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Parametric Non-Mixture Cure Models for
Schedule-Finding of Therapeutic Agents

Thomas M. Braun and Changying A. Liu

Abstract

We propose a Phase I clinical trial design that seeks to determine the cumulative
safety of a series of administrations of a fixed dose of an investigational agent. In
contrast to traditional Phase I trials that are designed to solely find the maximum
tolerated dose (MTD) of the agent, our design instead identifies a maximum tol-
erated schedule (MTS) that includes an MTD as well as a vector of recommended
administration times. Our model is based upon a non-mixture cure model that
constrains the probability of toxicity for all subjects to monotonically increase
with both dose and the number of administrations received. We assume a specific
parametric hazard function for each administration and compute the total hazard
of toxicity for a schedule as a sum of individual administration hazards. Through-
out a variety of settings motivated by an actual study in allogeneic bone marrow
transplant recipients, we demonstrate that our approach has excellent operating
characteristics and performs as well as the only other currently published design
for schedule-finding studies. We also present arguments for the preference of our
non-mixture cure model over the existing model.
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SUMMARY

We propose a Phase I clinical trial design that seeks to determine the cumulative

safety of a series of administrations of a fixed dose of an investigational agent. In

contrast to traditional Phase I trials that are designed to solely find the maximum

tolerated dose (MTD) of the agent, our design instead identifies a maximum tol-

erated schedule (MTS) that includes an MTD as well as a vector of recommended

administration times. Our model is based upon a non-mixture cure model that

constrains the probability of toxicity for all subjects to monotonically increase

with both dose and the number of administrations received. We assume a specific

parametric hazard function for each administration and compute the total hazard

of toxicity for a schedule as a sum of individual administration hazards. Through-

out a variety of settings motivated by an actual study in allogeneic bone marrow
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transplant recipients, we demonstrate that our approach has excellent operating

characteristics and performs as well as the only other currently published design

for schedule-finding studies. We also present arguments for the preference of our

non-mixture cure model over the existing model.

KEY WORDS: Phase I trial, dose-finding study, adaptive design, Bayesian statis-

tics, Weibull distribution

1. Introduction

Conventional Phase I clinical trials have been designed for the sole purpose of

identifying a maximum tolerated dose (MTD) based upon a single administration.

However, in many clinical settings, the agent will be given repeatedly over a se-

quence of administrations and patients will be followed to assess the cumulative

safety of the agent. As a result, treatment is two dimensional, consisting not only

of the dose given at each administration, but also the timing of each administra-

tion.

Braun et al. (2003) applied the Time-to-Event Continual Reassessment Method

(TITE-CRM) of Cheung and Chappell (2000) by attempting to model each sched-

ule of administrations as a “dose.” Due to the limitations of this approach, Braun

et al. (2005) presented the first design specifically created to determine a maxi-

mum tolerated schedule (MTS) instead of a traditional MTD. In their approach,

the authors chose to model separately the hazards of toxicity for the individual ad-

ministrations in a schedule. It is reasonable to assume that the hazard of toxicity

for many cytotoxic agents increases steadily after administration, reaches a peak,

and then begins to decrease as the agent is cleared from the patient. For simplicity,
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Braun et al. (2005) adopted a piecewise linear model

h(u | θ) =


θ2

u
θ1

0 ≤ u ≤ θ1

θ2
θ3−u
θ3−θ1

θ1 < u ≤ θ3

0 u > θ3 or u < 0

(1)

in which θ = (θ1, θ2, θ3), with θ1 the time at which h(u | θ) reaches its maximum,

θ2 the maximum hazard, and θ3 the time when the hazard vanishes to zero. Using

this hazard for each administration, the total hazard for a series of administrations

was modeled simply as the sum of the hazards of each administration. Given

the timing of each administration, the total hazard implies a cumulative hazard

and cumulative probability for toxicity at any point in time. Thus, the outcome

of interest in this design is the time to toxicity, rather than a binary indicator

of toxicity ever occurring. Subject accrual, Bayesian estimation, and outcome-

adaptive decision-making are done in a sequential fashion as in classical Phase I

trial designs.

