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Space-Time Regression Modeling of Tree
Growth Using the Skew-t Distribution

Farouk S. Nathoo

Abstract

In this article we present new statistical methodology for the analysis of repeated
measures of spatially correlated growth data. Our motivating application, a ten
year study of height growth in a plantation of even-aged white spruce, presents
several challenges for statistical analysis. Here, the growth measurements arise
from an asymmetric distribution, with heavy tails, and thus standard longitudinal
regression models based on a Gaussian error structure are not appropriate. We
seek more flexibility for modeling both skewness and fat tails, and achieve this
within the class of skew-elliptical distributions. Within this framework, robust
space-time regression models are formulated using random effect growth curves,
with coefficients arising from an underlying multivariate spatial process. Compu-
tational difficulties arise when data are collected at a large number of locations,
and we consider two approaches for spatial modeling in the large data context.
Both approaches are compared within the context of our application, and infer-
ence is conducted in a Bayesian framework, with implementation based on hybrid
Monte Carlo.



1. Introduction

The growth of an individual tree is a complex process, influenced by several interacting

factors. Understanding the nature of tree growth is of great importance in forestry, for

breeding program development, as well as in directing selections for seed orchards. To this

end, longitudinal studies of forest ecology often collect data on tree growth over time. Here,

repeated measures are taken across an even-aged stand, and the height of each tree is recorded

over a sequence of time points. Interest will often lie in uncovering relationships between

tree growth and other ecological processes, such as forest insect infestation, or in describing

the variability associated with tree-specific characteristics, such as the genetic origin of trees.

Regression models for repeated measures growth data, particularly methods based on

random effect growth curves (Zimmerman and Núñez-Antón, 2001; Diggle et al. 2002),

are useful for the analysis of such longitudinal data. Typically, the subjects generating the

longitudinal data are assumed independent, and a Gaussian assumption is made for anal-

ysis. In the forest ecology context, interaction through local properties of the landscape,

arising from spatial variation in soil, topographic, geologic and micro-meteorological factors

create spatial dependence in tree growth measurements. Moreover, this spatial structure is

expected to evolve over time as a forest plantation ages, so that dynamic, spatially explicit

models are required. In addition, data on height growth are often markedly non-Gaussian,

exhibiting asymmetry and excess kurtosis, so that robust models accommodating these fea-

tures are needed. Transformations to normality are possible in certain situations; however,

this approach has been criticized, in particular for correlated data (see for example, Azzalini

and Capitanio, 1999). Direct parametric modeling of the skewness and kurtosis through

generalizations of the normal distribution is preferable, as this improves the interpretability

of the regression model inferences.

In this article we present new statistical methodology for the analysis of repeated mea-

sures of spatially correlated growth data. We focus on parametric families capable of accom-

modating, and quantifying, departures from normality. Our motivating application, a ten

year study of height growth in a plantation of juvenile white spruce, presents several chal-

lenges for statistical analysis. The longitudinal growth profiles arising from this study are

depicted in Figure 1, panel (a), and the spatial locations of the trees generating the data are

depicted panel (b). Here, the growth measurements arise from an asymmetric distribution,

with heavy tails, and thus standard longitudinal regression models incorporating Gaussian

errors are not strictly appropriate. We seek more flexibility for modeling both skewness

and fat tails, and achieve this within the class of skew-elliptical distributions (Azzalini and

Capitanio, 2003). Within this framework, space-time regression models are formulated using

random effect growth curves, with coefficients arising from an underlying multivariate spatial
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process. Computational difficulties arise when data are collected at a large number of loca-

tions, and we consider two approaches for spatial modeling in the large data context. The

first, achieves dimension reduction through a discrete process convolution (Higdon, 1998),

while the second is based on a Markov random field representation of the residual spatial

structure (Besag et al., 1991). Both approaches are compared within the context of our

application, with inference conducted in a Bayesian framework, and implementation based

on hybrid Monte Carlo.

Modeling spatially correlated growth data using spatially-varying growth curves was re-

cently considered by Banerjee and Johnson (2006), who develop weed growth models based

on a linear specification. Spatial variability in the intercept and slope coefficients is modeled

through a flexible bivariate spatial process, allowing for non-stationarity and multi-resolution

spatial dependence. Importantly, the methods developed there are applicable under a Gaus-

sian assumption for the observed data; whereas, we seek a more flexible model, as the

Gaussian distribution is a poor representation of the mechanism generating growth data in

many applications, such as the one considered here.

Flexible parametric modeling with skew-elliptical distributions has received considerable

attention in the recent literature (see Genton, 2004). A general formulation of multivariate

skew-elliptical densities has been described by Azzalini and Capitanio (2003), who develop

maximum likelihood inference for the special case of regression models based on the multi-

variate skew-t distribution. Regression modeling with the univariate skew-t distribution has

also been considered by Fernández and Steel (1998), under a slightly different formulation,

with inference conducted in a Bayesian framework. For longitudinal data, linear mixed mod-

els based on skew-elliptical distributions have recently been proposed by Jara et al. (2008),

who introduce skew-elliptical distributions for modeling both data and random effects, as

well as by Ma et al. (2004), where a generalized skew-elliptical distribution is incorporated

for modeling random effects at the second stage of a linear mixed model. For spatial data,

there has been relatively little work in this area, an exception being Kim and Mallick (2004)

who developed methods for spatial prediction based on a skew-Gaussian spatial process,

focussing on asymmetric distributions. The methods developed there are not directly appli-

cable to the analysis considered here. First, we must accommodate spatial data exhibiting

not only skewness but also excess kurtosis. Second, our hierarchical framework incorporates

multivariate spatial random effects corresponding to data observed over n = 4330 locations;

a sample size which seems intractable under the formulation of Kim and Mallick (2004),

based on the required large matrix computations.

