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A Mechanistic Latent Variable Model for Estimating

Drug Concentrations in the Male Genital Tract

Leena Choi∗, Brian S. Caffo, Charles Rohde†, Themba T. Ndovi, and Craig W. Hendrix‡

June 23, 2005

Abstract

The purpose of this study is to develop statistical methodology to facilitate indirect esti-

mation of the concentration of antiretroviral drugs and viral loads in the prostate gland and

the seminal vesicle. The differences in antiretroviral drug concentrations in these organs

may lead to suboptimal concentrations in one gland compared to the other. Suboptimal

levels of the antiretroviral drugs will not be able to fully suppress the virus in that gland,

lead to a source of sexually transmissible virus and increase the chance of selecting for drug

resistant virus. This information may be useful selecting antiretroviral drug regimen that

will achieve optimal concentrations in most of male genital tract glands. Using fraction-

ally collected semen ejaculates, Lundquist (1949) measured levels of surrogate markers in

each fraction that are uniquely produced by specific male accessory glands. To determine

the original glandular concentrations of the surrogate markers, Lundquist solved a simul-

taneous series of linear equations. This method has several limitations. In particular, it

does not yield a unique solution, it does not address measurement error, and it disregards

inter-subject variability in the parameters. To cope with these limitations, we developed a

mechanistic latent variable model based on the physiology of the male genital tract and

surrogate markers. We employ a Bayesian approach and perform a sensitivity analysis with

regard to the distributional assumptions on the random effects and priors. The model and

Bayesian approach is validated on experimental data where the concentration of a drug

should be (biologically) differentially distributed between the two glands. In this example,

the Bayesian model-based conclusions are found to be robust to model specification and
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this hierarchical approach leads to more scientifically valid conclusions than the original

methodology. In particular, unlike existing methods, the proposed model based approach

was not affected by a common form of outliers.

keywords: latent variable model, structural model, mechanistic model, Bayesian, Lundquist’s

method

1 Introduction

The purpose of this study is to develop statistical methodology to estimate the concentration

of antiretroviral drugs and viral loads in the prostate gland and the seminal vesicle. Estimates

of concentration in these subcompartments of the male genital tract may provide important

information about the Human Immunodeficiency Virus (HIV). In particular, if a drug concentration

in one of these subcompartments is low, it may provide a sanctuary for the virus, allowing it to

develop a resistance to the drug. Thus, understanding the partition of drug concentration in

the prostate gland and the seminal vesicle may give valuable information for the mechanism of

developing a drug-resistant virus. This information can also be used to choose a drug regimen

to minimize the risk of drug-resistance in HIV infected patients (Ndovi, 2005). Unfortunately,

however, it is extremely invasive to measure these concentrations directly.

To evaluate drug concentration in subcompartments of the male genital tract, Ndovi (2005)

and Ndovi et al. (2005) use several surrogate markers in fractionally collected ejaculates; that

is, binning a ejaculate over time. They then applied Lundquist’s method (1949) to estimate the

concentrations. Lundquist’s method involves solving a linear system of equations to estimate

the amount and composition of the secretions from fractionally collected ejaculates. Though

Lundquist’s work is foundational, and offered the first method for estimating these concentrations

in a completely non-invasive manner, it is statistically unappealing. In particular, the system

of equations is not unique, often yielding extremely different solutions depending on the set

of equations chosen. Moreover, the uncertainty in the estimates due to measurement error is

ignored. Furthermore, the resulting estimates are individual specific, with no inherent method to

integrate the information about the concentration parameters across subjects.

In this manuscript we develop a mechanistic (structural) model based on the underlying

physiological theory for the male genital tract to estimate the drug concentrations in the prostate

gland and the seminal vesicle. Our reliance on scientifically motivated (mechanistic) models

rather than purely empirical ones is motivated by the fact that the number of subjects and

observations per subject for this kind of study is small, whereas the between-subject heterogeneity

is relatively large. To construct our mechanistic model, we employ a latent variable that connects
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the underlying theory developed by Lundquist with biomarkers unique to accessory glands of the

male genital tract. The resulting model is implemented within a Bayesian framework. Since there

is little prior information and also little information to validate the latent variable distributions, we

performed a sensitivity analysis with several choices of distributions for prior and random effects.

The manuscript is presented as follows. Current methods, the underlying scientific theory and

the rationale for our mechanistic (structural) model, are introduced in Section 2. In Section 3, we

describe a data set from an experiment investigating differential distribution of salicylic acid (the

primary metabolite of aspirin) and present exploratory analyses and an empirical model. Section

4 discusses several choices of Bayesian models while Section 5 summarizes results for the salicylic

acid study. A summary and discussion follows in Section 6.

2 Background

Before describing the mathematical theory, we overview the experimental process and some of the

biological theory. In a split ejaculate experiment, subjects are given a device similar to a pill-box

that contains several chambers. The subjects ejaculate into the box, separating the ejaculate

into three to five of the bins. Therefore, the semen in the first bin should represent early-stage

ejaculate. After collection, a technician takes the sequenced ejaculate and measures its volume,

the concentration of the drug or virus and of biomarkers. The importance of the biomarkers will

be made clear in what follows. From this information, researchers would like to estimate the

concentration of the drug or virus in the prostate gland or seminal vesicle.

Lundquist (1949) was the first to develop a systematic approach to solving this inverse prob-

lem. His methods require three fundamental physiological assumptions:

Assumption 1 The ejaculate fluid is only contributed from the prostate gland and the seminal

vesicle or that the contribution from other glands may be ignored with respect to the

purpose of estimating the drug concentration.