Even though Braun et al. (2005) demonstrated the triangle hazard model per-

formed well in the scenarios they investigated, there are several aspects of this

hazard model that could be improved. First, none of the parameters in θ have in-

terpretations that relate directly to the overall probability of toxicity. Second, the

hazard function in Equation (1) is not smooth due to the abrupt change in slope

at θ1, i.e θ1 is a change-point for the hazard, and maximum likelihood estimation

of θ1 is difficult (Liu, 2007). Third, the hazard is truncated at θ3, which conflicts

with the usual approach in time-to-event modeling of assuming an infinite support

of toxicity times for the hazard. Finding a maximum likelihood estimate (MLE)

of θ3 is also computationally challenging as truncation parameters do not share

the regularity characteristics common to most parameters. Fourth, the model is
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inflexible for the inclusion of subject-level or administration-level covariates, i.e.

if the dose were to vary with each administration. Although the triangular hazard

was generalized to incorporate varying doses, the approach used required a differ-

ent value of θ for each dose, forcing the total number of parameters to increase

rapidly as more doses are studied (Braun et al., 2007). Although one could con-

ceive of a regression model for each parameter in θ as a function of subject-level

covariates, the direct relationship of each covariate to the probability of toxicity

would be difficult or impossible to discern.

As an alternative to the method of Braun et al. (2005), we propose a paramet-

ric non-mixture cure model for determining the MTS. Through this approach, we

model the cure fraction and marginal probability of toxicity directly as a function

of the number of administrations. Most importantly, this model includes param-

eters whose values can be directly interpreted in relationship to the probability

of toxicity. We continue with the approach of Braun et al. (2005) and model

the total hazard of toxicity as a sum of single administration hazards. However,

due to the limitations described earlier, we instead choose to model the hazard

for each administration to be proportional to a standard two-parameter Weibull

density function. Given the flexibility of the shape of this density, our model can

accommodate a variety of hazard functions beyond the “up-and-down” triangular

hazard if so desired. In Section 2, we describe basic notation and develop our

parametric cure model. Section 3 contains a method for developing prior distribu-

tions for our parameters, and Section 4 contains a specific outline of trial conduct

using our design. Section 5 describes the performance of our algorithm and com-

pares it to the approach of Braun et al. (2005). Section 6 contains concluding

remarks.

4

http://biostats.bepress.com/umichbiostat/paper80



2. Notation and Cure Model Development
2.1 Notation

We have K treatment schedules, s(1), s2, . . . , s(K) under investigation in a

trial. Schedule k has a total of mk administrations and s(k) is a vector of planned

administration times, i.e. s(k)=(s1, s2, ..., smk
). Furthermore, s(k) is nested in

s(k+1) for each k = 1, ..., K − 1, so that the duration of a treatment schedule

increases with k and m1 < m2 < ... < mK . For example, if the first schedule

was comprised of three weekly administrations after enrollment and the second

schedule was a three-week extension of the first schedule, s(1) = {0, 7, 14} and

s(2) = {0, 7, 14, 21, 28, 35} = {s(1), s(1) + 21}. Let ω denote the fixed maximum

length of follow-up for each subject, defined by the medical investigators as a

clinically meaningful endpoint that is also late enough to accommodate the longest

schedule, s(K). For example, in toxicity studies of possible treatments for acute

graft-versus host disease (aGVHD) in allogeneic bone marrow transplant patients,

ω is often set at 100 days, as this is the the duration of time required for aGVHD to

develop. A fixed target probability pω is elicited from investigators and is defined

as the target cumulative probability of toxicity by time ω.