We consider two approaches for modeling spatially correlated random effects in a com-

putationally tractable manner. The first is based on a multivariate spatial process derived

through process convolution (Higdon, 1998; Higdon, 2002; Calder, 2007; Zhou and Sansó,

2007). Process convolution models, also known as spatial moving averages, provide an intu-
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itive construction for a spatial process. Importantly, the construction is useful in the analy-

sis of large spatial data when used in conjunction with dimension-reduced approximations.

These approximations have been studied by Kern (2000), and more recently by Xia and

Gelfand (2005), who develop important results regarding stationary process approximation,

based on a kernel solving approach. Our second formulation for spatial modeling is based on

a Markov random field (Besag et al., 1991). Specifically, we assume that random effects arise

under a multivariate generalization of the Gaussian intrinsic autoregression (Gamerman et

al., 2002; Carlin and Banerjee, 2003). Here, the spatial distribution is constructed through

a set of compatible full conditional distributions. This conditional specification ameliorates

the computational difficulty associated with computing the inverse of a large covariance ma-

trix, as the elements of this inverse matrix are modeled explicitly through the conditional

specifications.

We specify our hierarchical models and conduct inference within a Bayesian framework,

implemented through Markov chain Monte carlo (MCMC). Motivated by poor performance

of MCMC samplers based on random walk updating, we develop an algorithm based on hy-

brid Monte Carlo (Gustafson, 1997). The hybrid algorithm works well in accelerating MCMC

convergence with highly parameterized models, particularly when random walk exploration

of the parameter space fails, or proves grossly inefficient.

The remainder of this paper is structured as follows. In Section 2 we review the univariate

skew-normal and skew-t distributions. We discuss some properties of the skew-t distribution,

which make it well suited for modeling data on tree growth, as well as its representation

as a Gaussian mixture, which we shall exploit for model fitting. In Section 3, a formal

hierarchical Bayes space-time modeling framework is proposed, and implementation based

on hybrid Monte Carlo is discussed. Section 4 presents an analysis of the white spruce

growth data. Beginning with an exploratory analysis, we demonstrate the strong need for

non-Gaussian distributions and spatial modeling. Our methodology is then applied to the

data, and the results obtained from fitting several hierarchical models are presented and

compared. Section 5 concludes with a brief summary and discusses possible refinements to

the current model.

2. Review of the Skew-normal and Skew-t Distributions

In this section we briefly review and summarize some basic concepts related to the skew-

normal and skew-t distributions. Both distributions fall within the broad class of skew-

elliptical distributions, and we refer the reader to Azzalini and Capitanio (2003) and Genton

(2004) for an extensive treatment. A univariate random variable Y is said to have a skew-
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normal distribution Y ∼ SN(µ, σ2, α) with location µ ∈ R, scale σ > 0 and shape α ∈ R if

it is continuous, with density function

p(y|µ, σ, α) =
2

σ
φ(

y − µ

σ
)Φ(

α(y − µ)

σ
), y ∈ R (1)

where φ(·) and Φ(·) denote, respectively, the density and distribution function of the stan-

dard normal distribution. The shape parameter α governs the asymmetry of the distribution,

with positive and negative values corresponding to positive and negative skewness respec-

tively, and with α = 0 corresponding to the N(µ, σ2) distribution. Generalizing further, the

standard construction of the t-distribution through the ratio of a normal random variable

and the square-root of an independent χ2 random variable divided by its degrees-of-freedom,

can be extended to define a skew t-distribution via Y = µ + X√
W/ν

where X ∼ SN(0, σ2, α)

and W is independently distributed as χ2
ν , ν > 0. The resulting four parameter distribution,

denoted as St(µ, σ2, α, ν), contains the normal (α = 0, ν →∞), skew-normal (ν →∞) and

t-distribution (α = 0) as special cases, and has density given by

p(y|µ, σ, α, ν) = 2t(y; µ, σ, ν)T{α(y − µ)

σ
(

ν + 1
(y−µ)2

σ2 + ν
)1/2; ν + 1} (2)

where t(y; µ, σ, ν) = Γ{(ν+1)/2}
σ(πν)1/2Γ(ν/2)

[1 + (y−µ)2

νσ2 ]−(ν+1)/2, the density of a t-distribution having

location µ, scale σ and ν degrees of freedom; and T (·; ν + 1) is the cumulative distribution

function of a standard t-distribution on ν+1 degrees of freedom. The moments of the skew-t

distribution (2) were derived by Azzalini and Capitanio (2003), and in particular, the mean

and variance, when these exist, are given by

E[Y |µ, σ, α, ν] = µ +
σα√

1 + α2
(
ν

π
)1/2 Γ{1

2
(ν − 1)}
Γ(1

2
ν)

, ν > 1 (3)

V ar[Y |µ, σ, α, ν] = σ2(
ν

ν − 2
− α2

1 + α2

ν

π

Γ2{1
2
(ν − 1)}

Γ2(1
2
ν)

), ν > 2.

