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Validation of Differential Gene Expression
Algorithms: Application Comparing Fold
Change Estimation to Hypothesis Testing

David R. Bickel and Corey M. Yanofsky

Abstract

Sustained research on the problem of determining which genes are differentially
expressed on the basis of microarray data has yielded a plethora of statistical algo-
rithms, each justified by theory, simulation, or ad hoc validation and yet differing
in practical results from equally justified algorithms. The widespread confusion
on which method to use in practice has been exacerbated by the finding that sim-
ply ranking genes by their fold changes sometimes outperforms popular statistical
tests.

Algorithms may be compared by quantifying each method’s error in predicting
expression ratios, whether such ratios are defined across microarray channels or
between two independent groups. For the data sets considered, estimating predic-
tion error by cross validation demonstrates that empirical Bayes methods based
on the lognormality assumption tend to outperform both a nonparametric method
and algorithms based on selecting genes by their fold changes. The general com-
parison methodology is applicable to both single-channel and dual-channel mi-
croarrays.

As a theoretically sound method of estimating prediction error from observed
expression levels, cross validation provides an empirical approach to assessing
methods for detecting differential gene expression.



1 Background
Continual invention of new microarray data analysis algorithms for the identi�cation of which genes express
di¤erently across two groups calls for objectively comparing the performance of existing algorithms [1].
While there have been thorough empirical comparisons between supervised learning methods of classifying
microarrays, comparisons between methods of detecting di¤erential gene expression tend to depend more on
theory and simulation than on biological data; for respective examples, see [2] and [3].
By showing that empirical method validation is possible even for algorithms of detecting di¤erential gene

expression, a report of the MicroArray Quality Control (MAQC) project [4] may mark a turning point in
the methodology of comparing of statistical methods designed to identify di¤erential gene expression on
the basis of microarray observations. A notable feature of this "concordance" (percentage of overlapping
genes) method is its validation on the basis of the microarray data without resorting to other types of
data. Validation by non-microarray information such as RT-PCR measurements of gene expression or public
pathway/functional information on genes does have great value in overcoming shortcomings in microarray
platforms [5]. For that very reason, however, such validation has markedly less value in judging the perfor-
mance of statistical methods of detecting di¤erential gene expression. For example, the inability of RT-PCR
to validate a microarray prediction of di¤erential gene expression might indicate a problem with the statis-
tical assumptions used to make the prediction, but it may instead re�ect a problem with cross hybridization
due to the microarray platform. Participants in the MAQC project avoided such confounding between mi-
croarray platform e¤ects and statistical method e¤ects by quantifying the degree of overlap between gene
lists produced by an algorithm on the basis of two independent data sets [4]. Although a signi�cant step
forward, this way of comparing algorithms, like that of [6], requires examining gene lists of given sizes, which
is why Chen et al. [7] consider the concordance to be too unstable for use as an algorithm performance
criterion. Without depending on arbitrarily selected numbers of genes, the platform-algorithm confounding
may be overcome by instead using a test set of microarrays to validate predictions made on the basis of a
separate training set of microarrays, as explained in Section 2 and illustrated in Section 3; implications are
discussed in Section 4.

2 Methods
2.1 Gene selection algorithms
If a gene is known to be di¤erentially expressed at a certain level on average, then that level would predict
future measurements of gene expression better than would making such predictions on the assumption that
there is on average no di¤erential expression. Likewise, if a gene is known to be equivalently expressed, then
using an expression level of 0 or an expression ratio of 1 would predict future measurements better than mak-
ing such predictions on the assumption that there is some di¤erential expression. Thus, a method of selecting
genes as di¤erentially expressed may be judged by estimating its ability to predict future measurements of
gene expression. This estimation may be carried out by a process of cross validation: the microarrays are
divided between a training set used to determine which genes the method considers di¤erentially expressed
and a test set used to estimate how well such results would agree with future measurements.
The strategy of assessing gene selection algorithms by estimated prediction error may be more precisely

speci�ed in mathematical notation. Let xi;j denote the logarithm of the measured expression intensity or
ratio of intensities of the ith of m genes in the jth of n biological replicates of the control or reference group;
each value of xi;j may represent an average over technically replicated microarrays; xi = (xi;1; xi;2; :::; xi;n);
x = (x1;x2; :::;xm)

T . Likewise, x0i;j denotes the logarithm of the measured expression intensity or ratio
of intensities of the ith gene in the jth of n0 biological replicates of the treatment or perturbation group;
x0i =

�
x0i;1; x

0
i;2; :::; x

0
i;n0
�
; x0 = (x01;x

0
2; :::;x

0
m)

T . The observations xi;j and x0i;j are realizations of the
random variables Xi and X 0

i, respectively. The ith gene is called equivalently expressed if hX 0
i �Xii = 0

or di¤erentially expressed if hX 0
i �Xii 6= 0, where the angular brackets denote the expectation value over

the sample space. In hypothesis testing parlance, the null hypothesis associated with the ith gene is Hi :
hX 0

i �Xii = 0.
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A gene selection algorithm � returns �� (Hijx0;x), an estimate of the posterior probability that the
ith gene is equivalently expressed; it follows that 1 � �� (Hijx0;x) is the algorithm�s probability that the
gene is di¤erentially expressed across the perturbation and reference groups. Many algorithms [8�17] give
�� (Hijx0;x) directly as a local false discovery rate estimate [18,19], whereas traditional false discovery rate
estimates and other non-Bayesian algorithms in e¤ect assign �� (Hijx0;x) a value of either 0 or 1, depending
on whether or not a gene is considered di¤erentially expressed at a given threshold. For example, the practice
of considering a gene di¤erentially expressed if exp (j�x0i � �xij), its estimated fold change, is at least � may
be expressed as

�foldchange > � (Hijx0;x) =
0 if j�x0i � �xij � log (�)
1 if j�x0i � �xij < log (�)