A maximum of N subjects will be enrolled in the study, each observed to

the earlier of toxicity or completing ω days of follow-up without toxicity. We

assume that entry of the first subject coincides with day t∗1 = 0 of the trial, while

t∗j denotes the duration of the study when each successive subject j = 2, 3, . . . , N

is enrolled. The shortest schedule is assigned to the first subject, and the schedule

assigned to each successive subject j is determined through an interim analysis at

time t∗j using the data from previously enrolled subjects i = 1, 2, . . . , j − 1. We

let Ti denote the actual, possibly unobserved, time after enrollment for subject i.
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At interim evaluation time t∗j , we let Ui denote the length of follow-up for subject

i, i < j, i.e. Ui = min(Ti, t
∗
j − t∗i ), and Ci is the indicator of whether or not Ui

corresponds to a toxicity i.e.

Ci =

{
1 ; Ti = Ui,
0 ; Ti 6= Ui.

We emphasize that the study is designed ideally so that each subject will re-

ceive a series of administrations at specific, fixed administration times as defined

by s(1), ..., s(K). However, in practice, subjects may deviate from their assigned

schedule after they begin treatment for a host of reasons, including clinician error

or delay of treatment for medical reasons unrelated to toxicity, such as infection.

Therefore, we let si = {si,1, ..., si,mi
} denote the actual times after enrollment at

which subject i receives an administration, where si,1 coincides with enrollment

and mi is the number of administrations received. Although mk administrations

are planned for subjects assigned to schedule s(k), it may be the case that mi < mk

either due to administrative censoring or because subject i had toxicity at time

si,mi
and thus received no further administrations.

2.2 Model Development

Consider a parametric probability density function (pdf) f(u | φ) consisting

of parameters φ, with cumulative distribution function F (u | φ). We then model

the hazard of toxicity for each administration using a scaled form of the density

h(u | φ, θ) = θf(u | φ), where θ > 0 is an additional parameter quantifying

the proportionality of h(·) to f(·). As a result, each administration has a survival

function equal to

S(u | φ, θ) = exp{−θF (u | φ)} (2)
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that is improper in the sense that S(∞) = exp{−θ} > 0. Such a model is known

as a non-mixture cure model with cure rate exp{−θ}; see Chen et al. (1999) and

Tsodikov et al. (2003) for detailed descriptions. In the context of Phase I trials,

the probability of toxicity is 1− exp{−θ}.

We emphasize that the concept of a cure fraction is appealing in Phase I tri-

als, as we expect a proportion of subjects to never experience toxicity, even with

infinite follow-up. Unlike our proposed model, the cure fraction was not directly

parameterized in Braun et al. (2005) and was instead implied through the finite

duration of the hazard θ3 in Equation (1). Another benefit of our approach over

that in Braun et al. (2005) is that the single-administration hazard h(u | φ, θ)

can be quite general, provided that it is biologically plausible and is sufficiently

tractable for parameter estimation. Most importantly, the hazard is not restricted

to have an up-and-down pattern nor have finite support like that in Braun et al.

(2005).

Thus, we recommend the hazard be based upon a two-parameter Weibull den-

sity

h(u | φ, θ) = θ exp(−γ)αuα−1 exp[−uα exp(−γ)] (3)

in which φ = (α, γ), α > 0 and −∞ < γ < ∞. This function implies a non-

montonic hazard when α ≥ 2, and also allows for a monotonically decreasing

hazard when 0 ≤ α < 2, which may be suitable when the agent is given as a bolus

with immediate exposure to maximum toxicity that then decreases over time. In

our application, we choose to specifically constrain α ≥ 2 so that the resulting

hazard function has our desired non-monotonic pattern. Figure 1 displays an ex-

ample of such a hazard for α = 2, γ = 4, and θ = 0.3 and demonstrates that

although an infinite support exists for the time to toxicity, the hazard basically
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vanishes 20 days after administration.

[Figure 1 about here.]