Assumption 2 The semen is not mixed completely in the urethra before ejaculation.

Assumption 3 The relative contribution of the prostate gland and the seminal vesicle is time

dependent. That is, the amount contributed from the prostate gland decreases and the

amount contributed from the seminal vesicle increases over time as shown in Figure 1. The

gray portion in each fraction originates from the prostate gland, which is decreasing over

time, whereas the white portion originates from the seminal vesicle, which is increasing. For

example, at the beginning of ejaculation, 100% of the semen originates from the prostate
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gland and 0% of the semen from the seminal vesicle; at the end of ejaculation, 0% of the

semen originates from the prostate gland and 100% from the seminal vesicle. At some time

point, they assume that if 30% originates from the prostate gland, then 70% originates

from the seminal vesicle.

Using these assumptions, the observed concentrations of the drug and two biochemical mark-

ers, Lundquist’s method can be applied to estimate the individual-specific drug concentrations.

Suppose there are three fractions of ejaculate fluid (j = 1, 2, 3). Let cj be the measured drug/viral

concentration and wj be the observed total volume of ejaculate fluid in fraction j. Interest lies in

estimating the drug concentrations in the prostate gland (θ(p)), the concentration in the seminal

vesicle (θ(v)) and their ratio. Let Pj be the volume of prostate fluid and Vj be the volume of

seminal vesicle fluid in fraction j. The measured and unmeasured quantities and the notations

along with the origins of portions in each fraction are illustrated in Figure 1.

Lundquist’s method estimates θ(p) and θ(v) by solving a system of linear equations using any

two of the three fractions. For illustration, consider Fractions 1 and 2 (j = 1, 2). According to

Assumptions 1 and 2, the observed drug concentration cj is the result of the mixing of the two

drug concentrations contributed from the prostate gland and the seminal vesicle, one from θ(p)

diluted by factor Pj/wj and the other from θ(v) diluted by factor Vj/wj. That is,

c1 = θ(p) P1

w1

+ θ(v) V1

w1

and c2 = θ(p) P2

w2

+ θ(v) V2

w2

, (1)

which yields,

θ̂(v) =
c1w1 − (c2w2)(

P1

P2
)

V1 − V2(
P1

P2
)

and θ̂(p) =
c2 − θ̂v(

V2

w2
)

P2

w2

. (2)

Notice that only the total volume, not the organ-specific volumes, Pj and Vj, are measured

directly. Therefore, (2) is not identified. However, Pj and Vj can be estimated by two biochemical

markers, prostate specific antigen (PSA) and the fructose. These markers are known to originate

exclusively from the prostate gland and the seminal vesicle respectively.

To estimate Pj and Vj, we follow the same development as in Equation (1). The observed

PSA concentration in fraction j, aj, is the concentration of PSA in the prostate gland, A, diluted

by the proportion of the ejaculate originating from the prostate Pj/wj. Similarly, the observed

fructose concentration in fraction j, bj, is the concentration of fructose in the seminal vesicle,

B, diluted by the proportion of the ejaculate originating from the seminal vesicle Vj/wj. Thus,

these relationships can be expressed as:

aj = A
Pj

wj

+ 0
Vj

wj

and bj = 0
Pj

wj

+ B
Vj

wj

. (3)
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The 0 concentrations are added to draw a parallel with Equation (1); the PSA concentration in

the seminal vesicle is 0 and the fructose concentration in the prostate gland is 0. Notice that

neither A nor B is known. Rearranging this equation yields

Pj

wj

=
aj

A
and

Vj

wj

=
bj

B
. (4)

That is, the proportional contribution of the prostate gland (seminal vesicle) to the jth frac-

tion of the ejaculate is equal to the ratio of the observed PSA (fructose) in fraction j to the

PSA (fructose) in the prostate gland (seminal vesicle). Throughout, we use Pj/wj and Vj/wj

interchangeably with aj/A and bj/B respectively.

Assumption 1 states that the sum of the contributions from each subcompartment is 1. Thus,

Pj/wj + Vj/wj = 1 and hence

aj/A + bj/B = 1. (5)

Therefore, with two observed fractions, say 1 and 2, Equation (5) yields two equations with two

unknowns. The solution is

B̂ =
a1b2 − a2b1

a1 − a2

and Â =
a1

1 − b1
B̂

.

Of course, by the equivalence given in (4), these estimates yield estimates, say P̂j and V̂j, which

can be used in (2).

Notice that the resulting estimates for A, B, θ(p) and θ(v) depend on which pair of fractions

are used (j = 1, 2, j = 1, 3 or j = 2, 3). Furthermore, directly solving these equations as such

ignores the boundary constraint that all of the concentrations must be positive. Though the latter

problem could be addressed by linear programming, the former is more intractable. To illustrate,

Table 1 shows examples of the variability in the estimates for a data set that will be introduced

in Section 3. There is substantial variability in the estimates depending on the fractions chosen.

One method to mitigate this problem, at least with regard to A and B, is as follows. Recall

that, as shown above, aj = A− A
B

bj. Therefore, Ndovi et al. (2005) estimate A as the intercept

of a linear regression fit of aj (the response) on bj (the regressor). The estimate of B can

be obtained as the negative of the estimated intercept divided by the estimated slope. It is

informative to consider the biological justification for this linear regression. Imagine that there

is a fraction, say Fraction 0, which is collected immediately prior to ejaculation (which is, of

course, not attainable). Then, because there is no contribution from the seminal vesicle in

this fraction, it should contain no fructose. The PSA concentration of this fraction, under our

linearity assumptions, is indeed the PSA concentration in the prostate gland. The same exercise
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can be done on a conceptual final fraction of ejaculate (just after the completion of ejaculation)

containing only fructose and no PSA, having originated from only the seminal vesicle.