(1)

with � > 0, �x0i =
Pn0

j=1 x
0
i;j=n

0, and �xi =
Pn

j=1 xi;j=n. The discontinuity can be removed by introducing
smooth functions such as

�fold change shrinkage (Hijx0;x) = e�(exp(j�x
0
i��xij)�1): (2)

The trivial algorithms

�all nulls true (Hijx0;x) = 1; (3a)

�all nulls false (Hijx0;x) = 0; (3b)

which completely ignore the data, will serve as informative points of reference.
Some of the empirical Bayes algorithms implemented in two R packages [20] are considered here [21�

23]. From calculations based on a moderated (regularized) t-statistic that are performed by the R pack-
age limma [21], one may readily obtain pi

�
~t
�
, a one-sided p-value of the ith null hypothesis; p

�
~t
�
=�

p1
�
~t
�
; p2

�
~t
�
; :::; pm

�
~t
��
. Given the moderated t-statistics and � (H0), the proportion of genes expected to

be equivalently expressed, limma also computes log!i (� (H0)), the estimated logarithm of the posterior odds
that gene i is di¤erentially expressed rather than equivalently expressed, from which the local false discovery
rate may be readily obtained as (1 + !i (� (H0)))

�1
: Since, for use with the log-odds, the author of the

algorithm does not recommend computing � (H0) using limma�s convest function (Gordon Smyth, personal
communication, 27 Oct. 2007), we instead iterated the log-odds function until convergence by adapting a
method [24] originally proposed for another empirical Bayes algorithm [25]:

1. Let �1 (H0) = 90% and initialize k to 1.

2. Increment k by 1.

3. Let �k (H0) =
Pm

i=1 (1 + !i (�k�1 (H0)))
�1
=m.

4. Repeat Steps 2-3 until the absolute value of the proportion di¤erence is su¢ ciently small, i.e., j�k (H0)� �k�1 (H0)j <
1=1000, or until the sign of the proportion di¤erence changes, i.e., (�k (H0)� �k�1 (H0)) (�k�1 (H0)� �k�2 (H0)) <
0. The number of iterations performed until such convergence is denoted by K:

5. Let � (H0) = �K (H0).

Based on that value of � (H0), the estimated probability of equivalent expression is

�moderated t stat. with limma (Hijx0;x) =
1

1 + !i (� (H0))
: (4)
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Also using standard distributions of test statistics under the null hypothesis, the R package locfdr [22] maps p,
a vector of single-tailed p-values for all genes, to estimates of a local false discovery rate, �locfdr (Hi;pjx0;x).
The use of moderated t-statistics is incorporated by

�moderated t stat. with locfdr (Hijx0;x) = �locfdr
�
Hi;p

�
~t
�
jx0;x

�
: (5)

More commonly, p (t), a vector of standard (1- or 2-sample) t-test p-values, which also assume the normality
of X 0

i � Xi, or p (w), a vector of (signed-rank or rank-sum) Wilcoxon test p-values, which do not assume
normality, yield local false discovery rate estimates

�t stat. with locfdr (Hijx0;x) = �locfdr (Hi;p (t) jx0;x) ; (6a)

�Wilcoxon stat. with locfdr (Hijx0;x) = �locfdr (Hi;p (w) jx0;x) : (6b)

Alternatively, the locfdr package can employ an empirical maximum likelihood estimate of the null distrib-
ution [23] for computation of the local false discovery rate estimate �emp. null (Hi;pjx0;x) :

�t stat. with emp. null (Hijx0;x) = �emp. null (Hi;p (t) jx0;x) ; (7a)

�Wilcoxon stat. with emp. null (Hijx0;x) = �emp. null (Hi;p (w) jx0;x) : (7b)

Whereas the empirical Bayes methods provide approximations to a posterior probability of a hierarchical
Bayesian class of models, we included comparisons to the posterior probability �Bayes factor (Hijx0;x) under
a non-hierarchical set of models. The data densities under the non-hierarchical models are based on the
same assumptions as those of standard linear regression: unconstrained data means under the alternative
hypothesis (di¤erential expression) and, for each gene, normal IID noise and equal variance within each
group in the unpaired case. The posterior odds of di¤erential expression under these models are

!i; Bayes factor =
P (Hi)

P
� eHi�

P (dx0; dxjHi)
P
�
dx0; dxj eHi� ; (8)

where eHi represents the hypothesis of di¤erential expression and P (dx0; dxjh) is the prior predictive density
or integrated likelihood under hypothesis h. The left-hand side of equation (8) is the posterior odds of
equivalent expression to di¤erential expression; on the right-hand side, the �rst factor is the prior odds of
equivalent expression to di¤erential expression, and the second factor is known as the Bayes factor. Since we

take P (Hi) = P
� eHi� = 1=2, our posterior odds is equal to the Bayes factor; thus putting equal prior mass on

each hypothesis does not share the conservatism of the above empirical Bayes methods. The Supplementary
Information gives the analytical derivation of the resulting posterior probability, which may be expressed in
terms of some additional notation. De�ne

k1 =
p
n+ 1; k2 = 1; k3 =

n

2
(9)

�2i =
n

n+ 1
(�x0i � �xi)

2
;SSRHi

=
nX
j=1

�
x0i;j � xi;j

�2
;

SSR eHi
=

nX
j=1

��
x0i;j � xi;j

�
� (�x0i � �xi)

�2
if n = n0 and x0i;j is paired with xi;j , or
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k1 =
p
n+ n0 + nn0; k2 =

p
n+ n0; k3 =

n+ n0 � 1
2

(10)

�2i =
nn0

n+ n0 + nn0
(�x0i � �xi)

