such prior information may be adopted.

23

Hosted by The Berkeley Electronic Press



REFERENCES

Andrews, D.W.K., and Ploberger, W. (1994). Optimal tests when a nuisance

parameter is present only under alternative. Econometrica 62, 1383-1414.

Angrist, J.D., Imbens, G.W. and Rubin, D.B. (1996). Identification of causal

effects using instrumental variables (with discussion). J. Am. Statist. Assoc. 91,

444-455.

Buzas, J.S. and Stefanski, L.A. (1996). Instrumental variable estimation in gener-

alized linear measurement error models. J. Am. Statist. Assoc. 91, 999-1006.

Casas, J.P., Bautista, L.E., Smeeth, L., et al. (2005). Homocysteine and stroke:

evidence on a causal link from Mendelian randomisation. Lancet, 365, 224232.

Carroll, R.J., Ruppert, D., Crainiceanu, C.M., et al. (2004). Nonlinear and non-

parametric regression and instrumental variables. J. Am. Statist. Assoc. 99,

736-750.

Carroll, R.J., Ruppert, D., Stefanski, L.A. and Crainiceanu, C.M. (2006). Mea-

surement Error in Nonlinear Models: A Modern Perspective, Second Edition. CRC

Press.

Davies, R.B. (1977). Hypothesis testing when a nuisance parameter is present only

under alternative. Biometrika 64, 247-254.

Davies, R.B. (1987). Hypothesis-testing when a nuisance parameter is present only

under the alternative. Biometrika 74, 33-43.

Dunn, G. (1999). The problem of measurement error in modelling the effect of

compliance in a randomized trial. Statist. Med. 18, 2863-2877.

Goetghebeur, E. and Lapp, K. (1997). The effect of treatment compliance in a

placebo-controlled trial: regression with unpaired data. Appl. Statist. 46, 351-364.

Goetghebeur, E. and Vansteelandt, S. (2005). Structural mean models for compli-

ance analysis in randomized clinical trials and the impact of errors on measures of

24

http://biostats.bepress.com/harvardbiostat/paper70



exposure. Statist. Meth. Med. Res. 14, 397-415.

Greenland, S. (2000). An introduction to instrumental variables for epidemiolo-

gists. Int. J. Epidem. 29, 722-729.

Gustafson, P. (2005). On model expansion, model contraction, identifiability

and prior information: two illustrative scenarios involving mismeasured variables.

Statist. Science 20, 111-129.

Hansen, B.E. (1992). The likelihood ratio test under nonstandard conditions -

testing the Markov switching model of GNP. J. Appl. Econom. 7, S61-S82.

Hernan, M.A. and Robins, J.M. (2006). Instruments for causal inference - An

epidemiologist’s dream? Epidemiology 17, 360-372.

Leigh, J.P. and Schembri, M. (2004). Instrumental variables technique: cigarette

price provided better estimate of effects of smoking on SF-12. J. Clin. Epidem 57,

284-293.

Martens, E.P., Pestman, W.R., de Boer, A., Belitser, S.V. and Klungel, O.H.

(2006). Instrumental variables application and limitations. Epidemiology 17, 260-

267.

Robins, J.M. (1994). Correcting for non-compliance in randomized trials using

structural nested mean models. Commun. Statist.: Theory Meth. 23, 2379-2412.

Robins, J.M. (2005). Optimal structural nested models for optimal sequential

decisions. In D.Y. Lin and P.J. Haegerty, editors, Proceedings of the second Seattle

Symposium in Biostatistics, pages 189326. Springer Verlag, New York.

Robins, J. and Rotnitzky, A. (2004). Estimation of treatment effects in randomised

trials with non-compliance and a dichotomous outcome using structural mean mod-

els. Biometrika 91, 763-783.

Serfling, R.J. (1980). Approximation Theorems of Mathematical Statistics. Wiley:

New York.

25

Hosted by The Berkeley Electronic Press



Sheehan, N.A. and Didelez, V. (2005). Mendelian randomisation and instrumental

variables for causal inference. Genetic Epidemiology 29, 277-277.

Ten Have, T.R., Elliott, M.R., Joffe, M., Zanutto, E. and Datto, C. (2004). Causal

models for randomized physician encouragement trials in treating primary care

depression. J. Am. Statist. Assoc. 99, 16-25.