The decision to regress aj on bj is arbitrary. Estimates can be obtained in the same way

using the reversed regression relationship, bj = B − B
A
aj. In this case, the estimate of B is the

estimated intercept while the estimate of A is the negative estimated intercept divided by the

slope. However, we recommend a strategy by which the two intercepts are used to estimate A

and B. The intercept from regressing aj on bj yields the estimate for A while regressing bj on

aj yields the estimate for B.

The impact of which regression strategy is chosen is illustrated in Table 2 using the data in

Section 3. The absolute values of Â and B̂ obtained by the negative intercept divided by the slope

are consistently larger than Â and B̂ estimated by the regression intercepts. This discrepancy is

due to measurement errors in the independent variables, which causes the estimated slopes to be

attenuated (Fuller, 1987). Hence, the resulting estimates are inflated, as they are divided by the

attenuated slopes. If the (aj, bj) pairs lie exactly on a line, all of the methods agree, including

using only two of the fractions.

Before continuing, we summarize the principal statistical limitations in existing methodologies

that we are attempting to address. Using only two of the fractions to estimate θ(p) and θ(v)

disregards a substantial amount of information, and also eliminates any information regarding

within-subject (measurement) error. Note that experimentally reducing the number of fractions

collected to only two would yield unique solutions. However, this is not recommended because of

large measurement errors and also this would aggregate important temporal information. Also,

current practice only yields point estimates with no immediate method for assessing uncertainty

at any stage. In particular, measurement error and the error in estimating A and B are ignored.

Moreover, all estimation methods are individual-specific. There is also no immediate method for

combining information across subjects.

In addition to these limitations, the biological assumptions may not hold. For example,

consider Figure 2 which displays PSA concentration (aj) by fructose (bj) for the data in Section

3. In instances such as Subject 18, the PSA and fructose concentrations are very similar over

all fractions of the ejaculate. This suggests that the semen was completely mixed in the urethra

before ejaculation. That is, the temporal information was lost. In this instance, there is no

information to estimate drug concentrations using Lundquist’s method or Ndovi et al. (2005)’s

modified version of Lundquist’s method. Moreover, any attempt to combine estimates across

subjects that disregards the error in estimating A and B would be thwarted by this subject’s

outlying estimate.

http://biostats.bepress.com/jhubiostat/paper79
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3 A Validation Data Set

A preliminary study was conducted to develop and test methodology to later study how antiretro-

viral drugs and viral load distribute differentially to the prostate gland and the seminal vesicle.

aspirin (ASA) was administered to 13 healthy male volunteers (Ndovi, 2005). This drug was

chosen based on the pKa, 2.8, of its primary metabolite, salicylic acid (SA), a weak acid. The

pH of the two organs is differential. The seminal vesicle is basic (pH = 7.8) while the prostate

gland is acidic (pH = 6.6). Thus, the experimental hypothesis is that SA, according to the

pH−pKa partition hypothesis, will be found at higher concentrations in the seminal vesicle than

the prostate. Because the direction of the differential concentration of this drug is known, this

experiment is useful to debug and validate both experimental and statistical methods.

Recall that Equation (4) equates the ratio of the observed PSA in fraction j and the PSA

in the prostate gland (aj/A) to the proportion of the ejaculate originating from the prostate

(Pj/wj). Also it equates the ratio of the observed fructose in fraction j and the fructose in the

seminal vesicle (bj/B) to the proportion of ejaculate originating from the seminal vesicle (Vj/wj).

Therefore, under Lundquist’s Equation (1), it is informative to plot the concentration of SA (cj)

on both aj/A and bj/B (Figures 3 and 4). Here A and B were estimated as described in the

previous section as the intercepts of separate linear regression fits. Notice that the range of aj/Â

and bj/B̂ lies in (0, 1), except for Subject 18.

Figure 3 illustrates that the concentration of SA decreases as the fraction of contribution

from the prostate gland increases. Similarly, Figure 4 illustrates that the SA concentration

increases as the fraction of contribution from the seminal vesicle increases. This implies that

the SA concentration in the seminal vesicle is likely to be higher than that in the prostate gland,

supporting the hypothesis of differential distribution for this drug.

These exploratory figures agree with Lundquist’s Equations (1) and (4). Furthermore, there

appears to be a negative relationship between the contribution from the prostate gland and the

seminal vesicle; that is, Assumption 3 appears to be reasonable. However, Assumption 2 may

not be valid for subjects such as Subject 18. All pairs of measurements for Subject 18 are very

similar, implying that the semen of this subject is nearly completely mixed in the urethra before

ejaculation. Hence, this individual displays no information for estimating A and B. Notice also

that B̂ is a small negative value (which is theoretically impossible) and hence the range of bj/B̂

is far from (0, 1).
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3.1 Two-stage regression

Before taking on more aggressive modelling, we consider a two-stage model fit to the data. We

use the results of these fits to guide model building. The first stage of this approach estimates

A and B using the intercepts of linear regression fits of ai on bi and bi on ai, as discussed in

Section 2. Taking the intercepts obtained by reversing the regression relationships was motivated

by Winsor (1946). This approach eliminates the attenuation seen in Table 2 when only one

regression equation is employed. Also, it is more convenient, as there is no need to decide which

variable to treat as the response and which to treat as the predictor.