We assume that the form of h(·) is unchanged among administrations and that

all administrations have an additive cumulative effect on toxicity. Based upon

these assumptions, we generate the total and cumulative hazards of toxicity at a

general study time t∗ for a subject treated with schedule s(k) and follow-up U as

h(U | φ, θ, s(k)) = θ(mk)

mk∑
`=1

f(U − s` | φ)/mk (4)

H(U | φ, θ, s(k)) = θ(mk)

mk∑
`=1

F (U − s` | φ)/mk, (5)

and corresponding survival function

S(U | φ, θ, s(k)) = exp

[
−θ(mk)

mk∑
`=1

F (U − s` | φ)/mk

]
. (6)

In Equations (4)-(6), the parameter θ is now generalized to be a function of

the number of administrations, which is necessary so that the limiting cumulative

probability of toxicity changes with the number of administrations and is equal

to 1 − exp{−θ(mk)}. We have also expressed Equations (4) and (5) as an av-

erage of hazards among administrations; if scaling by mk were not done, then

we would have Sk(∞) = exp{−mkθ(mk)}. Instead, scaling by mk maintains

exp{−θ(mk)} as the cure rate for schedule k.

In order to force the cumulative probability of toxicity to increase with the

number of administrations, we adopt the regression model log{θ(mk)} = β0 +

β1log(mk), β1 ≥ 0, leading to a cure fraction equal to exp{− exp[β0+β1log(mk)]}.

This model also lends to a simple interpretation of β0 as quantifying a single ad-

minstration’s impact on the cure fraction.
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Note that our model assumes that the limiting cumulative probability of toxic-

ity, or conversely the cure fraction, is the same for two subjects receiving the same

number of administrations, regardless of when they receive those administrations.

The administration times only impact the rate at which the limit is reached. Other

models could certainly be adopted that allow the cure fraction to vary by the ad-

ministration times. Most importantly, our model is much more flexible than that

of Braun et al. (2005) and allows for the inclusion of additional covariates both

in the cure fraction, as well as the hazard function. For example, if dose were to

vary among the subjects, we could directly incorporate dose effects either in the

cure fraction or the hazard function using standard regression models.

For the interim analysis at t∗, subject i contributes three pieces of data: (1) Ui,

the length of follow-up, (2) Ci, an indicator of toxicity, and (3) si, a vector of mi

administration times. We let D∗
i = {Ui, Ci, si}, so that the total data collected

on all n∗ subjects at t∗ is D∗ = {D∗
1, D

∗
2, . . . ,D

∗
n∗}. Using this data, the interim

likelihood for our parameters is

L(φ,β | D∗) =
n∗∏
i=1

{h(Ui | φ, β0, β1, si)}CiS(Ui | φ, β0, β1, si) (7)

where β = {β0, β1} and the survivor and hazard functions are defined in Equa-

tions (4) and (6), respectively.

3. Developing Priors for φ and β

Since the sample sizes of most Phase I trials are small and very little information is

available at the beginning of a trial, we choose to use sequential Bayesian methods

to find updated estimates of φ and β. Once we define prior distributions for our

parameters, we use Markov chain Monte Carlo (MCMC) techniques to sample

from the posterior distributions of φ and β. As there are no constraints on γ and
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β0, we assume both are normally distributed with respective means µγ and µβ0

and respective variances σ2
γ and σ2

β0
. To reflect our need for α ≥ 2 so that we

have a non-monotonic hazard, we assume α is equal in distribution to Zα + 2,

where Zα has a Gamma distribution with mean (µα − 2) and variance σ2
α. Note

that there is no need to shift the distribution of α if one desires a monotonically

decreasing hazard. To satisfy our constraint β1 > 0, we assume that β1 has a

Gamma distribution with mean µβ1 and variance σ2
β1

.

To develop mean hyperparameter values for the cure fraction parameters β,

we ask the investigators to specify an a priori value, Pk, for the cumulative prob-

ability of toxicity for schedule k, k = 1, 2, . . . , K. Based upon the simple linear

regression model E{log[− log(1−Pk)]} = b0 + b1 log(mk), we use ordinary least

squares to find estimates of b0 and b1. We let µβ0 and µβ1 equal the estimates of

b0 and b1, respectively. With regard to the hazard shape parameters φ, we ask the

investigators to specify an a priori value for the limiting cumulative probability

of toxicity for a single administration. We denote this value Q0 and note that Q0

must be less than the value of P1 elicited earlier. We also ask investigators to select

two time points t1 and t2 and supply a priori values Q1 and Q2 for the cumula-

tive probabilities of toxicity at t1 and t2, respectively, for a single administration.