2

SSRHi
=

n0X
j=1

�
x0i;j �

n�xi + n
0�x0i

n+ n0

�2
+

nX
j=1

�
xi;j �

n�xi + n
0�x0i

n+ n0

�2

SSR eHi
=

nX
j=1

�
x0i;j � �x0i

�2
+

nX
j=1

(xi;j � �x0i)
2

if X 0
i and Xi are independent. Then the posterior probability is given by

�Bayes factor (Hijx0;x) =
1

1 + !i; Bayes factor
; (11)

!i;Bayes factor =
k1

�
�2i + SSR eHi

�k3
k2 (SSRHi

)
k3

: (12)

We also applied two "information criteria" used in model selection to estimate the posterior probability;
the information criteria were applied to the same linear regression framework used in the above Bayes factor
computation. In model selection terminology, each criterion selects either model Hi or model eHi for the ith
gene, but we instead averaged the estimates corresponding to the two models for each gene as follows. We
�rst applied the Bayesian Information Criterion (BIC) [26]. Up to a factor of �1=2 and a constant term,
the BIC approximates the logarithm of the prior predictive probability density given a statistical model and
a su¢ ciently di¤use proper prior distribution under the given model without requiring speci�cation of such
a prior. With a prior mass on each model considered, the BIC leads to an approximation of a posterior
probability that is less conservative than that of the above Bayes factor. For paired data, the BIC for each
hypothesis is

BIC
� eHi� = n log

�
SSR eHi

n

�
+ 2 log n; (13)

BIC (Hi) = n log

�
SSRHi

n

�
+ log n; (14)

with SSRh as de�ned in (9); for independent data, the BIC values are

BIC
� eHi� = (n+ n0) log

�
SSR eHi

n+ n0

�
+ 3 log (n+ n0) ; (15)

BIC (Hi) = (n+ n0) log

�
SSRHi

n+ n0

�
+ 2 log (n+ n0) ; (16)

with SSRh as de�ned in (10). Since we again use P (Hi) = P
� eHi�, the BIC approximation of the posterior

odds (!i;BIC) is equal to its approximation of Bayes factors corresponding to a wide class of priors on the
model parameters. Transformed from the logarithmic scale to the probability scale [27], the result is an
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equation of the same form as (11),

�BIC (Hijx0;x) =
1

1 + !i; BIC
; (17)

!i;BIC =
exp

h
� 1
2BIC

� eHi�i
exp

�
� 1
2BIC (Hi)

� : (18)

The second information criterion we assessed was the Akaike Information Criterion corrected for small
samples (AICc). While �AICc=2 plus a constant term is in general only an approximately unbiased esti-
mator of the expected Kullback-Leibler distance between the model/hypothesis and the unknown true data
generating distribution [28], it is exactly unbiased for linear regression models with normal errors [29], a class
that includes the present non-hierarchical models. Under the name of Akaike weights, it and other AIC-like
criteria have been used to generate predictions that take model uncertainty into account in a manner exactly
analogous to Bayesian model averaging [28], giving rise to an equation of the same form as (17). For paired
data, the AICc values of the hypotheses or models are

AICc
� eHi� = n log

�
SSR eHi

n

�
+

4n

n� 3 ; (19)

AICc (Hi) = n log

�
SSRHi

n

�
+

2n

n� 2 ; (20)

with SSRh as de�ned in (9); for independent data, the AICc values are

AICc
� eHi� = (n+ n0) log

�
SSR eHi

n+ n0

�
+
6 (n+ n0)

n+ n0 � 4 ; (21)

AICc (Hi) = (n+ n0) log

�
SSRHi

n+ n0

�
+
4 (n+ n0)

n+ n0 � 3 ; (22)

with SSRh as de�ned in (10). Transforming from the logarithmic scale yields the e¤ective probability

�AICc (Hijx0;x) =
1

1 + !i;AICc
; (23)

where

!i;AICc =
exp

h
� 1
2AICc

� eHi�i
exp

�
� 1
2AICc (Hi)

�
is the ratio of Akaike weights.

2.2 Methods of assessing gene selection algorithms
Algorithm ��s best prediction of future values of X 0

i �Xi is �� (Hijx0;x) (0) + (1� �� (Hijx0;x)) (�x0i � �xi) ;
this approximation of posterior mean degree of expression has been compared to a method of correcting
estimates for gene selection bias [30]. The corresponding estimate of the prediction error is

�̂�;i =
1

n

nX
j=1

" �
x0i;j � xi;j

�
��

1� ��
�
Hijx0(�j);x(�j)

���
�x0i;(�j) � �xi;(�j)

� #2 (24)

if n = n0 and x0i;j is paired with xi;j or

�̂�;i =
1

nn0

n;n0X
j;j0=1

" �
x0i;j0 � xi;j

�
��

1� ��
�
Hijx0(�j0);x(�j)

���
�x0i;(�j0) � �xi;(�j)

� #2 (25)
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if X 0
i and Xi are independent, where (�j) means the jth replicate is omitted:

x0(�j) =

0B@ x01;1 � � � x01;j�1 x01;j+1 � � � x01;n0
...

...
...

...
...

...
x0m;1 � � � x0m;j�1 x0m;j+1 � � � x0m;n0

1CA ; (26a)

x(�j) =

0B@ x1;1 � � � x1;j�1 x1;j+1 � � � x1;n
...

...
...

...
...

...
xm;1 � � � xm;j�1 xm;j+1 � � � xm;n

1CA ; (26b)

�x0i;(�j) =
�Pn0

J=1 x
0
i;j � x0i;j

�
= (n0 � 1), and �xi;(�j) = (

Pn
J=1 xi;j � xi;j) = (n� 1). The error relative to

always predicting that X 0
i �Xi = 0 is

"̂�;i =
�̂�;i

�̂all nulls true;i
: (27)

Three ways to average the estimated prediction error of an algorithm over all genes are

�� = (relative error mode)� = HSM("̂�;1; "̂�;2; :::; "̂�;m) ; (28)

4� = (relative error mean)� =
1

m

mX
i=1

"̂�;i; (29)

+� = (absolute error)� =

Pm
i=1 �̂�;iPm

i=1 �̂all nulls true;i
; (30)

the half-sample mode (HSM) is the estimator of the mode studied in [31] and implemented as the hsm
function in the modeest package of R.
Je¤ery et al. [32] also used a cross-validation approach to estimate the predictive error of a variety of gene

selection algorithms, but with microarray classi�cation error rather than equations (28) as the performance
criterion. Such classi�cation error depends not only on the gene selection algorithm, but also on the particular
classi�er for which that algorithm selects features. Since our interest lies strictly in identifying di¤erentially
expressed genes, our methods instead quantify performance in terms of predicting new measurements.