To obtain estimates of θ(p) and θ(v), we treat Lundquist’s equation as a regression relationship

with mean model

E[cj] = θ(p)aj

Â
+ θ(v) bj

B̂
.

That is, we regress cj on aj/Â and bj/B̂ through the origin. The results of the two-stage

regression fits are given in Table 3.

Notice that, unlike existing methods, this two-stage approach yields a unique solution. Also,

no negative values are recorded, despite the lack of boundary constraints. Therefore, we view

this approach as an improvement over Lundquist’s original method and currently implemented

modifications (Ndovi et al., 2005). However, as illustrated in Table 3, it is important to account

for the error in estimating A and B. If the error in estimating A and B is disregarded, then

observations with very high variance, such as 18 and 19, would dominate any attempt to combine

the estimates of θ(p), θ(v) or their ratio across subjects. These inadequacies could potentially be

addressed within this two-stage framework, via bootstrapping strategies, for example. However,

because of the small number of subjects and multilevel structure in the data, we prefer a more

model based approach.

4 A Multilevel Latent Variable Model

In this section we create a model that accounts for between-subject heterogeneity in the parame-

ters and employ a mechanistic latent variable to account for variation in the unknown fraction.

Here, we distinguish between random effects, which we view as a tool for modelling population

level heterogeneity in parameters, and the mechanistic latent variable, which we view as an un-

derlying biological construct. Of course, this distinction applies to interpretation; mathematically,

the two kinds of unobserved variables are handled identically.

Expanding the prior notation, let aij, bij and cij represent the concentration of PSA, fructose

and the drug/virus, respectively, on subject i = 1, . . . , I for fraction j = 1, . . . , Ji. Let Ai be

http://biostats.bepress.com/jhubiostat/paper79



9

the PSA concentration in the prostate gland and Bi be the fructose concentration in the seminal

vesicle for subject i. Similarly, let θ
(p)
i be the drug concentration in the prostate gland and θ

(v)
i

be the drug concentration in the seminal vesicle for subject i. We assume the following model

on the observed concentrations

aij | Ai, fij ∼ N
{

Ai(1 − fij), τ
−1
a

}

bij | Bi, fij ∼ N
{

Bifij, τ
−1
b

}

cij | aij, bij, fij ∼ N
{

θ
(p)
i (1 − fij) + θ

(v)
i fij, τ

−1
c

}

The mean model in these distributions for each subject, are exactly Lundquist’s Equations (1) and

(3). The latent variable fij represents Vij/wij, the fractional contribution of the total ejaculate

from the seminal vesicle for subject i. Because of Assumption 1, (1 − fij) represents Pij/wij,

the fractional contribution from the prostate gland for subject i. Figure 5 shows a simplified

anatomical diagram of the accessory reproductive organs in males along with the parameters and

the latent variable fj.

The unobserved variables Ai and Bi are assumed to follow normal distributions with means

A and B (respectively) and precisions τA and τB (respectively). That is,

Ai ∼ N{A, τ−1
A } and Bi ∼ N{B, τ−1

B }.

Because the latent variable, fij, is bounded by (0, 1), it is naturally assumed to be Beta(α, β).

Here we assume that the Ai, Bi and fij are mutually independent of each other and of θ
(p)
i and

θ
(v)
i , because there is no physiological reason to suspect that PSA, fructose and the drug are

correlated.

Because they are the central quantities of interest, we investigated several choices of distribu-

tions for θ
(p)
i and θ

(v)
i . We considered both bivariate normal or bivariate log-normal distributions,

with and without positivity constraints,

(

θ
(p)
i

θ
(v)
i

)

∼ BVN

{(

θ(p)

θ(v)

)

, Ω

}

or

(

log θ
(p)
i

log θ
(v)
i

)

∼ BVN

{(

log θ(p)

log θ(v)

)

, Ω

}

Recall that θ
(p)
i and θ

(v)
i both represent the concentration of the drug under study. Therefore,

it is important to consider the possibility that they are correlated, in either direction. A positive

correlation might occur because the drug concentrations in both subcompartments depend on the

overall drug concentration in the blood; the higher the drug concentration in the blood, the higher

are the drug concentrations in most of organs in the body. On the other hand, the concentrations

might be negatively correlated because if more of the drug goes into one compartment, less of
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the drug is available to go into the other. Depending on the drug, these effects could also cancel

each other out or one direction could dominate. We note that with only 13 subjects, there is

almost no evidence in the data to verify this assumption. Therefore, for both the normal and

log-normal models, we consider instances where the correlation is present or forced to 0.

The likelihood and notational model specification can be found in Appendix A. Although

the models may be categorized within the framework of hierarchical linear models, there are

several challenges that prevent fitting via commercially available statistical packages. First, there

are multivariate outcomes, all of which involve the latent variable and random effects. Second,

the distribution of the latent variable, fij (Beta{α, β}), is non-conjugate. Third, the latent

variable is indexed by both the subject level, i, and the within subject level, j. To address

these computational challenges, we explored both maximum likelihood (ML) via the Monte-Carlo

Expectation and Maximization (MCEM) algorithm and Bayesian modelling via Markov chain

Monte-Carlo (MCMC). We found that the MCEM/ML solution was less convenient, with no

applicable software, requiring extensive reprogramming with minor model respecifications. The

Bayesian modelling/MCMC approach proved to be more flexible, easier to implement and allowed

us to consider a wider variety of models. Overall, the two approaches provided similar results on

a subset of the models.