Finally, we note that the skew-t distribution (2) can be derived as a Gaussian mixture

model, based on a three-stage hierarchical specification,

Y |Z, W ∼ N(µ +
ασZ√
1 + α2

,
σ2

W (1 + α2)
) (4)

Z|W ∼ TN(0,∞)(0, W
−1), W ∼ Gamma(ν/2, ν/2)

→ Y ∼ St(µ, σ2, α, ν)
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where TN(0,∞)(0,W
−1) denotes a N(0,W−1) distribution, truncated to the interval (0,∞).

We shall make use of this representation for model fitting within a latent variable framework.

The skew-t distribution provides a flexible and intuitive departure from the normal dis-

tribution, allowing both asymmetry and heavy tails. We have found it necessary to accom-

modate these features, in addition to spatial correlation, in developing adequate regression

models for longitudinal tree growth data.

3. Hierarchical Space-time Models

We develop our models within the context of our motivating application, which involves

a study of tree growth in a plantation of white spruce. A primary question relates to

assessing genetic variability in height growth. To this end, open-pollinated progenies from

142 families (maternal trees) were planted on the site in a randomized complete block design

of nB = 8 replicated blocks with four-tree row plots randomly assigned within each block.

Tree mortality occurred in some families; thus, only nF = 139 families with data from a

total of n = 4330 trees were retained for analysis. Data for each tree having spatial location

si ∈ D ⊂ R2 (depicted in Figure 1) are collected over a 10 year period. Specifically, for each

tree, we obtain repeated height measurements over time, and we let Hi(tij) denote the height

of the ith tree at time tij, i = 1, . . . , n; j = 1, . . . , mi. In addition, associated with each

such measurement is a vector of explanatory variables xi(tij), and we let Fi ∈ {1, . . . , nF}
denote the family origin of the ith tree, and Bi ∈ {1, . . . , nB} denote the block in which the

ith tree was planted.

We specify a longitudinal regression model for height growth within a hierarchical Bayes

framework, where, at the first level of the model, we assume that the heights are drawn from

a skew-t distribution Hi(tij)|µi(tij), σ, α, ν
ind∼ St(µi(tij), σ

2, α, ν) where variability in height

is modeled through the location parameter µi(tij), and this variability is introduced through

a mixed regression framework µi(t) = β′xi(t) + b′zi(t). Here, xi(t) and zi(t) are vectors

of covariates corresponding to fixed effects β and random effects b respectively. Specific to

our application, we adopt a regression specification incorporating block and family random

effects, in addition to a spatially-varying growth curve

µi(t) = β′xi(t) + b
(F )
Fi

+ b
(B)
Bi

+ µb0 + µb1t + b0(si) + b1(si)t, (5)

where b
(F )
l

iid∼ N(0, σ2
F ), l = 1, . . . , nF , is a family random effect, with σ2

F characterizing

genetic variation; b
(B)
l

iid∼ N(0, σ2
B), l = 1, . . . , nF , is a random block effect, with σ2

B char-

acterizing the large scale variability across the blocks within the plantation; and b(s) =

5
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(b0(s), b1(s))′ is a bivariate, zero-mean, Gaussian spatial process. The tree specific random

effects b(si) operate over top of the fixed linear trend µb0 + µb1t, allowing spatial variability

in the growth trajectories, as well as inducing dependence in the longitudinal observations

collected at each tree. In addition, a random effects growth curve allows for a heteroscedastic

variance structure (when the variance exists) over time. That is, marginally, on integrating

over the random effects, the model incorporates a time-dependent variance for the height

measurements, and a with a linear growth curve, this variance is a quadratic function of

time.

In specifying a model for the spatial random effects (b0(si), b1(si)), i = 1, . . . , n, compu-

tational considerations arising from the large number n = 4330 of spatial locations become

important. Direct specification of a bivariate Gaussian spatial process through a mean and

a valid cross-covariance function is possible; however, this approach will lead to considerable

difficulty for model fitting. We thus consider more constructive approaches in specifying a

model for the spatial random effects. The first approach, following Higdon (2002), reduces

the computational difficulty through dimension reduction, using a discrete process convolu-

tion. The second approach is based on a bivariate Markov random field. Specifically, we

employ a bivariate intrinsic autoregression (Gamerman, 2003; Carlin and Banerjee, 2003).

In the next two subsections we describe the two spatial modeling approaches in more detail.

3.1. Spatial Modeling with Discrete Process Convolutions

A stationary Gaussian spatial process specified through a process convolution (PC) is

based on convolving a white noise process with an appropriately defined smoothing kernel.

In this context, the spatially-varying intercept defined in (5) is based on the construction

b0(s) =

∫

R2

K0(u− s)dX0(u) (6)

where K0(·) is a square-integrable kernel function and X(u) is 2-dimensional Brownian

motion. There are many interesting features associated with the process specification (6);

however, we do not review these here, and refer the reader to Higdon (2002), for a detailed

discussion. For application to our specific context, we note that (6) can be used to represent

a stationary Gaussian process if and only if it has a spectral density (Xia and Gelfand,