Based upon Equation (2), we first derive the value θ∗ = − log(1−Q0). Plugging

θ∗ and Equation (3) into Equation (2), some algebra gives us two equations in

terms of two parameters a and g:

log{− log[1 + log(1−Q1)/θ
∗]} = a log(t1)− g

log{− log[1 + log(1−Q2)/θ
∗]} = a log(t2)− g

If we let â and ĝ denote the respective solutions to a and g in the above equations,
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we set µα = max{2.01, â} and µγ = ĝ.

We do not derive variance hyperparameter values from elicited information;

we choose rather to treat them as tuning parameters that will determine how in-

formative the priors will be. We run exhaustive simulations using a handful of

subjects and a variety of variance hyperparameter values until “suitable” values

are determined. Specifically, we consider two extreme scenarios: (1) the prior

means indicate that the longest schedule is tolerable, yet the first few subjects ex-

perience toxicity after very few administrations, and (2) the prior means indicate

that only the lowest schedule is tolerable, yet the first few subjects fail to expe-

rience toxicity after several administrations. Our approach is to first set the prior

variance of each parameter to one-tenth the magnitude of the corresponding prior

mean and run small simulation studies under settings (1) and (2) and continually

modify the variances until we find values that allow the data to override the prior

means in both settings. We also draw 10,000 samples from each of the priors

and plug those values into Equation (6) to generate 10,000 prior estimates of the

probability of toxicity by ω for each schedule k. We then plot histograms of these

values for each schedule k to visually inspect that the distributions have means

tending to increase with mk and with a modest amount of variability around each

of the means. Figure 2 is an example of such a plot in the context of the numerical

examples of Section 5.

4. Trial Conduct

Once suitable prior distributions are selected, we enroll the first subject on the

lowest schedule, s(1). With each additional subject j = 2, 3, . . . N , the following

procedure is followed:

(1) For each subject i = 1, 2, . . . , j − 1, identify si, the number and timing
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of administrations, Ui, the length of follow-up, and Ci, an indicator for the

occurrence of toxicity;

(2) Insert the data into the likelihood in Equation (??) and combine it with the

prior to sample from the posterior distributions of φ = (α, γ) and β =

(β0, β1) using MCMC;

(3) Plug the posterior means φ̂ and β̂ into Equation (6) and compute for each

schedule k, p̂k = 1−Sk(ω | φ̂, β̂, s(k)), the estimated probability of toxicity

by ω;

(4) Compare all p̂k to pω, the target probability of toxicity by ω. Then, deter-

mine the schedule k with p̂k closest to pω and denote the schedule as k̃;

(5) Let k(j−1) denote the schedule assigned to subject j − 1; assign subject j to

schedule k∗ = min([k(j−1) + 1], k̃);

(6) Stop treating any subjects i = 1, 2, · · · j − 1 who are still receiving admin-

istrations and have received administrations beyond those included in k∗;

(7) Reassign schedule k∗ to subjects i = 1, 2, · · · j − 1 who are still receiving

administrations and are assigned to a schedule other than k∗.

Once all N subjects have been enrolled and fully followed for a maximum of ω

days, the MTS is defined as the schedule satisfying trial conduct rule (4) using the

data of all N subjects.

We now highlight some important aspects in the trial conduct. First, all future

planned treatment for a subject is stopped once a toxicity occurs. Second, conduct

rule (4) uses a criterion, as a function of treatment schedule, that is identical to
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the CRM criterion as a function of dose (O’Quigley et al., 1990). If one were

concerned with further limiting the rate of escalation, an alternative criterion pro-

posed in Braun et al. (2005) could be used that reflects the point estimate p̂k, as

well as the percentage of its corresponding posterior distribution lying above pω.

One could further modify conduct rule (4) to terminate the study if all p̂k were

greater than pω, subject to a minimum accrual requirement. Third, conduct rule

(5) forbids non-incremental schedule escalation, so that each subject can be as-

signed to at most the next-longest schedule beyond that of the preceding subject.