4.1 Inference based on a Bayesian modelling

We fit the model under a Bayesian framework using MCMC methods implemented with WinBUGS

(Spiegelhalter et al., 1996). We used diffuse priors on the hyperparameters. In particular, the

prior distributions on θ(p) and θ(v) were either diffuse normal or diffuse log-normal having means of

0 and precisions of 10−4. We considered both priors with and without the positivity constraints.

The mean parameters, A and B, had independent diffuse normal priors, again with means of 0

and precisions of 10−4. All of the precisions parameters, τa, τb, τA and τB, were given gamma

priors with shapes and scales of 10−3. The same prior was used for the precision parameters for

θ
(p)
i and θ

(v)
i when they were treated as uncorrelated. When an unstructured correlation matrix

was used, Ω, it was given a Wishart distribution prior centered at an identity matrix with 2 degrees

of freedom.

5 Analysis of the Salicylic Acid Data

Figures 6 and 7 show the posterior distributions, posterior means and 95% credible intervals for the

parameters of interest: θ(p), θ(v) and θ(p)/θ(v). The left panels show the posterior distributions for
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the cases where θ
(p)
i and θ

(v)
i are treated as correlated, while the right panels show the posterior

distributions for the cases where θ
(p)
i and θ

(v)
i are treated as uncorrelated. The top, middle

and bottom panels correspond to the normal, normal with positivity constraints and log-normal

distributions. Table 4 summarizes the model specification and their associated layout in Figures

6 and 7.

The rational for the choices of models is as follows. To select candidate models, we plotted

jittered values of θ
(p)
i and θ

(v)
i estimated using the two-stage regression approach (see Figure 8).

Even though it is impossible to check the normality assumptions on θ
(p)
i and θ

(v)
i , this figure

suggests that the marginal distributions are better represented by the truncated normal or per-

haps log-normal distributions because of the skewness. This is especially true for θ
(p)
i , whose

distribution appears to be highly skewed.

Figure 6 shows that the posterior distributions of θ(p) for the log-normal models are shifted

toward 0. Those of the normal model are positioned in the middle of the other two models with the

most spread while those of the truncated normal models are shifted toward large positive values.

On the other hand, the posterior distribution for θ(v) is similar across model specifications. That

is, the posterior distribution of θ(p) appears to be more sensitive to model choice. The empirical

two-stage regression fits shed some light on this behavior. The θ̂
(v)
i appear “better behaved”

than the θ̂
(p)
i in the sense that they are only mildly skewed without a cluster of values near 0.

In contrast, θ̂
(p)
i is highly skewed, with a high proportion of very small positive values. The log-

normal model allows for a high skewness with very small positive values, whereas the truncated

normal models force the distributions toward larger positive values, explaining the shift in the

mean.

Figure 6 indicates that the posterior distributions of θ(p) and θ(v) become slightly closer

together for most models when they are allowed to be correlated, implying that the negative

correlation seems to dominate. That is, the more of the drug in one subcompartment, the less

of the drug in the other. Despite this slight shrinkage, it is important to emphasize that the

posterior distributions of θ(p) and θ(v) are not sensitive enough to the distributional assumptions

for the random effects and priors to change the substantive conclusions.

Overall, Figure 6 shows that the posterior distributions for θ(p) and θ(v) are well separated for

all models via 95% credible intervals. Figure 7 focuses on the ratio of θ(p) and θ(v), the parameter

of central interest. This distribution is mostly below 1 and the 95% credible interval does not

include 1 for all models. The posterior means of the ratio appears to be around .3, suggesting

that the concentration of SA in the seminal vesicle is about three times as much as that in the

prostate gland. Thus, the hypothesis of differential distribution of SA to two subcompartments

is supported by the data. We remind the reader that this conclusion is scientifically well founded,
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as the acidic characteristics of SA makes it more likely to be distributed in the seminal vesicle

which has basic characteristics.

Our model is useful to estimate population-averaged estimates of the drug concentrations

in two subcompartments and the ratio of drug concentrations, which cannot be directly esti-

mated using Lundquist’s method. The proposed Bayesian methodology results in an appropriately

weighted population-averaged estimate to examine the hypothesis of the differential distribution

of SA. In addition, Figures 6 and 7 suggest that the estimates of θ(p), θ(v) and θ(p)

θ(v) are robust to

the distributional assumptions for random effects and priors in drawing the conclusion.

6 Summary and Discussions

We developed a mechanistic model based on physiological theory for fractionally collected ejac-

ulates. To the best of our knowledge, this is the first rigorous statistical development and first

application of Bayesian methodology in this scientific area. Our model is motivated by the struc-

tural theory originally developed by Lundquist and later refined by Ndovi et al. (2005). We

formalized their modelling approach within a hierarchical framework. This framework included

random effects to describe the population level variation in the subject-specific concentration pa-

rameters. Moreover, we utilized a latent variable to represent an unobserved biological construct.

The method was validated on experimental data where the direction of the differential distri-

bution of the drug of interest (salicylic acid) in the prostate gland and seminal vesicle is expected.

This proof-of-concept data set both validated the experimental technique as well as the Bayesian

inference laid out in this manuscript. It is important to emphasize that current methodology

fails to distinguish differential concentration. These results were found to be robust to different

distributional assumptions.

Finally, we emphasize the importance of taking into account the variability in estimating

nuisance concentration parameters. As mentioned, subjects such as Subject 18 offer little or no

information to estimate Ai and Bi, the subject-specific PSA concentration in the prostate gland

and fructose concentration in the seminal vesicle. The working physiological theory is that the

ejaculate becomes too mixed in the urethra for such subjects to differentiate early and late-stage

ejaculate. Current practice tends to rely on ad hoc methods, such as subjectively discarding

data with perceived low information. A principal benefit of the proposed Bayesian approach is

that the uncertainty in estimating these quantities is accounted for within a unified framework.

