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Doubly Regularized REML for Estimation and
Selection of Fixed and Random Effects in

Linear Mixed-Effects Models

Sijian Wang, Peter Xuewin Song, and Ji Zhu

Abstract

The linear mixed effects model (LMM) is widely used in the analysis of clustered
or longitudinal data. In the practice of LMM, the inference on the structure of the
random effects component is of great importance, not only to yield proper inter-
pretation of subject-specific effects but also to draw valid statistical conclusions.
This task of inference becomes significantly challenging when a large number of
fixed effects and random effects are involved in the analysis. The difficulty of
variable selection arises from the need of simultaneously regularizing both mean
model and covariance structures, with possible parameter constraints between the
two. In this paper, we propose a novel method of doubly regularized restricted
maximum likelihood to select fixed and random effects simultaneously in the
LMM. The Cholesky decomposition is invoked to ensure the positive-definiteness
of the selected covariance matrix of random effects, and selected random effects
are invariant with respect to the ordering of predictors appearing in the Cholesky
decomposition. We then develop a new algorithm that solves the related optimiza-
tion problem effectively, in which the computational cost is comparable with that
of the Newton-Raphson algorithm for MLE or REML in the LMM. We also in-
vestigate large sample properties for the proposed method, including the oracle
property. Both simulation studies and data analysis are included for illustration.
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1 Introduction

High-dimensional clustered or longitudinal data are becoming increasingly popular in many subject-

matter areas, especially in life sciences, social sciences, and medical and health sciences. Linear

mixed-effects models (LMM; Laird and Ware, 1982), being one of the most widely used models

in the analysis of repeated measurements, are greatly challenged by data with a large number

of covariates. This paper focuses on the development of a novel and effective variable selection

procedure in the LMM that extracts important predictors from a vast pool of candidates.

In the current literature, predictors in a variable selection problem often refer to, in the LMM

context, covariates of fixed effects. When the number of predictors is large, a variable selection

method enables us to achieve parsimonious models that include most important predictors. A

parsimonious model is easier to interpret and implement in practice. The selection of fixed effects

covariates may be done through the subset selection method using AIC (Akaike, 1973), or BIC

(Schwarz, 1978) or conditional AIC (Vaida and Blanchard, 2005). However, this selection procedure

is known to be inefficient or even infeasible when the number of predictors is large.

In addition to selecting fixed effects, another important challenge in LMM is to determine the

structure of the random effects component. The selection of the random effects is equally important

to the selection of fixed effects. This is because the random effects component not only determines

the marginal covariance structure of the correlated data, but also pertains to the interpretation

of subject-specific effects of covariates. Though a misspecified covariance structure may not affect

the consistency of fixed effects estimators (e.g. Verbeke and Lesaffre, 1997), it does affect the

estimates of random effects and the asymptotic covariance matrix (e.g. Lange and Laird, 1989).

Lange and Laird (1989) showed that an under-specified random-effects component would lead to

biased estimation for the variance of the fixed effects. On the other hand, when the random-

effects component is over-specified, the covariance structure becomes over-parameterized, which

may lead to loss of estimation efficiency. Therefore, an appropriate composition of the random-

effects component is critical for valid statistical inference.

At the same time, we would also like to note that determining the configuration of the random ef-

fects component is important for researchers to understand and interpret mechanisms of population

heterogeneity in longitudinal studies. In complex correlated data, subject-specific characterizations
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may arise from multiple sources involving many predictors. Thus, learning which covariates ex-

hibit subject-specific effects, and consequently their random effects be included in the model, is

of practical importance. In the current literature, it is suggested that one may run a preliminary

analysis based on individual cluster regression models to examine which covariates exhibit potential

subject-specific effects. Clearly, this approach is rather limited and may become unreliable when

the cluster size is small. Consequently, the resulting random-effects component specification can be

subjective.