3 Results
To illustrate the proposed methods of quantifying the performance of gene selection algorithms, we applied
them to two example data sets, one relevant to agriculture and the other to medicine.

3.1 Agricultural data
Dual-channel microarrays were used to measure in tomatoes the expression ratios (mutant/wild type) of
m = 13; 440 genes at the breaker stage of ripening and at 3 and 10 days thereafter [33]. Each of the later two
stages has six biological replicates (n = 6), but one of the biological replicates is missing at the breaker stage
of ripening (n = 5). The next sub� > 1 compares algorithms of determining which genes are di¤erentially
expressed between mutant and wild type at each point in time, whereas Subsection 3.2 uses the same data
to instead compare algorithms of determining which genes are di¤erentially expressed between one point in
time and another point in time.

6
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Figure 1: Estimated prediction errors, de�ned by equations (28), at the breaker stage of ripening. The values
of � displayed correspond to the gene selection algorithms of equations (1)-(7).

3.1.1 Pairing across microarray channels
In order to determine the genes for which expected values of logarithms of mutant-to-wild-type ratios di¤er
from 0, let x0i;j be the expression level of the mutant sample with mRNA hybridized to the same microarray as
that of a wild type sample with expression level xi;j at 0, 3, or 10 days after the breaker stage. Then x0i;j�xi;j
is the logarithm of the observed ratio for the ith gene and jth microarray. Due to this dependence structure,
paired (1-sample) t-tests and Wilcoxon signed-rank tests were used to obtain p-values, and equations (28)
were used to estimate prediction error. The estimated prediction errors for all algorithms mentioned above
are displayed as Figs. 1-3.

3.1.2 Two independent groups
In order to determine which genes di¤er in mutant-to-wild-type ratios between di¤erent periods of time after
the breaker stage, let x0i;j0 and xi;j the logarithms of ratios observed at two di¤erent points in time for gene
i and for microarrays j0 and j. Since the measurement errors of observations made at one time point are
independent of those made at the other time point, 2-sample t-tests and Wilcoxon rank-sum tests were used
to obtain p-values, and equations (28) were used to estimate prediction error (Figs. 4-6).

3.2 Biomedical data
MAQC researchers [4] measured gene expression responses to a rat liver treatment on four di¤erent platforms:
Applied Biosystems, A¤ymetrix, Agilent, and GE Healthcare. Each data set has six treatment biological
replicates and six control biological replicates. As in Subsection 3.1.2, observations in the treatment group
are not paired with those of the control group. The Applied Biosystems data set (m = 26; 857 genes) and
Agilent data set (m = 41; 070 genes) were used to assess gene selection criteria on the basis of prediction
error (Figs. 7-8). The limma method was not applied to the Agilent data set because it contains repeated
minimum measurements, which prevent the software from estimating the prior variance.

7
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Figure 2: Estimated prediction errors 3 days after the breaker stage of ripening. Error and algorithm
de�nitions are the same as those of Fig. 1.

Figure 3: Estimated prediction errors 10 days after the breaker stage of ripening. Error and algorithm
de�nitions are the same as those of Fig. 1.

8
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Figure 4: Estimated prediction errors for comparing expression at 10 days to expression at 0 days after the
breaker stage of ripening. Error and algorithm de�nitions are the same as those of Fig. 1.

Figure 5: Estimated prediction errors for comparing expression at 10 days to expression at 3 days after the
breaker stage of ripening. Error and algorithm de�nitions are the same as those of Fig. 1.

9
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Figure 6: Estimated prediction errors for comparing expression at 3 days to expression at 0 days after the
breaker stage of ripening. Error and algorithm de�nitions are the same as those of Fig. 1.

Figure 7: Estimated prediction errors for the Applied Biosystems data set of the rat toxicogenomics study.
Error and algorithm de�nitions are the same as those of Fig. 1.

10
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Figure 8: Estimated prediction errors for the Agilent data set of the rat toxicogenomics study. Error and
algorithm de�nitions are the same as those of Fig. 1.

4 Discussion and Conclusions
Some observations made on the basis of the example data sets invite further study. First, the t-statistic
methods often had lower estimated prediction errors than the Wilcoxon algorithms, indicating that the dis-
tributions of expression ratios are su¢ ciently close to the lognormal family for parametric testing with small
sample sizes. Second, comparing +t stat. with locfdr to +moderated t stat. with locfdr suggests that regularization
of the t-statistic does not necessarily tend to improve predictive performance. Third, the model selection
methods not adjusted for multiple testing (Bayes factor, BIC, and AICc) performed well in the experiment
designed to have large changes between conditions (Figs. 7-8). Fourth, the hypothesis testing methods gen-
erally performed better than methods based on fold-change estimates alone. Even so, fold-change shrinkage
(2) performed remarkably well, except in the case in which no genes appear di¤erentially expressed (Fig. 6).
Related to the fourth observation, investigators have been reporting that a heuristic combination of

statistical testing and fold-change estimation performs better than does either type of algorithm alone [4,34].
The inferior performance of statistical methods that do not make use of fold-change estimates has been
explained both in terms of the high variability in p-values expected with small samples [34] and in terms of
a distinction between statistical and biological signi�cance [35]. The latter explanation would call for the
incorporation of the lowest fold change considered biologically relevant into the statistical hypotheses under
consideration. Recent statistical methods designed to �nd genes expressed at biologically important levels
include those utilizing false discovery rates [36, 37], Bayesian analyses [38, 39], and the likelihood paradigm
of measuring the strength of statistical evidence [40]. Thus, researchers need not choose between statistical
rigor and incorporation of information about fold change.
Although the proposed cross-validation methodology may be used with data sets with as few as three

biological replicates, the variance in cross-validation estimates of the prediction error might be prohibitively
high for extremely small samples. For this reason, model-based methods of estimating the prediction error
such as parametric posterior predictive inference and parametric bootstrapping [41] also merit attention.