Ten Have, T.R., Joffe, M.M., Lynch, K.G., Brown, G.K., Maisto, S.A. and Beck,

A.T. (2007). Causal Mediation Analyses with Rank Preserving Models. Biomet-

rics, Published article online: 20-Mar-2007, doi: 10.1111/j.1541-0420.2007.00766.x

Urquhart, J. and De Klerk, E. (1998). Contending paradigms for the interpretation

of data on patient compliance with therapeutic drug regimens. Statist. Med. 17,

251-267.

van der Vaart, A.W. (1998). Asymptotic Statistics. Cambridge University Press:

Cambridge.

Vansteelandt, S. and Goetghebeur, E. (2005). Sense and sensitivity when cor-

recting for observed exposures in randomized clinical trials. Statist. Med. 24,

191-210.

APPENDIX: PROOFS

Proposition 1. Model A implies model B because

E (Yi0|Xi, Ri) = E {Yi − γ(Si, Ri;ψ
∗)Zi|Xi, Ri}

= E [Yi − γ(Si, Ri;ψ
∗) {Wi − δ(Xi, Ri)} |Xi, Ri]

by (A3) and because E (Yi0|Xi, Ri) = E (Yi0|Xi) by (A1). Note that this does not

require assumptions about the conditional association between Yi and Wi, given

Zi, suggesting that this continues to hold when measurement error is differential.
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To show that (6) is the only restriction (other than (5)) imposed on the ob-

served data law, we proceed as in Robins and Rotnitzky (2004) by exhibiting

for any observed data law satisfying (5) and (6), a joint law of the full data

(Y, {Yrz,∀r, z}, Z,W,R,X, T ) satisfying the restrictions of model A, where Yrz is

the potential outcome that would have been observed for given subject following

exposure to (R,Z) = (r, z), all other experimental conditions being the same as

in the considered study. Given (R = r, Z = z,W = w,X = x, T = t, Y = y), we

define Yrz = y to satisfy (A2). We set f(Z|R = r,W = w,X = x, T = t, Y = y)

equal to an arbitrary density with conditional mean w − δ. We define f(Yr0|R =

r, Z = z,W = w,X = x, T = t, Y = y) to be an arbitrary density with conditional

mean y − γ(x, r;ψ∗)z. In addition, given (Z = z,W = w,X = x, T = t, Y = y),

we set Yr0 = Yr′0 ≡ Y0 for each (r, r′) to satisfy (A1). By (6), the conditional dis-

tribution of Y0 then also satisfies E(Y0|X = x, T = t, R) = E(Y0|X = x, T = t) for

each (x, t). Remaining features of the full data density can be chosen arbitrarily.

Theorem 1. Let for simplicity of exposition, but without loss of generality,

γ(Xi, Ri;ψ) = ψRi. Define Uiδ = dδ(Ri,Ti,Xi) [Yi

−ψ(Wi − δ)Ri − q(Ti,Xi)] and Uiψ = dψ(Ri,Ti,Xi) [Yi − ψ(Wi − δ)Ri − q(Ti,Xi)]

the estimating functions for δ∗ and ψ∗, respectively. Then standard asymptotic

theory for M-estimators (van der Vaart, 1998) and Taylor expansions show that

0 =
1√
n

n
∑

i=1

Uiδ + E

(

∂Uiδ
∂ψ

)√
n(ψ̂ − ψ∗) + E

(

∂Uiδ
∂δ

)√
n(δ̂ − δ∗)

+
1

2
E

(

∂2Uiδ
∂ψ∂δ

)√
n(ψ̂ − ψ∗)(δ̂ − δ∗) + op(1) (11)

from which

√
n(δ̂ − δ∗)

ψ̂ + ψ∗

2
= op(1) − E−1 {dδ(Ri,Ti,Xi)Ri}

×
[

1√
n

n
∑

i=1

Uiδ − E {dδ(Ri,Ti,Xi)(Wi − δ∗)Ri}
√
n(ψ̂ − ψ∗)

]
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Plugging this into a first order Taylor expansion of Uiψ, shows that
√
n(ψ̂ − ψ∗)

equals

−
[

E {dψ(Ri,Ti,Xi)(Wi − δ∗)Ri} −
E {dψ(Ri,Ti,Xi)Ri}
E {dδ(Ri,Ti,Xi)Ri}

E {dδ(Ri,Ti,Xi)(Wi − δ)Ri}
]−1

×
[

1√
n

n
∑

i=1

Uiψ − E {dψ(Ri,Ti,Xi)Ri}
E {dδ(Ri,Ti,Xi)Ri}

Uiδ

]

+ op(1)

It follows that
√
n(ψ̂ − ψ) = Op(1) and that Part 1 of Theorem 1 holds.