2005). In this case, for a given covariance function C(·), the corresponding kernel can

be obtained as the inverse Fourier transform of the square root of the Fourier transform

of C(·) (Kern, 2000). In our application, we shall work with a Gaussian kernel having

form K0(u) = 2√
πτ0

exp{−2||u||2/τ0
2} which, in conjunction with (6), produces a spatial

process having an isotropic Gaussian correlation function C0(u) = exp{−||u||2/τ 2
0 }. For
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implementation, (6) is approximated with a discrete sum

b0(s) ≈
J∑

j=1

K0(uj − s)X0j

where uj, j = 1, . . . , J is a set of knots covering the spatial domain, and X0j, j = 1, . . . , J ,

is a set of independent and identically distributed mean-zero Gaussian latent variables, with

unknown variance that is treated as a parameter in the model. A similar specification is

adopted for the spatially-varying slope b1(s) ≈ ∑J
j=1 K1(uj − s)X1j and a bivariate distri-

bution

Xj = (X0j, X1j)
′ iid∼ BV N(0,Σ), j = 1, . . . , J, (7)

induces correlation between b0(s) and b1(s), with Σ12 = 0 corresponding to independent

processes. Choosing J << n results in the required dimension reduction. For our analysis

in Section 4, we set J = 170 with the resulting grid of knots depicted in Figure 1, panel (b).

The bandwidths of the Gaussian kernels, τl, l = 0, 1, are chosen based on an exploratory

analysis, using the fact that the effective range of the corresponding Gaussian correlation

function is Rl =
√

3τl, further details are deferred to Section 4.

3.2. Spatial Modeling with Markov Random Fields

An alternative approach for modeling the random effects b = ((b0(s1), b1(s1)
′, . . . , (b0(sn), b1(sn)′)′

foregoes the spatial process specification and develops the joint distribution for b based on a

Markov random field (MRF). With regularly spaced spatial locations, and with estimation,

as opposed to spatial interpolation, being of prime interest, a MRF specification seems rea-

sonable. More specifically, we assume that the random effects are drawn from a bivariate

generalization of the Gaussian intrinsic autoregression. Here, the joint distribution is de-

termined through a set of local specifications, based on an n× n ‘neighborhood’ matrix C,

which we shall take to be binary with Cii = 0. The neighborhood matrix encodes a set of

conditional independence assumptions underlying the spatial structure of the model. The

model for b is then specified through the n conditional distributions

b(si)|b−i,Σ ∼ BV N(µi,
1

Ci+

Σ), i = 1, . . . , n, (8)

where b−i denotes the vector b with the ith pair (b0(si), b1(si))
′ removed; µi is defined as a

weighted average µi1 =
∑

j
Cij

Ci+
b0(sj), µi2 =

∑
j

Cij

Ci+
b1(sj); and the 2×2 positive definite and

symmetric matrix Σ is a hyperparameter representing the (conditional) covariance between

each pair random effects (b0(s), b1(s)), with Σ12 = 0 corresponding to independence between

the slope and intercept parameters. With these conditional specifications, the corresponding

joint distribution for b is obtained as p(b|Σ) ∝ exp{−1/2b′ [(DC − C)
⊗

Σ−1]b} (Carlin

7
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and Banerjee, 2003) where DC = diag{C1+, . . . , Cn+}. This prior is improper, as the corre-

sponding precision matrix (DC −C)
⊗

Σ−1 is rank deficient. As a result, the constraints∑n
i=1 bl(si) = 0, l = 0, 1 are required for identification of the fixed effect parameters µb0

and µb1 in the skew-t regression (5). We consider several choices of neighborhood matrix C

for our analysis in Section 4, and make model comparisons across the corresponding spatial

structures.

3.3. Bayesian Inference and a Missing Data Formulation

Having specified our model at the first level, and distributions for the random effects in

(5), our bayesian model specifications are made complete upon assigning prior distributions

to the scale, shape and degrees of freedom σ, α, ν of the skew-t distribution; the regression co-

efficients β; and the hyperparameters σ2
B, σ2

F , Σ controlling variability of the random effects.

The prior, for the model based on process convolutions, then factorizes as

p(θ) =

[
nB∏
i=1

p(b
(B)
i |σ2

B)

]
×

[
nF∏
i=1

p(b
(F )
i |σ2

F )

]
×

[
J∏

i=1

p(Xj|Σ)

]

×p(α)p(σ)p(α)p(β)p(σ2
B)p(σ2

F )p(Σ)

and the prior for the MRF model takes a similar form, with the term
[∏J

i=1 p(Xj|Σ)
]

replaced with the term p(b|Σ) defined by the conditional specifications (8). We adopt vague

prior distributions, in an effort to achieve primarily data driven inference, and these are

taken to be conditionally conjugate whenever possible, to facilitate Gibbs updating within

an MCMC sampler. The specific forms adopted for the prior specifications are discussed

further in Section 4, where the application is considered.

The likelihood function can be obtained as a product

L(θ|H) =
n∏

i=1

mi∏
j=1

p(Hi(tij)|µi(tij), σ, α, ν)

with each term corresponding to the skew-t density defined in (2). Alternatively, the repre-

sentation of the skew-t distribution as a Gaussian mixture (4) may be employed, introducing

for each i, j, latent variables Zij and Wij, treated as missing data within an MCMC frame-

work. The complete data likelihood then takes the form

L(θ|H,Z,W ) =
n∏

i=1

mi∏
j=1

p(Hi(tij)|µHij
, σ2

Hij
)p(Zij|Wij)p(Wij|ν) (9)

where p(Hi(tij)|µHij
, σ2

Hij
) is a univariate normal density with mean µHij

= µi(tij) +
ασZij√
1+α2
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and variance σ2
Hij

= σ2

Wij(1+α2)
; p(Zij|Wij) is the density of a TN(0,∞)(0,W

−1
ij ) distribution;

and p(Wij|ν) is the density of a Gamma(ν/2, ν/2) distribution. This specification is con-

venient, as one need only work with a Gaussian likelihood for the observed height data,

whilst incorporating additional update steps for the latent variables Zij and Wij, whose full

conditional distributions are easily obtained in closed form, as truncated normal and gamma

distributions respectively.