However, we do not put any constraint on schedule de-escalation, i.e. we enroll

the next subject on the recommended schedule if it is shorter than the schedule

assigned to the preceding subject. Fourth, conduct rules (6) and (7) are imple-

mented to promote patient safety while increasing the likelihood that each patient

is assigned to the actual MTS. Note that this feature of schedule reassignment was

not discussed in the approach of Braun et al. (2005), although such an approach

could be easily implemented.

5. Numerical Studies

We compared the performance of our algorithm with that of Braun et al. (2005)

in a variety of settings via simulations programmed in SAS (SAS Institute Inc.,

Cary, NC, USA). We adopted the motivating example of Braun et al. (2005),

a study in which investigators wished to study K = 6 schedules corresponding

to 2, 4, 6, 8, 10, 12 weeks of therapy. Each week of therapy consisted of three

consecutive daily doses followed by four consecutive days of rest so that schedule

k consisted of mk = 6k administrations. The maximum period to monitor toxicity

was specified to be ω = 100 days. Our goal was to determine how long a subject

could be treated while maintaining the cumulative probability of toxicity by ω to
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be as close as possible to the threshold value, pω = 0.40.

We studied the design with a maximum sample size of N = 30 patients, which

is feasible in Phase I trials and one that we have also found is sufficient to deter-

mine the MTS with reasonable accuracy. In each simulation, subject interarrival

times were assumed to be uniformly distributed within 12 to 16 days. The first

subject was assigned to the shortest schedule, with subsequent schedule assign-

ments based upon the optimal schedule determined from the methods described

in Section 4. At each interim analysis, a single chain of 5000 observations, after

a burn-in of 1000 observations was drawn from the posterior distribution of each

parameter.

We performed simulations in a series of eight scenarios; the actual proba-

bilities of toxicity within 100 days for each schedule in all scenarios are shown

in Table 1. The first six scenarios correspond to settings in which schedule s(j)

was optimal for scenario j, j = 1, 2, . . . 6 and there is relatively small differential

change in the toxicity probabilities as the schedules increase. The final two sce-

narios correspond to settings in which there is a large jump in toxicity probabilities

near the MTS; in scenario 7, the true MTS is schedule 3, while in scenario 8 the

MTS lay between schedules 3 and 4. The proximity of toxicity probabilities for

neighboring schedules impacts the ability of any algorithm to identify the target

schedule. Therefore, we quantify the difficulty in identifying the optimal schedule

in each scenario with a measure ∆p, which is the average absolute distance of pω

from the toxicity probabilities. The value of ∆p for each scenario is shown in the

final column of Table 1; smaller values indicate greater difficulty in locating the

MTS. Thus, we predict that the MTS is easier to identify in scenarios 1,2,7, and

8 and harder to identify in scenarios 3-6. In all simulations, toxicity times were
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not simulated under our assumed model; instead, toxicity times were simulated to

occur uniformly over the interval [10 + 14(j − 1), 10 + 14j] under schedule s(j).

As a result, not only can we directly compare the two approaches, we can also

examine the performance of our algorithm under model misspecification for the

toxicity times.

[Table 1 about here.]

With regard to the prior distributions for φ and β, the investigators supplied

the values P1 = 0.09, P2 = 0.17, P3 = 0.23, P4 = 0.29, P5 = 0.35, P6 = 0.40.

Thus, they believed the longest schedule, s(6), was optimal, a belief that led to a

misspecified prior for all but the sixth scenario. The investigators also believed

that one administration had a limiting cumulative probability Q0 = P1/6 (one-

sixth of the shortest schedule), with corresponding cumulative probabilities of

toxicity Q1 = Q0/4 and Q2 = Q0/2 at times t1 = 6 days and t2 = 9 days, respec-

tively. From these elicited values, we used the methods described in Section 3 to

estimate the mean hyperparameter values µα = 2.2, µγ = 0.1, µβ0 = −4.3 and

µβ1 = 1.1. Through a detailed sensitivity analysis, we identified variance hyper-