As a result, posterior estimates of the drug concentration are appropriately shrunk towards an

overall mean. Figure 9 illustrates this by depicting the empirical estimates for the ratio of SA

concentrations in the two compartments based on the two-stage regression approach and the

http://biostats.bepress.com/jhubiostat/paper79
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resulting Bayesian posterior means. It was necessary to present results on the log-scale because

the empirical estimate for Subject 18 was so large. This estimate is not only large, but contrary to

the evidence presented by the remaining subjects. The Bayesian approach appropriately shrinks

this observation towards the overall mean.

A Likelihood and model notation

A.1 Likelihood

L(θ(p), θ(v), Ω, D|y1,y2,y3)

=

∫ m
∏

i=1

ni
∏

j=1

fyij |u(yij|u, Ω)fu(u|θ(p), θ(v), D)du

=

∫ m
∏

i=1

ni
∏

j=1

fyij |u(y1ij, y2ij, y3ij|Ai, Bi, θ
(p)
i , θ

(v)
i , fij, Ω)fu(fij, Ai, Bi, θ

(p)
i , θ

(v)
i |θ(p), θ(v), D) du

=

∫ ∫ ∫ ∫ ∫ m
∏

i=1

ni
∏

j=1

fy1ij
(y1ij|Ai, fij, σ

2
1)fy2ij

(y2ij|Bi, fij, σ
2
2)

× fy3ij
(y3ij|θ

(p)
i , θ

(v)
i , fij, σ

2
3)ffij

(fij|α, β)fAi
(Ai|A, σ2

A)fBi
(Bi|B, σ2

B)

× f
θ
(p)
i

,θ
(v)
i

(θ
(p)
i , θ

(v)
i |θ(p), θ(v), σ2

p, σ
2
v) dfij dAi dBi dθ

(p)
i dθ

(v)
i

=

∫ m
∏

i=1

fy1i
(y1i|A,fi, σ

2
A, σ2

1)fy2i
(y2i|B,fi, σ

2
B, σ2

2)fy3i
(y3i|θ

(p), θ(v),fi, σ
2
p, σ

2
v , σ

2
3)

× ffi
(fi|α, β) dfi (6)

where

yij = (y1ij, y2ij, y3ij), u = (fij, Ai, Bi, θ
(p)
i , θ

(v)
i ),

Ω = (σ2
1, σ

2
2, σ

2
3), D = (α, β,A,B, σ2

A, σ2
B, σ2

p, σ
2
v , ρ),
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and

fy1i
(y1i|A,fi, σ

2
A, σ2

1)

= (2π)−ni/2|Σ1i|
−1/2 exp

{

−
1

2

[

y1i − A(1 − fi)
]t

Σ−1
1i

[

y1i − A(1 − fi)
]

}

fy2i
(y2i|B,fi, σ

2
B, σ2

2)

= (2π)−ni/2|Σ2i|
−1/2 exp

{

−
1

2

[

y2i − Bfi

]t
Σ−1

2i

[

y2i − Bfi

]

}

fy3i
(y3i|θ

(p), θ(v),fi, σ
2
p, σ

2
v , σ

2
3)

= (2π)−ni/2|Σ3i|
−1/2

× exp
{

−
1

2

[

y3i − θ(p)(1 − fi) − θ(v)fi

]t
Σ−1

3i

[

y3i − θ(p)(1 − fi) − θ(v)fi

]

}

ffi
(fi|α, β) =

ni
∏

j=1

Γ(α + β)

Γ(α)Γ(β)
fα−1

ij (1 − fij)
β−1

where

Σ1i = σ2
1Ini

+ σ2
A(1 − fi)(1 − fi)

t,

Σ2i = σ2
2Ini

+ σ2
Bfifi

t, and

Σ3i = σ2
3Ini

+ σ2
p(1 − fi)(1 − fi)

t + σ2
vfifi

t for Model 1 and

Σ3i = σ2
3Ini

+ σ2
p(1 − fi)(1 − fi)

t + σ2
vfifi

t + ρσpσv(1 − fi)fi
t

+ ρσpσvfi(1 − fi)
t for Model 2.

The inverse and determinant of covariance matrices are following:

Σ−1
1i =

1

σ2
1

Ini
−

(σ2
A/σ4

1)(1 − fi)(1 − fi)
t

1 + (σ2
A/σ2

1)(1 − fi)t(1 − fi)

Σ−1
2i =

1

σ2
2

Ini
−

(σ2
B/σ4

2)fifi
t

1 + (σ2
B/σ2

2)fi
tfi

Σ−1
3i = V −1 −

(σ2
v)V

−1fifi
tV −1

1 + σ2
vfi

tV −1fi

where V −1 =
1

σ2
3

Ini
−

(σ2
p/σ

4
3)(1 − fi)(1 − fi)

t

1 + (σ2
p/σ

2
3)(1 − fi)t(1 − fi)

for Model 1

|Σ1i| = (σ2
1)

(ni−1)(σ2
1 + σ2

A(1 − fi)
t(1 − fi))

|Σ2i| = (σ2
2)

(ni−1)(σ2
2 + σ2

Bfi
tfi).

http://biostats.bepress.com/jhubiostat/paper79
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A.2 Model notation

1. The distributions of the observed data aij, bij and cij are:

aij ∼ N{Ai(1 − fij), τ−1
a },

bij ∼ N{Bifij, τ−1
b },

cij ∼ N{θ
(p)
i (1 − fij) + θ

(v)
i fij, τ−1

c }

where τa, τb and τc are precision parameters which are the inverse of variances.