11

Hosted by The Berkeley Electronic Press



Authors�contributions
DB conceived the study, selected the data sets, applied the fold change and empirical Bayes algorithms, and
drafted the manuscript. CY selected the Bayes factor algorithm, implemented the Bayes factor, BIC, and
AICc algorithms, and helped draft the manuscript.

Acknowledgements
We thank Pei-Chun Hsieh for preparing the biomedical data for analysis and Xuemei Tang for providing the
fruit development microarray data. The Biobase package of Bioconductor [42] facilitated management of the
expression data. This work was partially supported by the Canada Foundation for Innovation (CFI16604),
the Ministry of Research and Innovation of Ontario (MRI16604), Dell Computing, and the Faculty of Medi-
cine of the University of Ottawa.

References
1. Allison DB, Cui X, Page GP, Sabripour M: Microarray data analysis: From disarray to consolidation
and consensus. Nature Reviews Genetics 2006, 7:55�65.

2. Dudoit S, Fridlyand J, Speed TP: Comparison of discrimination methods for the classi�cation of tumors
using gene expression data. Journal of the American Statistical Association 2002, 97(457):77�86.

3. Chen J, van der Laan MJ, Smith MT, Hubbard AE: A comparison of methods to control Type I errors
in microarray studies. Statistical Applications in Genetics and Molecular Biology 2007, 6:28.

4. Guo L, Lobenhofer EK, Wang C, Shippy R, Harris SC, Zhang L, Mei N, Chen T, Herman D, Goodsaid FM,
Hurban P, Phillips KL, Xu J, Deng X, Sun YA, Tong W, Dragan YP, Shi L: Rat toxicogenomic study reveals
analytical consistency across microarray platforms. Nat Biotech 2006, 24(9):1162�1169.

5. Rockett JC, Hellmann GM: Con�rming microarray data - Is it really necessary? Genomics 2004,
83(4):541�549.

6. Pepe MS, Longton G, Anderson GL, Schummer M: Selecting di¤erentially expressed genes from microar-
ray experiments. Biometrics 2003, 59:133�142.

7. Chen JJ, Hsueh HM, Delongchamp RR, Lin CJ, Tsai CA: Reproducibility of microarray data: A further
analysis of microarray quality control (MAQC) data. BMC Bioinformatics 2007, 8.

8. Aubert J, Bar-Hen A, Daudin JJ, Robin S: Determination of the di¤erentially expressed genes in mi-
croarray experiments using local FDR. BMC Bioinformatics 2004, 5.

9. Aubert J, Bar-Hen A, Daudin JJ, Robin S: Correction: Determination of the di¤erentially expressed
genes in microarray experiments using local FDR (BMC Bioinformatics). BMC Bioinformatics 2005,
6.

10. Jones LBT, Bean R, McLachlan GJ, Zhu JXI: Mixture models for detecting di¤erentially expressed
genes in microarrays. International journal of neural systems 2006, 16(5):353�362.

11. Liao JG, Lin Y, Selvanayagam ZE, Shih WJ: A mixture model for estimating the local false discovery
rate in DNA microarray analysis. Bioinformatics 2004, 20(16):2694�2701.

12. McLachlan GJ, Bean RW, Jones LBT, Zhu JX: Using mixture models to detect di¤erentially expressed
genes. Australian Journal of Experimental Agriculture 2005, 45(7-8):859�866.

13. Pawitan Y: In All Likelihood: Statistical Modeling and Inference Using Likelihood. Oxford: Clarendon Press 2001.

14. Ploner A, Calza S, Gusnanto A, Pawitan Y: Multidimensional local false discovery rate for microarray
studies. Bioinformatics 2006, 22(5):556�565.

15. Pounds S, Morris SW: Estimating the occurrence of false positives and false negatives in microarray
studies by approximating and partitioning the empirical distribution of p-values. Bioinformatics
2003, 19(10):1236�1242.

16. Scheid S, Spang R: A stochastic downhill search algorithm for estimating the local false discovery
rate. IEEE/ACM Transactions on Computational Biology and Bioinformatics 2004, 1(3):98�108.

12

http://biostats.bepress.com/cobra/art50



17. Scheid S, Spang R: Twilight; a Bioconductor package for estimating the local false discovery rate.
Bioinformatics 2005, 21(12):2921�2922.

18. Efron B, Tibshirani R, Storey JD, Tusher V: Empirical Bayes Analysis of a Microarray Experiment. J.
Am. Stat. Assoc. 2001, 96(456):1151�1160.

19. Genovese C, Wasserman L: Bayesian Statistics 7: Proceedings of the Seventh Valencia International Meeting,
June 2-6, 2002, Oxford: Clarendon Press 2002 chap. Bayesian and frequentist multiple testing.

20. R Development Core Team: R: A Language and Environment for Statistical Computing 2007.

21. Smyth GK: Linear models and empirical Bayes methods for assessing di¤erential expression in
microarray experiments. Statistical Applications in Genetics and Molecular Biology 2004, 3.

22. Efron B: Large-Scale Simultaneous Hypothesis Testing: The Choice of a Null Hypothesis. Journal
of the American Statistical Association 2004, 99(465):96�104.