3.4. Model Fitting

We sample from the augmented posterior p(θ, Z,W |H) ∝ L(θ|H,Z,W )×p(θ) for both

the PC and MRF based spatial models, using MCMC samplers based on componentwise

transition. Designing an algorithm to fit the PC based model proved the most challenging,

and was based on combining Gibbs and Metropolis-Hastings updates in conjunction with

hybrid Monte Carlo. We describe the main aspects of this algorithm and then mention

modifications required for fitting the MRF model.

In fitting the PC spatial model, we have found that Monte Carlo updating of the latent

variables X = (X1, . . . ,XJ), defined in (7), requires close consideration due to their strong

posterior correlations. In particular, random walk updating of these parameters leads to slow

movement through the target distribution, despite careful tuning of proposal distributions,

reparameterizations, and implementations based on various blocking schemes. As a remedy,

we employ a hybrid Monte Carlo algorithm (Gustafson 1997), which is designed to suppress

inefficient random walk behavior and promote rapid mixing of the Markov chain. The

hybrid algorithm is based on the combination of a stochastic step with a preset number of

deterministic steps that represent a discretization of Hamiltonian dynamics. Each iteration

of our algorithm involves a block update of X based on the hybrid procedure. Letting πX(·)
denote the density of the target distribution [X|H, Z,W , θ−X], and X∗ the current value in

the Markov chain for X, the hybrid update, based on a step size δ > 0, proceeds as follows:

1. Simulate auxiliary variables U∗ ∼ MV N2J(0, I).

Let X(0) = X∗ and U(0) = U∗ + δ
2
∇ log πX(X∗)

2. For l = 1, . . . , L, let

X(l) = X(l−1) + δ U(l−1)

U(l) = U(l−1) + δl∇ log πX(X(l))

where δl = δ for l < L and δL = δ
2
.

3. Accept X(L) as the new state for X with probability

p = min

(
πX(X(L))

πX(X∗)
exp

{
−1

2

(
U(L)′U(L) −U∗′U∗

)}
, 1

)

9
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else remain in the current state X∗ with probability 1− p.

Each hybrid update requires L+1 evaluations of the gradient vector ∇ log πX(·) and we have

found that setting L = 50 works well in the current setting. With the mixture representation

of the skew-t distribution, based on the complete data likelihood (9), this gradient vector is

easily obtained in closed form.

Upon updating X, the sampler visits the remaining nodes, updating with either Gibbs or

Metropolis-Hastings steps. Specifically, the random effects b
(B)
l , l = 1, . . . , nB and b

(F )
l , l =

1, . . . , nF are sampled directly from their Gaussian full conditional distributions, as are the

components of β, µb0 and µb1, when Gaussian priors are assigned to these parameters. The

variance components σ2
B and σ2

F are assigned conditionally conjugate inverse-gamma priors,

and are sampled from the corresponding inverse-gamma full conditional distributions. In a

similar fashion, Σ is sampled from an inverse-Wishart full conditional distribution based on

an inverse-Wishart prior. The latent variables, Zij and Wij are also sampled with Gibbs

updates, based on their truncated normal and gamma full conditional distributions. Finally,

α, σ and ν are individually updated with Metropolis-Hastings steps, based on random walk

proposals. Candidate distributions for random walk updates are tuned to yield acceptance

rates of between 20 and 50 percent; whereas, δ is chosen so that the hybrid step has an

acceptance rate of between 75 and 90 percent. The sampler employed for fitting the MRF

based model has a similar structure, with updates for X replaced by updates for b. In

this case, a hybrid update is not employed; rather, each component of b is drawn from its

Gaussian full conditional distribution, which seems to work fine for this model. Software

implementation of the sampling algorithm is available in the R programming language from

the author upon request.

4. Study of Juvenile White Spruce Growth

Before applying our methodology to the white spruce growth data, we explore the data to

shed light on several features that motivate the proposed hierarchical modeling framework.

Our data consist of repeated height measurements taken on each of n = 4330 trees, with mea-

surements taken at 3, 6 and 10 years after planting, resulting in a total of 4330× 3 = 12, 990

observations. In addition, seedling height is recorded at the time of planting, and we shall

condition on these initial values, incorporating them as covariates in the regression model.

Specifically, seedling height is discretised into three exhaustive categories corresponding to

seedlings with initial height less than or equal to 1, 2 and 3 centimeters respectively. Co-

variate information on the cumulative number of pine weevil attacks on each tree is also

recorded at each time point, and the association between this covariate and height growth

10
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is also of interest.

The longitudinal height profiles for each tree depicted in Figure 1, panel (a), suggest a

linear trend in height growth over time, with substantial tree-to-tree variability. We begin

by fitting a standard linear mixed model for such longitudinal data, incorporating a linear

growth curve, with coefficients modeled as independent tree-specific random effects,

Hi(tij) = β1SH2i + β2SH3i + β3Nij + b
(F )
Fi

+ b
(B)
Bi

+ µb0 + µb1t + b0i + b1itij + εij

εij
iid∼ N(0, σ2), i = 1, . . . , 4330, j = 1, 2, 3

where SH2i and SH3i are binary covariates indicating seedling height falling into the second

and third categories respectively; Nij is a covariate giving the cumulative number of pine

weevil attacks recorded on the ith tree at time tij; b
(F )
Fi

and b
(B)
Bi

are family and block random

effects as defined in (5); and (b0i, b1i)
′ iid∼ BV N(0,Σ) are the tree-specific effects. This initial

model is fit using REML based on standard software for linear mixed models. The normal

QQ-plot of the standardized residuals is depicted in Figure 2, panel (a). Clearly, the Gaussian

model is inadequate, with the standardized residuals exhibiting both positive skewness and

substantial excess kurtosis.