parameter values σα = 0.50, σγ = 0.20, σβ0 = 1.2 and σβ1 = 0.3 that allowed for

adequate performance of our algorithm. Figure 2 displays histograms of 10,000

draws from the resulting priors of F (100|φ,θ, s(j)) for j = 1, . . . , 6. As expected,

the prior for schedule 6 is centered most closely to the target pω = 0.40 and the

centers of the distributions increase with the number of administrations. The prior

distributions used for the triangular model of Braun et al. (2005) were derived as

described in their manuscript, assuming the longest schedule was optimal and one

administration had a hazard of 18 days and a peak at 2± 2 days.
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[Figure 2 about here.]

The results in Table 2 demonstrate that both approaches do an excellent job

of identifying the MTS even when their corresponding assumed models do not

reflect the actual toxicity times. However, this result is not unexpected, as the

MTS selected at the end of the study is impacted strongly by the overall rate of

toxicity and less so by the actual times of toxicity. The times of toxicity instead

influence the schedule assigned to each subject during the study and influence the

overall percentage of subjects assigned to a neighborhood of the MTS. And with

regard to this latter metric, we see that our approach does a slightly better job in

some scenarios of assigning subjects to schedules close to the MTS. For example,

our approach assigned an average of 55% of subjects within a neighborhood of the

MTS in scenario 2, as compared to 43% with the approach of Braun et al. (2005);

the corresponding percentages in scenario 6 are 60% and 52%, respectively.

However, no clear trend exists as to which approach does a better job of as-

signing subjects during a study. A worthy area for future research would be to

formally assess whether one approach is more likely than the other to respond to

the actual toxicity times and adjust patient assignments accordingly. Regardless, it

is very encouraging that both approaches perform well in scenarios 7 and 8 when

there is a drastic increase in the risk of toxicity at schedules beyond the true MTS,

even when toxicities have a very late time of onset.

[Table 2 about here.]

6. Conclusion

In this paper, we have proposed a non-mixture cure model to identify an opti-

mal schedule among a fixed number of possible nested treatment schedules. Via
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simulation, we have demonstrated the excellent operating characteristics of our

algorithm when the assumed model is misspecified, as well as when the prior is

incorrectly specified. By adopting a cure model framework, we have created a

very flexible design that can be used in a variety of settings and allows for the

adjustment of patient-level characteristics as sample size permits. We want to em-

phasize that we did not seek to improve the results of Braun et al. (2005), but

rather to develop a more flexible and appealing model for the cumulative hazard

of toxicity. Based upon our arguments in Section 1 and the simulation results in

Section 5, we feel our approach is an extremely useful contribution to the design

of schedule-finding studies.

We have begun to extend our algorithm by including dose as a covariate in our

model for the cure fraction and plan to further examine this algorithm to that pro-

posed in Braun et al. (2007). Our approach would assume proportional hazards

among doses, which may seem overly restrictive to some readers. However, it is

recognized in dose-finding studies that the specific parametric model used is of

mild consequence, as the goal of the design is only to identify the optimal dose

rather than estimate the probability of toxicity across a continuum of doses. A

similar argument can be made for the assumption of proportional hazards, as we

suspect that such an assumption will still lead to correct identification of optimal

dose and schedule combinations with fewer parameters, although not accurately

estimating the probability of toxicity among all dose and schedule combinations.

Nonetheless, we could allow the parameters α and γ to vary by dose if propor-

tional hazards was not a reasonable assumption. We can also easily generalize

our model to allow for hazards that change with each administration by modeling

the hazard parameters as a function of administration number or the time between
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administrations.

Our model can be used for the design of any clinical trial in which investiga-

tors wish to measure the impact of multiple administrations on a binary outcome.

Thus, our algorithm could be used in a Phase II study seeking to determine how

many administrations are necessary for a desired rate of efficacy, or in a Phase

III study comparing two different schedules or doses of the same agent or two

different agents in a large sample of (randomized) subjects. Furthermore, if our

methods were applied to a large cohort of subjects like that in a Phase III trial, we

could model the single-administration hazard non-parameterically with standard

techniques rather than forcing a parametric pattern on the event times.