23. Efron B: Size, power and false discovery rates. Annals of Statistics 2007, 35:1351�1351�1377, [http://arxiv.
org/abs/0710.2245].

24. Bickel DR: HighProbability determines which alternative hypotheses are su¢ ciently probable: Ge-
nomic applications include detection of di¤erential gene expression. arXiv 2004, q-bio/0402049.

25. Bickel DR: Error-rate and decision-theoretic methods of multiple testing: Which genes have high
objective probabilities of di¤erential expression? Statistical Applications in Genetics and Molecular Biol-
ogy 2004, 3:8.

26. Schwarz G: Estimating the Dimension of a Model. The Annals of Statistics 1978, 6(2):461�464, [http:
//www.jstor.org/stable/2958889].

27. Efron B, Gous A, Kass RE, Datta GS, Lahiri P: Scales of Evidence for Model Selection: Fisher versus
Je¤reys. Lecture Notes-Monograph Series 2001, 38(, Model Selection):208�256, [http://www.jstor.org/stable/
4356166].

28. Burnham KP, Anderson D: Model Selection and Multi-Model Inference. New York, NY: Springer 2002, [http:
//www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20%n&amp;path=ASIN/0387953647].

29. Hurvich CM, Tsai CL: Regression and Time Series Model Selection in Small Samples. Biometrika 1989,
76(2):297�307, [http://www.jstor.org/stable/2336663].

30. Bickel DR: Correcting the estimated level of di¤erential expression for gene selection bias: Appli-
cation to a microarray study. Statistical Applications in Genetics and Molecular Biology 2008, 7:10.

31. Bickel DR, Frhwirth R: On a fast, robust estimator of the mode: comparisons to other robust esti-
mators with applications. Computational Statistics and Data Analysis 2006, 50:3500�3530.

32. Je¤ery IB, Higgins DG, Culhane AC: Comparison and evaluation of methods for generating di¤eren-
tially expressed gene lists from microarray data. BMC Bioinformatics 2006, 7.

33. Alba R, Payton P, Fei Z, McQuinn R, Debbie P, Martin GB, Tanksley SD, Giovannoni JJ: Transcriptome
and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit
development. Plant Cell 2005, 17(11):2954�2965.

34. Shi L, Jones WD, Jensen RV, Harris SC, Perkins RG, Goodsaid FM, Guo L, Croner LJ, Boysen C, Fang H, Qian
F, Amur S, Bao W, Barbacioru CC, Bertholet V, Cao XM, Chu TM, Collins PJ, Fan XH, Frueh FW, Fuscoe
JC, Guo X, Han J, Herman D, Hong H, Kawasaki ES, Li QZ, Luo Y, Ma Y, Mei N, Peterson RL, Puri RK,
Shippy R, Su Z, Sun YA, Sun H, Thorn B, Turpaz Y, Wang C, Wang SJ, Warrington JA, Willey JC, Wu J, Xie
Q, Zhang L, Zhang L, Zhong S, Wol�nger RD, Tong W: The balance of reproducibility, sensitivity, and
speci�city of lists of di¤erentially expressed genes in microarray studies. BMC Bioinformatics 2008,
9(SUPPL. 9).

35. Chen JJ, Wang SJ, Tsai CA, Lin CJ: Selection of di¤erentially expressed genes in microarray data
analysis. Pharmacogenomics Journal 2007, 7(3):212�220.

36. Bickel DR: Degrees of di¤erential gene expression: Detecting biologically signi�cant expression
di¤erences and estimating their magnitudes. Bioinformatics (Oxford, England) 2004, 20:682�688.

37. Van De Wiel MA, Kim KI: Estimating the false discovery rate using nonparametric deconvolution.
Biometrics 2007, 63(3):806�815.

13

Hosted by The Berkeley Electronic Press



38. Lewin A, Richardson S, Marshall C, Glazier A, Aitman T: Bayesian modeling of di¤erential gene expres-
sion. Biometrics 2006, 62:1�9.

39. Bochkina N, Richardson S: Tail posterior probability for inference in pairwise and multiclass gene
expression data. Biometrics 2007, 63(4):1117�1125.

40. Bickel DR: The strength of statistical evidence for composite hypotheses with an application to mul-
tiple comparisons. unpublished paper, Ottawa Institute of Systems Biology, COBRA Preprint Series, Article
49, available at tinyurl.com/7yaysp 2008.

41. Efron B: The estimation of prediction error: Covariance penalties and cross-validation. Journal of
the American Statistical Association 2004, 99(467):619�632.

42. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J,
Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C,
Smyth G, Tierney L, Yang JYH, Zhang J: Bioconductor: Open software development for computational
biology and bioinformatics. Genome Biology 2004, 5:R80, [http://genomebiology.com/2004/5/10/R80].

Additional Files
Additional �le 1 � Bayes_factor_derivation.pdf
This �le contains a heuristic overview and detailed derivation of our Bayes factor approach to calculating
probabilities of di¤erential expression.

14

http://biostats.bepress.com/cobra/art50



1 

 

Supplementary Information 
Validation of differential gene expression algorithms: Application comparing fold-change 

estimation to hypothesis testing 

David R. Bickel, Corey M. Yanofsky 

Heuristic overview 

This document contains an explicit derivation of the Bayes factor used in the main paper for 

both paired and unpaired data. In each case, there are two models for the data: the null model in 

which the gene is equivalently expressed in the two conditions, and the alternative model in which 

the gene is differentially expressed.  

The derivation of the Bayes factor requires two components per model. The first component 

is the probability distribution of the data conditional on some statistical parameters; this is termed 

the likelihood function.  The differential expression model will always have one extra parameter to 

take into account the fact that the gene’s expression level is different across conditions. 

The data are always modeled as: 

observed datum = average data level + measurement error. 