Note that the last 2 terms in (11) can be replaced byE {dδ(Ri,Ti,Xi)Ri}
{

ψ +Op(n
−1/2)

}

×√
n(δ̂ − δ), from which

√
n(δ̂ − δ)ψ =

√
n(δ̂ − δ)(ψ̂ + ψ∗) {1/2 + op(1)} equals

−
[

E {dδ(Ri,Ti,Xi)Ri} −
E {dδ(Ri,Ti,Xi)(Wi − δ∗)Ri}
E {dψ(Ri,Ti,Xi)(Wi − δ∗)Ri}

E {dψ(Ri,Ti,Xi)Ri}
]−1

×
[

1√
n

n
∑

i=1

Uiδ −
E {dδ(Ri,Ti,Xi)(Wi − δ∗)Ri}
E {dψ(Ri,Ti,Xi)(Wi − δ∗)Ri}

Uiψ

]

+ op(1)

The latter expression is bounded in probability (under standard regularity con-

ditions). It follows that, as ψ∗ goes to zero with increasing sample size, δ̂ does

not converge to δ∗ at root-n rate and hence is not uniformly root-n consistent. In

particular, there is no root-n consistent estimator of δ∗ under model A at ψ∗ = 0.

Part 2 of Theorem 1 is immediate from Robins (1994).

Proof of Theorem 2. Let for simplicity of exposition, but without loss of

generality, γ(Xi, Ri;ψ) = ψRi. Then standard asymptotic theory for M-estimators

(van der Vaart, 1998) and Taylor expansions of the estimating functions (9) for ψ∗

w.r.t. δ̂(ψ) shows that (9) equals

1√
n

n
∑

i=1

P{δ̂(ψ) ∈ ∆}Uiψ(ψ, δ) + P{δ̂(ψ) /∈ ∆}Uiψ(ψ, 0) + op(1) −
[

P{δ̂(ψ) ∈ ∆}

+

{

ϕ

(

∆l − δ

σ(ψ)/(
√
n|ψ|)

)

− ϕ

(

∆u − δ

σ(ψ)/(
√
n|ψ|)

)} √
n|ψ|δ
σ(ψ)

]

E {dψ(R, T )R}
E {dδ(R, T )R}Uiδ(ψ, δ) (12)

That the remainder term converges to zero in probability for any fixed ψ can be

seen because, for some δ̃ on the open line segment between δ̂(ψ) and δ∗ (under stan-

dard regularity conditions which include uniform convergence of n−1
∑n

i=1 Uiψ(ψ, δ)

28

http://biostats.bepress.com/harvardbiostat/paper70



w.r.t. δ), the remainder term equals

[

Pδ=δ̃{δ̂(ψ) ∈ ∆}E
{

∂2

∂δ2
Uiψ(ψ, δ̃)

}

+ 2
∂

∂δ
Pδ=δ̃{δ̂(ψ) ∈ ∆}E

{

∂

∂δ
Uiψ(ψ, δ̃)

}

+
∂2

∂δ2
Pδ=δ̃{δ̂(ψ) ∈ ∆}E

{

Ui0(ψ) − Uiψ(ψ, δ̃)
}

] √
n

2
{δ̂(ψ) − δ∗}2 + op(1)

Here, the first term is zero. Because E
{

∂Uiψ(ψ, δ̃)/∂δ
}

= Op(1)ψ under standard

regularity conditions and
√
n{δ̂(ψ) − δ∗}2 = Op(1)n−1/2ψ−2, the second term is

Op(1)

{

ϕ

(

∆l − δ̃

σ(ψ)/(
√
n|ψ|)

)

− ϕ

(

∆u − δ̃

σ(ψ)/(
√
n|ψ|)

)}

1

σ(ψ)
= op(1)

for any fixed ψ. Because E
{

Ui0(ψ) − Uiψ(ψ, δ̃)
}

= Op(1)δψ, the third term is

{

ϕ

(

∆l − δ̃

σ(ψ)/(
√
n|ψ|)

)

− ϕ

(

∆u − δ̃

σ(ψ)/(
√
n|ψ|)

)}

n|ψ|ψδ̃
σ(ψ)3

(∆l − ∆u) = op(1)

for any fixed ψ because xaϕ(x) → 0 as x→ ∞ for arbitrary a > 0.

Because the estimating functions in (12) have mean and variance depending

on the sample size, we use the triangular array Central Limit Theorem (Serfling,

1980, p.31) to derive the asymptotic distribution of (9) for fixed ψ. Application

of this Theorem shows that for arbitrary fixed ψ, the estimating functions in (9)

are asymptotically normally distributed under the weak regularity condition that

the standard deviation of the estimating functions Ũi(ψ), as defined by (12), is

bounded (i.e. O(1)) and that asymptotically E‖Ũi(ψ) − E{Ũi(ψ)}‖k = o(nk/2−1).