Next, we motivate the need to consider spatially correlated random effects by examining

the spatial structure in the raw growth trajectories. To this end, we fit a least-squares line

independently at each spatial location Hi(tij) = b0i + b1itij, obtaining n = 4330 exploratory

estimates of the site specific slope and intercept parameters. Figure 2, panels (b) and (c)

display the empirical semivariogram estimates obtained from these raw values, along with

Monte Carlo envelopes obtained by repeated random permutation of the data values on the

spatial locations. Positive spatial dependence is evident in both cases, with the intercept

exhibiting a correlation length of approximately 10 meters, and the slope exhibiting spatial

dependence up to 20 meters of separation. Figure 2, panel (d) displays a scatter plot of these

slope and intercept estimates. A strong negative correlation in these raw values ρ = −0.84 is

evident. Thus, a bivariate spatial model, allowing for this strong negative correlation, seems

necessary.

To address these features of the data more formally, we fit the skew-t spatio-temporal

regression models proposed in Section 3, incorporating the same regression structure

µi(tij) = β1SH2i + β2SH3i + β3Nij + b
(F )
Fi

+ b
(B)
Bi

+ µb0 + µb1tij + b0(si) + b1(si)tij. (10)

For the model based on process convolutions, we cover the spatial domain with a regular grid

of knots, based on a spacing of 8 meters between knots. Any knots further than 8 meters

from all data points are then removed. The resulting set of J = 170 knots is depicted in

Figure 1, panel (b). The parameters of the Gaussian kernels K0(· · · ) and K1(· · · ) are set at
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τ0 = 6 and τ1 = 12, so that the effective range of the corresponding covariance functions are

approximately R0 = 10 meters and R1 = 20 meters, corresponding to the correlation lengths

observed in Figure 2, panels (b) and (c).

For fitting the MRF spatial models, we begin with the usual first-order neighborhood

structure based on adjacency, so that each tree has either 4, 3 or 2 neighbors, with neighbors

being separated by a distance of d = 1 meter. We also define three additional neighbor-

hood structures, where trees separated by a distance less than or equal to d are considered

neighbors, and we consider neighborhoods based on d =
√

2, 10 and, 20 meters respectively.

Finally, as a baseline model for comparison, we consider a model specification incorporating

only a fixed effect linear trend, based on setting b0(si) = b1(si) = 0 in (10).

In total, we fit six skew-t regression models to these data, using the MCMC sam-

pling schemes described in Section 3.4. Regarding the prior specifications, all fixed effects

β, µb0, µb1 are assigned conjugate N(0, 100) priors; the block and family variance components

σ2
B and σ2

F are assigned vague inverse-gamma(.01, .01) priors; while Σ−1 ∼ Wishart(ν,A)

where setting ν = 2 and A = 0.1 × I results a relatively vague prior. Finally, the scale,

shape and degrees of freedom parameters are assigned σ ∼ unif(0, 100), α ∼ N(0, 100),

ν ∼ unif(.05, 30) priors. Our use of weak, conjugate inverse-gamma and Wishart priors for

the variance components of the random effects may be criticized (see for example, Gelman,

2006); however, the large size of our dataset suggests little concern with regards to prior

sensitivity, in particular since we do not expect negligibly small values for the corresponding

variance components.

In fitting all six models, an initial burn-in of 10, 000 iterations seemed more than suf-

ficient for the sampling chains to reach stationarity, and an additional 50, 000 iterations

were used to summarize the posterior distribution associated with each model. To com-

pare models, we use the posterior predictive loss criterion proposed by Gelfand and Gosh

(1998). Here, we consider estimation of the observed data using the posterior predic-

tive distribution [H(rep)|H], and for squared error loss, we rank the models according

to D = G + P where G =
∑n

i=1

∑mij

j=1(Hi(tij) − µ
(rep)
ij )2, measures the lack of fit, and

P =
∑n

i=1

∑mij

j σ2(rep)

ij represents the degree of smoothness; where µ
(rep)
ij = E[Hi(tij)

(rep)|H]

and σ2(rep)

ij = V ar[Hi(tij)
(rep)|H] with relatively smaller values of D indicating preferred

models.