Here, the average data level is an unknown parameter. Throughout, the measurement errors are 

assumed to be independent and identically distributed as Gaussian random variables.  That is, for 

all j,  

 ��  ��|�� 	
 = �√�� exp �− ��� ����, 

where ��  is the measurement error of the jth observation and �� is the data variance .  

The second component is the prior distribution of the model parameters, namely, the 

baseline expression level of the gene and the experimental variability of the data. The prior 

distribution summarizes everything that is known about the model parameters prior to observing 

the data. Since the basic expression level of the gene and the variability of the data are unknown, we 

use standard default priors for them. 

The extra parameter in the alternative model measures the amount of differential 

expression. Here, we use what has been called a unit-information prior distribution, that is, a prior 

distribution that contains exactly as much information as one extra data point. The unit-

information prior is weakly informative, so it will not unduly influence the results in favor of either 

model.  

To calculate the Bayes factor, we marginalize the model parameters; that is, we integrate 

the likelihood function with respect to the prior distribution, resulting in a prior predictive 

distribution. The marginalization removes the nuisance parameters from the expression. The Bayes 

factor is the ratio of the prior predictive distributions under the null and alternative models. 
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Derivations 

Bayes factor for paired data  

 

Suppose n = n′  and ��,��  is paired with ��,� . Let 

�� = ��,�� − ��,�.              (S1) 

The hypothesis of equivalent expression is 

 M0:  yj = εj, 

and the hypothesis of differential expression is  

M1:  yj = α + εj. 

Prior distributions 

For both models, we set 

����� ∝ ��. 

For M1, we use the unit information prior 

�� |�� 	� = 1�√2# exp $− 12�� � − %&��'. 
In the main text of the paper, the prior mean %& is set to zero. 

Null model prior predictive distribution 

The prior predictive distribution of the data under M0 is 

���|()� = * ����� + ����|% = 0, �� 	
� -��.
)

, 
���|()� = �2#�/0 �⁄ * 2 1��30�4� exp 5− 6��7772��8 -��,.

)
 

���|() 	� = �2#�/0 �⁄
Γ 90�: �6��777
/0 �⁄

. 

Alternative model prior predictive distribution 

We define in advance: 

 ; = �0<74=>�04� , 
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??@� = �%& −  ;�� + B��� −  ;
�
� . 

After some algebra, we can derive 

??@� = 6���777 − ��7��
 + 66 + 1 ��7 − %&��. 
Here, SSR1 is the effective sum of squares of the residuals under M1. It is the sum of the SSR using the 

maximum likelihood estimator  CDE = �7 and a term that penalizes disagreement between the MLE and 

the prior mean. 

The prior predictive distribution of the data under M1 is 

���|(�� = * * ������� |�� 	� + ����|% =  , �� 	
� - .
/.

-��.
)

, 

���|(�� = �2#�/�04�� �⁄ * 2 1��3�04��� 4� F * exp G− 12�� H� − %&�� + B��� −  
�
� IJ - .

/.
K -��.

)
. 

Isolating the part of the integrand that is a quadratic expression in α, we complete the square: 

� − %&�� + B��� −  
�
�  

=  � − 2 %& + %&� + 6 � − 2 6�7 + 6��777 

= �6 + 1� � − 2 �6�7 + %&� + �6��777 + %&�
 

= �6 + 1�� −  ;�� + �6��777 − 6��7��
 + %&� + 6��7�� − 6���7�� + 26�7%& + %&�6 + 1  

= �6 + 1�� −  ;�� + 6���777 − ��7��
 + 6%&� + 6���7�� + %&� + 6��7��6 + 1 − 6���7�� + 26�7%á + %&�6 + 1  

= �6 + 1�� −  ;�� + 6���777 − ��7��
 + 16 + 1 �6��7�� − 26�7%& + 6%& �� 

= �6 + 1�� −  ;�� + 6���777 − ��7��
 + 66 + 1 ��7 − %&�� 

= �6 + 1�� −  ;�� + ??@�. 

Substituting back into the integral, we have 

���|(�� = �2#�/�04�� �⁄ M 9 ��:�NOP�� 4� exp 9− QQRP�� : 9M exp �− 04��� � −  ;��� - ./. : -��.) , 
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���|(�� = �2#�/0 �⁄ �6 + 1�/� �⁄ M 9 ��:N�4� exp 9− QQRP�� : -��.) , 

���|(� 	� = �2#�/0 �⁄
Γ 90�: �6 + 1�/� �⁄ �??@��/0 �⁄ . 

The Bayes factor is  

ST = ���|() 	����|(� 	� = √6 + 1 5??@�6��777 80� .                                    �S2� 

Equations (S1) and (S2) together are equivalent to equations (9), (11), and (12) of the main paper. 

Bayes factor for two-sample data  

 

Suppose that  V�,��  and V�,�  are independent. Define  

�� = ��,�, W = 1, … , 6,                                                       (S3) 

�04� = ��,�� , W = 1, … , 6′ .                                                 (S4) 

The hypothesis of equivalent expression is 

M0:  �� = Z + �� , W = 1, … , 6 + 6′, 
and the hypothesis of differential expression is 

M1:  �� = Z + �� , W = 1, … , 6,  

        �� =  + �� , W = 6 + 1, … , 6 + [. 

Preliminaries 

To fix notation, let  

��777 = 16 + [ B ��� ,04\
�]�  

�7 = 16 + [ B ��
04\
�]� , 

�^777 = 1[ B ��
04\

�]04� , 
�_777 = 16 B ��

0
�]� . 
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Before beginning the derivation of the Bayes factor, we note that the maximum likelihood estimates under 

M1 are  

 CDE = �^777, 

ZCDE = �_777, 

and the sum of squares of the residuals using the MLEs is  

??@CDE = �6 + [���777 − [��^777�� − 6��_777��. 
Prior distributions 

For both models, we set the prior for �Z, ��� to be  

��Z, ��� ∝ ��. 