Because for any fixed ψ∗ 6= 0 and δ∗ ∈ ∆ =]∆l,∆u[, P{δ̂(ψ∗) ∈ ∆} converges

to 1, it follows under these conditions that n−1/2
∑n

i=1 Ũi(ψ
∗) will be asymptoti-

cally normally distributed with mean zero and finite variance, which is given by

the variance of (12). Within faster than root-n shrinking neighbourhoods of zero

(i.e. if ψ∗ = kn−a for some constant k and a > 1/2), the remainder term in the

Taylor series expansion is still op(1). Further, P{δ̂(ψ∗) ∈ ∆} converges to 0 and

U0(ψ
∗) has mean converging to zero at 1 over na-rate. It then again follows that
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n−1/2
∑n

i=1 Ũi(ψ
∗) is asymptotically normally distributed with mean zero and finite

variance. Finally, within 1 over root-n shrinking neighbourhoods of zero (i.e. if

ψ∗ = kn−1/2 for some constant k), the remainder term in the Taylor series expan-

sion is bounded in probability, but not op(1). The significant contribution of the

squared term
√
n{δ̂(ψ∗)−δ∗}2 implies that n−1/2

∑n
i=1 Ũi(ψ

∗) may not converge to

a normal distribution, nor to a mean zero distribution along such sequences. The

implications of this will be discussed in the next paragraph.

To gain insight into the asymptotic distribution of ψ̃ (rather than its estimating

function), we make a further Taylor series expansion of the estimating functions,

evaluated at ψ̃. This shows that for any fixed ψ

0 =
1√
n

n
∑

i=1

P{δ̂(ψ) ∈ ∆}Uiψ(ψ, δ) + P{δ̂(ψ) /∈ ∆}Uiψ(ψ, 0) + op(1) −
[

P{δ̂(ψ) ∈ ∆}

+

{

ϕ

(

∆l − δ

σ(ψ)/(
√
n|ψ|)

)

− ϕ

(

∆u − δ

σ(ψ)/(
√
n|ψ|)

)} √
n|ψ|δ
σ(ψ)

]

E {dψ(R, T )R}
E {dδ(R, T )R}Uiδ(ψ, δ)

+

(

P{δ̂(ψ) ∈ ∆}E
{

∂

∂ψ
Uiψ(ψ, δ)

}

+ P{δ̂(ψ) /∈ ∆}E
{

∂

∂ψ
Uiψ(ψ, 0)

}

+

{

ϕ

(

∆l − δ

σ(ψ)/(
√
n|ψ|)

)

− ϕ

(

∆u − δ

σ(ψ)/(
√
n|ψ|)

)} √
n|ψ|δ(∆l − ∆u)

σ(ψ)
E {dψ(R, T )R}

−
[

P{δ̂(ψ) ∈ ∆} +

{

ϕ

(

∆l − δ

σ(ψ)/(
√
n|ψ|)

)

− ϕ

(

∆u − δ

σ(ψ)/(
√
n|ψ|)

)} √
n|ψ|δ
σ(ψ)

]

E {dψ(R, T )R}
E {dδ(R, T )R}

×E {dδ(R, T )R(W − δ)})
√
n(ψ̃ − ψ) (13)

That the remainder term converges to zero in probability for any fixed ψ can be

seen using a similar derivation as before. We conclude that, up to an op(1) term

and for fixed ψ,
√
n(ψ̃ − ψ) is a linear transformation of n−1/2

∑n
i=1 Ũi(ψ) and

thus shares its asymptotic properties. Specifically, within faster and slower than 1

over root-n shrinking neighbourhoods of zero (and in particular at arbitrary fixed

ψ),
√
n(ψ̃ − ψ) is asymptotically normally distributed with mean zero and finite

variance under weak regularity conditions. Within 1 over root-n neighbourhoods

of zero,
√
n(ψ̃ − ψ) may be asymptotically biased and not normally distributed.
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Figure 1: Curves indicating the tuples (R2, δ) where the standard SMM estimator

and the error-adjusted instrumental variable estimator have the same mean squared

error, for different sample sizes n = 105, 1000 and 5000 and with R2 equalling the

multiple correlation coefficient for the regression of Z on T . Left: for R2 from 0

to 1; Right: for R2 from 0.25 to 1. 31
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Figure 2: Improved error-adjusted estimate, along with uniform 95% confidence

intervals in function of the maximum error mean ∆u, with ∆ = [−∆u,∆u].
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Figure 3: QQ-plots for n = 105. Row 1: error-adjusted estimator IV1; Row 2:

improved error-adjusted estimator IV3; Column 1: ψ = −7.5, δ = 0.15; Column 2:

ψ = −7.5, δ = 0; Column 1: ψ = 0, δ = 0.