2. The distributions of random effects and the latent variable

• the distributions for the random effects and the latent variable are:

Ai ∼ N{A, τ−1
A }, Bi ∼ N{B, τ−1

B } and fij ∼ Beta{α, β},

where τA and τB are precision parameters.

• the distributions for θ
(p)
i and θ

(v)
i

– uncorrelated θ
(p)
i and θ

(v)
i

θ
(p)
i ∼ N{θ(p), τ−1

p } and θ
(v)
i ∼ N{θ(v), τ−1

v }, or

log θ
(p)
i ∼ N{log θ(p), τ−1

p } and log θ
(v)
i ∼ N{log θ(v), τ−1

v },

where τp and τv are the precision parameters. We put constraints on the range

of θ
(p)
i and θ

(v)
i when considering the normal distribution model so that θ

(p)
i > 0

and θ
(v)
i > 0.

– correlated θ
(p)
i and θ

(v)
i

( θ
(p)
i

θ
(v)
i

)

∼ BVN
{( θ(p)

θ(v)

)

, Ω
}

, or

( log θ
(p)
i

log θ
(v)
i

)

∼ BVN
{( log θ(p)

log θ(v)

)

, Ω
}

where Ω is the precision matrix. Again we positively constrain on θ
(p)
i and θ

(v)
i

when considering the bivariate normal distribution model.

3. The prior distributions

Hosted by The Berkeley Electronic Press



16

• the priors commonly used in all models are:

α ∼ Gamma{0.001, 0.001}, β ∼ Gamma{0.001, 0.001},

A ∼ N{0, 10, 000}, B ∼ N{0, 10, 000}, and

τa, τb, τc, τA and τB ∼ Gamma{0.001, 0.001}

• the prior distributions on the precision parameters for uncorrelated θ
(p)
i and θ

(v)
i models

are:

τp ∼ Gamma{0.001, 0.001} and τv ∼ Gamma{0.001, 0.001}

• the prior distribution on the precision matrix Ω in correlated θ
(p)
i and θ

(v)
i models is:

Ω ∼ Wishart
{( 1 0

0 1

)

, ρ
}

,

where ρ = 2 is degrees of freedom.

• the prior distributions on θ(p) and θ(v) are:

θ(p) ∼ N{0, 10, 000} and θ(v) ∼ N{0, 10, 000}

with the constraint I(θ(p) > 0, θ(v) > 0) depending on models (see Table 4).

• the prior distributions on log θ(p) and log θ(v) are:

log θ(p) ∼ N{0, 10, 000} and log θ(v) ∼ N{0, 10, 000}

with the constraint I(log θ(p) > 0, log θ(v) > 0).
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ID Fractions 1 & 2 Fractions 1 & 3 Fractions 2 & 3 Mean Median

A 8 37.8 34.5 4.3 25.6 34.5

9 141.3 123.8 12.8 92.6 123.8

11 24.6 18.3 1.9 14.9 18.3

B 8 15.1 19.5 30.6 21.7 19.5

9 13.1 14.9 26.5 18.2 14.9

11 12.5 14.2 15.6 14.1 14.2

θ(p) 8 -8.1 1.7 26.4 6.7 1.7

9 -8.6 4.7 26.3 7.5 4.7

11 21.4 3.4 -5.2 6.5 3.4

θ(v) 8 36.6 16.3 -34.3 6.2 16.3

9 66.7 62.4 34.3 54.5 62.4

11 55.3 70.3 81.3 69 70.3

θ(p)/θ(v) 8 -0.22 0.1 -0.77 -0.3 -0.22

9 -0.13 0.07 0.77 0.24 0.07

11 0.39 0.05 -0.06 0.12 0.05

Table 1: The estimate of A, B, θ(p), θ(v) and θ(p)/θ(v) using Lundquist’s method for some subjects

who have 3 fractions.
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Estimates of A Estimates of B

regress aj on bj regress bj on aj regress bj on aj regress aj on bj
ID

(Itc) (− Itc
Slp

) (Itc) (− Itc
Slp

)

2 53.9 54.8 27 27.4

4 75.5 85.6 28.4 30.9

8 33.7 35.4 17.5 18

9 125.8 130.4 14 14.2

11 17.9 19.3 13.6 13.9

12 123.1 132.9 28.1 29.5

13 84 84.6 7.2 7.2

14 149.5 152.7 13.7 14.3

15 97.8 102.4 7.4 7.7

16 25.5 26.8 28.7 32.1

17 126.5 144.1 23.3 25.1

18 25.4 0.1 0 -6

19 79.9 84.9 20.1 25.4

Table 2: The estimates of A and B using different regressions. Here Itc refers to the estimated

intercept of the regression model and Slp refers to the estimated slope.
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ID A B θ(p) θ(v) θ(p)/θ(v)

2 53.9 27.0 6.6 75.1 0.09

4 75.5 28.4 38.8 24.5 1.58

8 33.7 17.5 0.5 23.7 0.02

9 125.8 14.0 0.4 64.0 0.01

11 17.9 13.6 5.2 65.3 0.08

12 123.1 28.1 63.5 111.7 0.57

13 84.0 7.2 40.6 89.6 0.45

14 149.5 13.7 1.2 125.7 0.01

15 97.8 7.4 27.2 66.5 0.41

16 25.5 28.7 33.9 223.0 0.15

17 126.5 23.3 81.6 27.9 2.93

18 25.4 0.0 174.6 0.4 421.57

19 79.9 20.1 39.6 28.6 1.39

Table 3: The estimates of A, B, θ(p), θ(v) and θ(p)/θ(v) using the two-stage regression approach

where A and B are estimated using both regressions.
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Left Panel Right Panel