For the extra parameter in M1, we use the unit information prior centered at  = Z,  

�� |Z, �� 	� = �√�� exp �− ��� � − Z���.  

Null model prior predictive distribution 

The prior predictive probability of the data under M0 is 

���|()� = * ��Z, ��� * + ����|Z, �� 	
040�
�]� -Z.

/.
-��.

)
, 

���|()� = �2#�/NON`� * 2 1��3040�� 4� exp 5− �6 + 6′����777 − ��7��
2�� 8 a * exp 5− 6�Z − �7��2�� 8 -Z.
/.

b -��.
)

, 

���|()� = �2#�/NON`cP� �6 + 6′�/P� * 2 1��3040�/�� 4� exp 5− �6 + 6′����777 − ��7��
2�� 8 -��.
)

, 
���|() 	� = �2#�/NON`cP� �6 + 6′�/P�Γ56 + 6′ − 12 8 d�6 + 6′����777 − ��7��
e/�040�/�� �⁄ . 
Alternative model prior predictive distribution 

We define in advance: 

f� |Z, �� = �6′�^777 + Z�6′ + 1 , 
Zg = 5�6 + 66′��_777 + 6′�^7776 + 6� + 66′ 8, 
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??@� = ??@CDE + 66′�6 + 6� + 66′� ��^777 − �_777��. 
As before, the effective sum of squares of the residuals under M1 is the sum of the SSR using the 

maximum likelihood estimators and a penalty term for disagreement between the MLEs and the prior 

distribution. 

Before dealing with the marginal probability of the data under M1, we re-arrange the quadratic expression 

in α and β to ease the integrations.  

� − Z�� + B��� − Z
�0
�]� + B ��� −  
�040�

�]04�  

=  � + Z� − 2 Z + 6Z� − 26�_777Z + 6′ � − 26′�^777 + �6 + 6′���777 

= �6 + 1�Z� − 26�_777Z + �6′ + 1� � − 2�6′�^777 + Z� + �6 + 6′���777 

= �6 + 1�Z� − 26�_777Z + �6′ + 1�� − f� |Z, ��
� + �6 + 6′���777 − �6′�^777 + Z��6′ + 1  

= 56 + 6′ + 66′6′ + 1 8 Z� − 2 56�_777 + 6′6′ + 1 �^7778 Z + �6′ + 1�� − f� |Z, ��
� + �6 + 6′���777
− 6′�6′ + 1 ��^777�� 

= 56 + 6′ + 66′6′ + 1 8 hZ� − 2 5�6 + 66′��_777 + 6′�^7776 + 6′ + 66′ 8 Zi + �6′ + 1�� − f� |Z�
� + �6 + 6′���777
− 6′�6′ + 1 ��^777�� 

= 56 + 6′ + 66′6′ + 1 8 �Z − Zg
� + �6′ + 1�� − f� |Z, ��
� + �6 + 6′���777 − 6′�6′ + 1 ��^777��
− j�6 + 66′��_777 + 6′�^777k��6 + 6′ + 66′��6′ + 1� 

= 56 + 6′ + 66′6′ + 1 8 �Z − Zg
� + �6′ + 1�� − f� |Z, ��
� + �6 + 6′���777 − 6′�6′ + 1 ��^777��
− �6 + 66′����_777�� + 6′���^777�� + 26′�6 + 66′��^777 �_777�6 + 6′ + 66′��6′ + 1�  

= 56 + 6′ + 66′6′ + 1 8 �Z − Zg
� + �6′ + 1�� − f� |Z, ��
� + �6 + 6′���777
− 6��6′ + 1���_777�� + 6′��6 + 1���^777�� − 266′�^777 �_777�6 + 6′ + 66′�  
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= 56 + 6′ + 66′6′ + 1 8 �Z − Zg
� + �6′ + 1�� − f� |Z, ��
� + �6 + 6′���777 − 6′��^777�� − 6��_777��
+ 66′��_777�� + 66′��^777�� − 266′�^777 �_777�6 + 6′ + 66′�  

= 56 + 6′ + 66′[ + 1 8 �Z − Zg
� + �6′ + 1�� − f� |Z, ��
� + ??@CDE + 66′�6 + 6′ + 66′� ��^777 − �_777�� 

= 56 + 6′ + 66′6′ + 1 8 �Z − Zg
� + �6′ + 1�� − f� |Z, ��
� + ??@� . 
The marginal probability of the data under M1 is 

���|(�� = * * * ��â, ����� |Z, �� 	� + ����|% = Z, �� 	
0
�]� + ����|% =  , �� 	
040�

�]04� - .
/.

-Z.
/.

-��.
)

, 

���|(�� = �2#�/NON`OP� * 2 1��3�040�4��� 4� * * exp H− 12�� F� − Z�� + B��� − Z
�0
�]�

.
/.

.
/.

.
)

+ B ��� −  
�040�
�]04� bI - -Z -��, 

���|(�� = �2#�/NON`OP� * 2 1��3�040�4��� 4� exp 2− ??@�2�� 3 a * exp h− 6 + 6′ + 66′2���[ + 1�i -Z.
/.

b.
)

 

                                                               × a * exp h− �[ + 1�2�� � − f� |Z, ��
�i - .
/.

b -��, 

���|(�� = �2#�/NON`cP� �6 + 6′ + 66′�/P� * 2 1��3�040�/��� 4� exp 2− ??@�2�� 3.
)

 -��, 
���|(�� = �2#�/NOncP� �6 + 6′ + 66′�/P�Γ56 + 6′ − 12 8 �??@��/�040�/�� �⁄ . 
The Bayes factor is 

ST = ���|() 	����|(� 	� = o6 + 6′ + 66′6 + 6′ 5 ??@��6 + 6′����777 − ��7��
8040�/�� .                              �S5� 
Equations (S3), (S4) and (S5) together are equivalent to equations (10), (11), and (12) of the main paper. 
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