We could also extend our models to allow for optimal treatment schedule find-

ing with combinations of two agents where both agents have a multiple treatment

schedule. In this scenario, our outcome remains the time to toxicity; however, the

non-mixture cure model would incorporate main effects of both agents into the

cure fraction, as well as a term for any possible interaction between the agents.

The more challenging aspect of this design is how to incorporate both agents into

the time to toxicity hazard, as the two agents will likely differ in both the number

of administrations, as well as the times of administration. Nonetheless, once we

have a reasonable model, the Bayesian estimation procedures developed in this

paper could be used in the design for evaluating the combination therapies.
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Figure 1. Visual representation of single administration hazard based upon Equa-
tion (3) with α = 2, γ = 4, and θ = 0.3.
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Figure 2. Empirical prior distributions for cumulative probability of toxicity by
day 100 for each schedule. Solid vertical line represents median.
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Table 1
Numeric description of scenarios 1-8

Probability of DLT by ω
Scenario 1 2 3 4 5 6 ∆p

1 0.40 0.64 0.79 0.87 0.92 0.95 0.36
2 0.23 0.40 0.54 0.64 0.72 0.79 0.21
3 0.16 0.29 0.40 0.49 0.57 0.64 0.14
4 0.12 0.23 0.32 0.40 0.47 0.54 0.12
5 0.10 0.19 0.26 0.34 0.40 0.46 0.13
6 0.08 0.16 0.23 0.29 0.35 0.40 0.15
7 0.10 0.20 0.30 0.60 0.70 0.80 0.25
8 0.20 0.30 0.40 0.70 0.80 0.90 0.25
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Table 2
Comparison of proposed design to that of Braun,et al (2005) with an incorrectly
specified model. For each scenario, each entry is the percentage of simulations in

which each schedule was chosen as optimal, with the average percentage of
patients assigned to each schedule in parentheses. Line A corresponds to the

results using the proposed model; Line B corresponds to the results using
Braun,et al (2005). Boldfaced values correspond to schedules within a 10 point

neighborhood of pω = 0.40

Schedule (number of weeks)
Scenario Method 1 (2) 2 (4) 3 (6) 4 (8) 5 (10) 6 (12)

1 (A) 90 (60) 9 (26) 1 (9) 0 (3) 0 (2) 0 (0)
(B) 88 (58) 12 (33) 0 (6) 0 (2) 0 (1) 0 (0)

2 (A) 29 (33) 61 (55) 8 (10) 2 (1) 0 (1) 0 (0)
(B) 25 (20) 60 (43) 15 (24) 0 (8) 0 (3) 0 (2)

3 (A) 9 ( 7) 25 (25) 41 (24) 19 (22) 6 (14) 0 (8)
(B) 8 (14) 29 (23) 45 (32) 16 (18) 2 ( 9) 0 (3)

4 (A) 4 (10) 20 (18) 27 (22) 32 (26) 14 (13) 3 (9)
(B) 3 ( 9) 18 (17) 23 (18) 34 (28) 15 (16) 7 (11)

5 (A) 0 (3) 4 ( 4) 19 (23) 26 (30) 34 (25) 17 (15)
(B) 0 (2) 2 (14) 22 (22) 27 (20) 33 (28) 16 (14)

6 (A) 0 (2) 0 ( 4) 11 ( 9) 22 (25) 27 (28) 40 (32)
(B) 0 (3) 0 (11) 12 (16) 20 (18) 25 (22) 43 (30)

7 (A) 10 ( 9) 25 (25) 37 (28) 20 (15) 6 (11) 2 (10)
(B) 4 (11) 37 (27) 41 (36) 13 (13) 4 ( 7) 1 ( 6)

8 (A) 2 (2) 27 (25) 41 (30) 19 (24) 9 (11) 2 (6)
(B) 6 (5) 30 (24) 42 (33) 13 (19) 8 (11) 1 (8)
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