Table 1 lists Monte Carlo estimates of D for the six models considered, in addition to the

corresponding posterior intervals for σ, ν and α. The baseline model, with b0(si) = b1(si) = 0

exhibits the poorest performance, indicating that heterogeneity in the growth trajectories

is evident, and that models accommodating this feature yield superior performance. Inter-

estingly, the MRF models outperform the PC model by a substantial margin, regardless of

neighborhood structure, with the d = 10 meter threshold being the most suitable defini-

tion of neighbor. This is an interesting result, in particular since the bivariate MRF model

12
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(8) yields a separable bivariate spatial structure; whereas, the PC model allows the slope

and intercept processes to exhibit different spatial ranges through choice of kernel functions

K0(·) and K1(·). To gain further insight into the relatively poorer performance of the PC

model, Figure 4, panel (b) compares the posterior mean estimates of b1(si), i = 1 . . . n,

obtained from the PC model with those obtained from the MRF (d = 10) model. There

is a clear difference in the estimates obtained from the two models, and the spatial effects

estimated from the PC model seem to be ‘overshrunk’ relative to those obtained from the

MRF model. Here, it seems that there is a price to be paid for dimension reduction, and the

fully parameterized MRF model is better able to capture the total extent of the tree-to-tree

variability. Comparison of the b0(si) estimates (not shown) also yields similar results. The

performance of the PC model would likely improve if the number of knots J is increased;

however, computational demands for the current setting with J = 170 knots already exceed

those required for fitting the MRF models.

Regardless of the model adopted for the spatial effects, the posterior intervals of ν and

α shown in Table 1 all indicate substantial departures from a Gaussian model, with very

heavy tails and positive skewness. Compared with the four MRF models, the posterior

distributions associated with the baseline model and PC model, favor smaller values of ν

and higher values of σ. The relative inability of these models to represent the residual spatial

variation leads to heavier tailed errors with greater variability.

Table 2 presents further posterior summaries for the MRF model with neighbors based

on the d = 10 meter threshold. All covariates included play a significant role in describing

variation in height growth. A negative impact of pine weevil attack on tree growth is clearly

evident, with greater levels of infection associated with lower height growth overall. In

addition, seedling height is positively associated with height growth overall, a result that

seems intuitive. The posterior interval of σ2
F indicates a non-negligible degree of genetic

variability. This is further illustrated in Figure 3 with boxplots, ranked in order of posterior

median, summarizing the posterior samples for each of the nF = 139 family effects. Ranking

the posterior samples to summarize the family effects in this way is a useful summary, that

can aid in directing selections for seed orchards.

In interpreting the posterior distribution of Σ, we note that the conditional variance in

(8) depends on the number of neighbors, through scaling Σ by 1/Ci+. We thus scale the

estimates of Σ11 and Σ22 in Table 2 by 1/Ci+ where the average number of neighbors with

d = 10 meters is Ci+ = 190. The posterior of the conditional correlation ρ = Σ12/
√

Σ11Σ22

indicates a very strong negative correlation between the slope and intercept parameters.

This is not unexpected, given the exploratory estimates depicted in Figure 2, panel (d).

However, the magnitude of the correlation in this case implies that b1(si) is essentially a

linear function of b0(si), perhaps further explaining why a separable spatial structure was

preferred for modeling the spatial effects.
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Finally, turning to the estimated spatial effects, those trees for which b1(si) > 0 can be

classified as having growth rates above the population average of µb1. Figure 4, panel (a)

marks the locations of those 1699 trees for which Pr(b1(si) > 0|H) > 0.975. Growth rates

are not uniformly distributed across the plantation, with the subsections located farthest

from the origin containing a preponderance of the fastest growing trees. Spatial patterns

and residual hot spots such as those revealed in Figure 4 can be useful as they may give

clues regarding missing variables that underlie the autocorrelation observed in the map. This

can then guide further study with the goal of identifying unknown factors related to height

growth.

5. Discussion

We have proposed a mixed longitudinal regression model for spatially correlated growth data,

focussing on modeling heavy tails and asymmetry using the skew-t distribution. We have

developed methodology that allows for reasonably flexible modeling of space-time variation,

while at the same time being computationally tractable for fitting regression models to a

large number of non-Gaussian longitudinal trajectories, observed over many spatial locations.

For spatial modeling, both the process convolution and Markov random field approaches

pursued here can be refined. In particular, the choice of kernel bandwidths, τ0 and τ1 for the

former, and neighborhood matrix C for the latter, were based on an exploratory analysis. An

alternative, and preferable approach, would assign priors to these parameters, thus allowing

the uncertainty associated with their values to propagate into the variability of the posterior

distribution. In this case, informative priors may be required owing to the typically weak

identifiability associated with such parameters.

Our model accommodates residual space-time variability through the linear form fsi (t) =

b0(si) + b1(si)t. A more flexible form for the growth function is easily incorporated, based

on fsi (t) = b(s)′F(t), where F(t)=(F1(t), . . . , Fp(t))
′ is a functional basis (polynomials,

B-splines, wavelets, etc...) and b(s) is a p-variate spatial process. Nevertheless, the linear

structure was sufficient for the specific growth analysis considered here. A related issue is

the assumption that the covariate effects, as well as the block and family random effects

are constant over time. These terms are thus best interpreted in a time-averaged sense, and

specifications incorporating dynamic evolution of these parameters is an interesting avenue

for further exploration.
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Besag J, York JC, Mollié A. 1991. Bayesian image restoration, with two applications in

spatial statistics (with discussion). Annals of the Institute of Statistical Mathematics 43:

1-59.

Calder CA. 2007. Dynamic factor process convolution models for multivariate space-time

data with application to air quality assessment. Environmental and Ecological Statistics 14:

229-247.

Carlin BP, Banerjee S. 2003. Hierarchical multivariate CAR models for spatio-temporally

correlated survival data (with discussion). In Bayesian Statistics 7, (eds.); Bernardo et al.,

Oxford: Oxford University Press; 45-63.

Diggle PJ, Heagerty PJ, Liang KY, Zeger SL. 2002. Analysis of Longitudinal Data, Second

Edition, Oxford, U.K.: Oxford University Press.