In this paper, we develop a data-driven procedure that enables us to select both fixed and random

effects simultaneously, in the case where the number of candidate fixed and random effects can be

large. There are several other work that have also contributed to the selection of fixed effects or the

random effects component for LMM. Stram and Lee (1994) discussed the asymptotic behavior of a

likelihood ratio test for nonzero random effect variances. For the special case where one is interested

in whether any random effects should be included, Commenges and Jacqmin-Gadda (1997), Lin

(1997) and Hall and Praestgaard (2001) proposed score tests. Jiang et al. (2008) developed a

“fence” method for variable selection in a general mixed effects model. In a PhD thesis, Lan (2006)

developed a penalized likelihood-based approach to select the fixed effects component with a given

structure of random effects, but they did not consider the random effects component selection.

Foster et al. (2009) proposed a LASSO random effects models with no fixed effects, where random

effects are assumed to follow a double exponential distribution, and the Laplace approximation was

used to obtain the marginal likelihood function. Albert and Chib (1997) and Chen and Dunson

(2003) also tackled the problem of selection of random effects using Bayesian approaches. Like

Foster et al. (2009), these papers did not consider the fixed effects component selection.

In this paper, we propose a method based on doubly regularized restricted maximum likelihood

(REML) in that regularization takes place simultaneously at estimation of both fixed and random

effects. In the context of the LMM, the REML method has been shown to have advantages over

many of its competitors such as the conditional likelihood method and the EM algorithm based

method, in terms of both small-sample properties and numerical performance (e.g. Harville, 1977;

Lindstrom and Bates, 1988). We use the Cholesky decomposition to ensure the positive-definiteness

of the selected covariance matrix of random effects. The resulting random effects selection is in-

variant with respect to the ordering of predictors appearing in the Cholesky decomposition. We
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develop an effective algorithm to deal with the involved optimization, where the computational cost

is similar to that of the Newton-Raphson algorithm for MLE or REML in the LMM. Furthermore,

we investigate large-sample properties of the proposed method, and show that when tuning param-

eters are appropriately chosen, the proposed estimation enjoys the oracle property (Fan and Li,

2001); that is, it performs as well as if the correct underlying model were given in advance.

The rest of the paper is organized as follows. In Section 2, we introduce our new method:

the doubly regularized REML. In Section 3, we discuss a new algorithm to carry out the related

optimization. In Section 4, we study the asymptotic behavior of the doubly regularized REML

and propose an improvement for the method. In Sections 5 and 6, we demonstrate our method

via simulations and a real data analysis, respectively. We conclude the paper with Section 7. All

technical proofs are given in the Supplemental Material.

2 Method

2.1 Linear Mixed Model

Suppose there are n subjects under study, and there are mi observations for subject i, i = 1, . . . , n.

There are p fixed effects covariates: X1, . . . , Xp, and q random effects covariates: Z1, . . . , Zq. Usually,

the q random effects covariates are a subset of the p fixed effects covariates. For subject i at

observation j, let Yij denote the response variable, xij be the vector of p predictors in the fixed

effects component, and zij be the vector of q predictors in the random effects component. The

linear mixed effects model is then written as

Yij = xT
ijβ + zT

ijbi + εij, (1)

where εij’s are assumed i.i.d. N(0, σ2), and the random effects, bi = (bi1, . . . , biq)
T , are i.i.d. accord-

ing to a multivariate normal distribution MVNq(0, σ
2D). The set of parameters to be estimated

is θ = (β, D, σ2). Without loss of generality, we assume each covariate Xj or Zk is standardized

to have zero mean and unit Euclidean norm. Thus, the fixed intercept can be removed from the

model; however, we will always keep the random intercept, denoted by b1, in the model.

For notational simplicity, we rewrite (1) in a matrix format:

Y i = X iβ + Zibi + εi, (2)
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where Y i = (Yi1, . . . , Yimi
)T , XT

i = (xi1, . . . ,ximi
),ZT

i = (zi1, . . . ,zimi
), and εi = (εi1, . . . , εimi

)T .

The first two moments of Y i are then given by

E(Y i) = X iβ,

V ar(Y i) = σ2
(
ZiDZT

i + Imi

)
.

Clearly, the component of fixed effects, i.e. X i, affects the mean model, and the component of

random effects, i.e. Zi, affects the covariance structure, where Zi is often a subset of X i. Our goal

is to jointly select both fixed and random effects.

2.2 MLE and REML

Our variable selection method is built upon standard methods of estimation in the LMM, specifically,

maximum likelihood (ML) and restricted maximum likelihood (REML) methods (e.g., Laird and

Ware, 1982; Jennrich and Schluchter, 1986; Lindstrom and Bates, 1988).