Distribution of θ
(p)
i and θ

(v)
i Top BVN normal

Prior of θ(p) and θ(v) Panel diffuse diffuse

Distribution of θ
(p)
i and θ

(v)
i Middle BVN w/ pos. constraint normal w/ pos. constraint

Prior of θ(p) and θ(v) Panel diffuse w/ pos. constraint diffuse w/ pos. constraint

Distribution of θ
(p)
i and θ

(v)
i Bottom bivariate log-normal log-normal

Prior of log θ(p) and log θ(v) Panel diffuse w/ pos. constraint diffuse w/ pos. constraint

Table 4: A summary of model specifications and layout corresponding to Figures 6 and 7. The

position in the matrix of models above corresponds to the row and column for the figures.
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Prostate gland

θ(p)

A (B = 0)

Seminal vesicle

θ(v)

B (A = 0)

@
@

@R

�
�

�	

V1 V2 V3

P1 P2 P3

c1 c2 c3a1 a2 a3b1 b2 b3

Fraction 1 Fraction 2 Fraction 3

-

Time

cj : observed drug concentration (or viral load) in fraction j, j = 1, 2, 3

aj : observed PSA concentration in fraction j

bj : observed fructose concentration in fraction j

wj: total volume of ejaculate fluid in fraction j (measured)

Pj: volume of prostate fluid in fraction j (unknown)

Vj: volume of seminal vesicle fluid in fraction j (unknown)

A: PSA concentration in the prostate gland (unknown)

B: Fructose concentration in the seminal vesicle (unknown)

θ(p): drug concentration in the prostate gland (unknown)

θ(v): drug concentration in the seminal vesicle (unknown)

Figure 1: Illustration of Lundquist’s equations. The gray portion in each fraction originates

from the prostate gland, whereas the white portion originates from the seminal vesicle. The aj

originates from A diluted by factor of Pj/wj (% of the gray portion) and likewise the bj originates

from B diluted by factor of Vj/wj (% of the white portion) . The observed drug concentration

cj is the mixture of two drug concentrations contributed from the prostate gland and the seminal

vesicle: one originates from θ(p) diluted by factor Pj/wj and the other originates from θ(v) diluted

by factor Vj/wj.
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Figure 2: Scatter plot and fitted regression line for PSA on fructose by individual.
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Figure 3: Scatter plot and fitted regression line for SA on PSA/Â by individual.
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Figure 4: Scatter plot and fitted regression line for SA on fructose/B̂ by individual.
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Figure 5: Simplified anatomical diagram of accessory reproductive organs in males. A latent

variable fj, j = 1, 2, 3 represents the fraction of contribution from the seminal vesicle in semen.

The fraction of contribution from the prostate gland in semen is represented by 1 − fj. The

parameter A represents the PSA concentration in the prostate gland while the parameter B

represents the fructose concentration in the seminal vesicle. The parameter θ(p) represents the

drug concentration in the prostate gland while θ(v) represents the drug concentration in the

seminal vesicle.

http://biostats.bepress.com/jhubiostat/paper79



27

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 

 

P
os

te
rio

r d
en

si
ty

Cp post. mean : 25.11 
 95% CI ( 2.83 , 49.78 )

Cv post. mean : 85.89 
 95% CI ( 56.55 , 116.9 )

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 

 

P
os

te
rio

r d
en

si
ty

Cp post. mean : 22.23 
 95% CI ( 2.55 , 43.24 )

Cv post. mean : 88.25 
 95% CI ( 53.48 , 123.2 )

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 

 

P
os

te
rio

r d
en

si
ty

Cp post. mean : 29.72 
 95% CI ( 11.05 , 54.3 )

Cv post. mean : 82.62 
 95% CI ( 54.74 , 112.3 )

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 

 

P
os

te
rio

r d
en

si
ty

Cp post. mean : 22.92 
 95% CI ( 5.51 , 40.25 )

Cv post. mean : 87.96 
 95% CI ( 54.03 , 122.5 )

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 

 

P
os

te
rio

r d
en

si
ty

Cp post. mean : 13.07 
 95% CI ( 1.29 , 36.59 )

Cv post. mean : 80.96 
 95% CI ( 48.01 , 120.9 )

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 

 

P
os

te
rio

r d
en

si
ty

Cp post. mean : 16.24 
 95% CI ( 1.32 , 39.09 )

Cv post. mean : 81.55 
 95% CI ( 49.98 , 118.2 )

Figure 6: The posterior distributions of θ(p) (labelled Cp in the plot) and θ(v) (labelled Cv in the

plot) using the models specified in Table 4.
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Figure 7: The posterior distributions of θ(p)/θ(v) using the models specified in Table 4.
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Figure 8: Jittered plot of θ̂p and θ̂v estimated by the two-stage regression approach for 13 subjects.
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Figure 9: The comparison of the estimated ratio of θ(p) and θ(v). The dots in the upper line

present the empirical estimates of the ratio of θ̂p and θ̂v for each subject using the from the

two-stage regression approach and the dots in the bottom line present the posterior mean of the

ratio of θ(p) and θ(v) for each subject using the normal correlated θ
(p)
i and θ

(v)
i model without

constraint (left top model in Table 4). The cross and arrow in the upper line presents the median

of the empirical estimates of the ratio whereas the cross and arrow in the bottom line presents

the posterior mean of the ratio of θ(p) and θ(v) for population.
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