Fernández C, Steel MFJ. 1998. On bayesian modeling of fat tails and skewness. Journal of

the American Statistical Association 93: 359-371.

Gamerman D, Moreire A, Rue H. 2003. Space-varying regression models: specifications and

simulation. Computational statistics and data analysis 42: 513-533.

16

http://biostats.bepress.com/cobra/art48



Gelfand AE, Gosh SK. 1998. Model choice: a minimum posterior predictive loss approach.

Biometrika 85: 1-11.

Gelman A. 2006. Prior distributions for variance parameters in hierarchical models. Bayesian

Analysis 1: 515-533.

Genton MG. 2004. Skew-elliptical distributions and their applications: A journey beyond

normality. Florida, USA: Chapman and Hall.

Gustafson P. 1997. Large hierarchical bayesian analysis of multivariate survival data. Bio-

metrics 53: 230-242.

Higdon D. 1998. A process-convolution approach to modeling temperatures in the North

Atlantic Ocean. Journal of Ecological and Environmental statistics 5: 173-190.

Higdon D. 2002. Space and space-time modeling using process convolutions. In Quanti-

tative Methods for Current Environmental Issues. Anderson C, Barnett V, Chatwin PC,

El-Shaarawi AH eds. Springer-Verlag: London; 37-56.

Jara A, Quintana FA, Mart́ın ES. 2008. Linear effects mixed models with skew-elliptical

distributions: A bayesian approach. Computational Statistics and Data Analysis 52: 5033-

5045.

Kern J. 2000. Bayesian process-convolution approaches to specifying spatial dependence

structure. Ph.D. thesis, Duke University, Durham, NC 27708.

Kim HM, Mallick BK. 2004. A bayesian prediction using the skew Gaussian distribution.

Journal of Statistical Planning and Inference 120: 85-101.

Ma Y, Genton MG, Davidian M. 2004. Linear mixed effects models with flexible general-

ized skew-elliptical random effects. In Skew-elliptical distributions and their applications: A

journey beyond normality.. Genton MG (ed.); Florida, USA: Chapman and Hall; 339-358.

Xia G, Gelfand AE. 2005. Stationary process approximation for the analysis of large spatial

datasets. Technical report, Duke University, Institute of Statistics and Decision Science.
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Table 1: Monte Carlo estimates of the posterior predictive loss criterion D, and 95% equal
tail posterior credible intervals for ν, α and σ for the six skew-t models considered.

Model D∗ ν α σ
No Spatial Effects 30,877,686 (2.19, 2.46) (0.06, 0.22) (18.21, 19.31)
Process Convolution, J = 170 12,626,174 (2.25, 2.54) (0.41,1.63) (16.93, 17.94)
Markov Random Field, d = 1 418,897 (3.07, 3.67) (0.95, 1.39) (8.87, 10.09)

Markov Random Field, d =
√

2 428,482 (3.06, 3.68) (0.96,1.40) (8.88, 10.14)
Markov Random Field, d = 10 109,181 (3.21, 3.84) (1.18, 1.57) (9.60, 10.67)
Markov Random Field, d = 20 300,752 (3.21, 3.74) (1.14, 1.46) (9.45, 10.43)

∗ Values of D after subtracting 2, 000, 000

Table 2: Posterior mean and 95% equal tail credible intervals for select parameters of the
MRF model with d = 10 meters.

Parameter Posterior Mean 95% Credible Interval
µb0 -17.03 (-18.07, -15.95)
µb1 20.98 (20.88, 21.06)

SH2i 5.13 (4.51, 5.70)
SH3i 10.37 (9.42, 11.35)
Nij -16.91 (-17.58, -16.13)
σ2

B 1.22 (0.22, 3.98)
σ2

F 2.87 (1.73, 4.22)
ρ = Σ12/

√
Σ11Σ22 -0.99 (-1.00, -0.99)

Σ11/ Ci+ 161.26 (152.84, 169.89)
Σ22/ Ci+ 35.90 (34.36, 37.49)

Hosted by The Berkeley Electronic Press



0 2 4 6 8 10

0
10

0
20

0
30

0
40

0

Time Since Planting (Years)

H
ei

gh
t (

cm
)

(a)

0 50 100 150

0
20

40
60

80
10

0

X (meters)

Y
 (

m
et

er
s)

(b)

Figure 1: Panel (a) depicts the individual height profiles for all n = 4330 trees along with
the overall mean; panel (b) marks the locations of trees within the plantation with the knot
locations (larger circles) for the discrete kernel convolution superimposed.http://biostats.bepress.com/cobra/art48
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Figure 2: Exploratory analysis of the white spruce growth data: (a) normal QQ-plot of the
standardized residuals from a Gaussian linear mixed model; (b) empirical semivariogram of
the raw site-specific intercept estimates; (c) empirical semivariogram of the raw site-specific
slope estimates; (d) scatter-plot illustrating strong negative correlation between the raw
slope and intercept estimates. Hosted by The Berkeley Electronic Press
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Figure 3: Boxplots (arranged in increasing order by posterior median) illustrating the pos-

terior distribution of the family random effects b
(F )
l , l = 1, . . . , 139.
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Figure 4: Panel (a) marks the locations of those 1699 trees for which Pr(b1(si) > 0|H) >
0.975; panel (b) compares posterior mean estimates of b1(si), i = 1, . . . , 4330 obtained from
the PC and MRF models.
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