33

Hosted by The Berkeley Electronic Press



−4 −2 0 2 4

−
20

−
10

−
5

0
5

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

−4 −2 0 2 4

−
20

−
10

−
5

0
5

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

−4 −2 0 2 4

−
15

−
10

−
5

0
5

10

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

−4 −2 0 2 4

−
12

−
10

−
8

−
6

−
4

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

−4 −2 0 2 4

−
16

−
12

−
8

−
6

−
4

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

−4 −2 0 2 4

−
2

−
1

0
1

2

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

Figure 4: QQ-plots for n = 1000. Row 1: error-adjusted estimator IV1; Row 2:

improved error-adjusted estimator IV3; Column 1: ψ = −7.5, δ = 0.15; Column 2:

ψ = −7.5, δ = 0; Column 1: ψ = 0, δ = 0.
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Table 1: Bias of the different estimators and coverage and average length of corresponding 95% confidence intervals.

∆ n ψ δ Bias Coverage Average length CI

STD IV1 IV2 IV3 STD IV1 IV2 IV3 UI STD IV1 IV2 IV3 UI

0.5 105 -7.5 0.15 1.11 -3.77 -2.65 0.68 86.8 96.5 99.8 97.7 99.8 5.87 3039 56.2 13.3 18.8

0.5 105 -7.5 0 -0.020 -3.77 -2.31 -0.046 93.7 96.5 99.9 98.7 100 6.96 3039 55.7 10.8 29.2

0.5 105 0 0 -0.015 -3.63 -0.019 -0.0096 93.5 96.5 100 94.1 96.2 6.94 3027 63.8 8.88 21.1

0.5 1000 -7.5 0.15 1.13 -0.15 -0.28 0.81 36.4 95.1 99.9 97.8 100 1.90 14.0 14.0 4.83 11.4

0.5 1000 -7.5 0 -0.0048 -0.15 -0.52 -0.62 95.0 95.1 98.1 95.1 100 2.25 14.0 14.0 12.4 16.7

0.5 1000 0 0 -0.0042 -0.14 0.0032 -0.0036 94.9 95.2 100 95.0 96.2 2.24 14.0 13.9 2.78 5.86

0.25 105 -7.5 0.15 1.11 -3.77 0.59 1.06 86.8 96.5 100 97.0 99.5 5.87 3039 56.4 8.42 10.9

0.25 105 -7.5 0 -0.020 -3.77 -0.63 -0.062 93.7 96.5 100 98.8 99.9 6.96 3039 56.8 10.7 14.2

0.25 105 0 0 -0.015 -3.63 -0.013 -0.010 93.5 96.5 100 94.2 94.9 6.94 3027 67.8 8.88 11.6

0.25 1000 -7.5 0.15 1.13 -0.15 0.42 0.78 36.4 95.1 100 98.0 99.9 1.90 14.0 13.9 4.35 5.69

0.25 1000 -7.5 0 -0.0048 -0.15 -0.37 -0.19 95.0 95.1 100 95.8 99.6 2.25 14.0 14.0 5.83 7.61

0.25 1000 0 0 -0.0042 -0.14 -0.0012 -0.0036 94.9 95.2 100 95.0 95.5 2.24 14.0 13.9 2.78 3.43

0.05 105 -7.5 0.15 1.11 -3.77 1.07 1.11 86.8 96.5 100 91.3 94.8 5.87 3039 63.9 6.54 7.47

0.05 105 -7.5 0 -0.020 -3.77 -0.052 -0.015 93.7 96.5 100 96.3 98.2 6.96 3039 64.4 7.87 9.07

0.05 105 0 0 -0.015 -3.63 -0.014 -0.016 93.5 96.5 100 94.1 94.3 6.94 3027 67.9 7.53 8.51

0.05 1000 -7.5 0.15 1.13 -0.15 1.02 1.11 36.4 95.1 100 54.2 74.9 1.90 14.0 13.9 2.32 2.78

0.05 1000 -7.5 0 -0.0048 -0.15 -0.031 -0.0063 95.0 95.1 100 98.3 99.7 2.25 14.0 13.9 2.83 3.43

0.05 1000 0 0 -0.0042 -0.14 -0.0037 -0.0042 94.9 95.2 100 95.0 95.1 2.24 14.0 13.9 2.36 2.55
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