Under model (1), the marginal distribution of Y i is given by

Y i ∼ MVNmi
(X iβ, σ2V i), (3)

where V i = Imi
+ ZiDZT

i . Subject to a constant, the (full) log-likelihood for the data is

`F (β, D, σ2) = −1

2

n∑
i=1

log
∣∣∣σ2Vi

∣∣∣− 1

2σ2

n∑
i=1

(Yi −Xiβ)T Vi
−1(Yi −Xiβ), (4)

and the ML estimates of parameters β, D and σ2 can be obtained by maximizing the log-likelihood

function (4). Note that when D is known, the MLE for β is given by

β̂(D) = arg min
β

1

2

n∑
i=1

(
Y i −X iβ

)T

V −1
i

(
Y i −X iβ

)
. (5)

One well-known criticism on the ML estimation is that for the variance components (i.e. D),

there is a downward finite-sample bias due to the fact that the ML method does not take into account

the loss in degrees of freedom from the estimation of β. The restricted maximum likelihood estimate

(REML) corrects for this bias by defining estimates of the variance components as the maximizers

of the log-likelihood based on N − p linearly independent error contrasts, where N is the total

number of observations from all individuals, i.e., N =
∑n

i=1 mi. This log-likelihood, according to
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Harville (1974), is

`R(D, σ2) = −1

2

n∑
i=1

log
∣∣∣σ−2V i

∣∣∣− 1

2
log
∣∣∣σ−2

n∑
i=1

XT
i V −1

i X i

∣∣∣
− 1

2σ2

n∑
i=1

{
Y i −X iβ̂(D)

}T

V −1
i

{
Y i −X iβ̂(D)

}
, (6)

where β̂(D) is given by (5).

One way to obtain the estimate of (β, D, σ2) is to solve (5) and (6) iteratively until convergence.

When convergence is achieved, one can estimate the random effects using BLUP (e.g. Song, 2007,

Chapter 9):

b̂i = DZT
i V −1

i (Y i −X iβ̂).

Joining the estimator (5) and the REML (6), we may write a modified log-likelihood as

`n(β, D, σ2) = −1

2

n∑
i=1

log
∣∣∣σ−2V i

∣∣∣− 1

2
log
∣∣∣σ−2

n∑
i=1

XT
i V −1

i X i

∣∣∣
− 1

2σ2

n∑
i=1

(
Y i −X iβ

)T

V −1
i

(
Y i −X iβ

)
, (7)

Clearly, the MLE of β and the REML of D can be obtained by jointly maximizing (7).

2.3 Doubly Regularized REML Estimation

The selection of fixed effects and random effects components can be realized through the selection

of nonzero elements in β and D. If βj = 0, the corresponding predictor Xj (a fixed effect) will

be excluded from the model. If a diagonal element Dkk = 0, which means the variance of the kth

random effect is zero, then the random effect bk will be removed from the model. In order to obtain

the desired sparsity in the final estimates, we propose to regularize the estimation of both β and

D simultaneously, i.e.,

max Qn(β, D, σ2) = `n(β, D, σ2)− λ1J1(β)− λ2J2(D), (8)

where λ1 and λ2 are two nonnegative tuning parameters. The first penalty function J1(β) controls

the sparsity of final estimation of β, and hence controls the selection of fixed effects. The second

penalty function J2(D) controls the sparsity of the final estimation of D, and hence controls the

selection of random effects.
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Specifically, we adopt the L1-norm penalty for J1(β) (Tibshirani, 1996), i.e.,

J1(β) =

p∑
j=1

|βj|. (9)

It is well-known that due to the singularity of |βj| at 0, some estimates of β̂j, j = 1, . . . , p will be

exactly zero.

For the random effects selection, to ensure the positive definiteness of the estimated D, we use

the Cholesky decomposition, i.e., D = LLT , where L is a lower triangular matrix with positive

diagonal elements. This decomposition converts a constrained optimization into an unconstrained

problem, and the resulting computation is more stable and faster. Consequently, the selection

procedure will target L, rather than D. The relation between the sparsity of D and the sparsity

of L is given by the following Lemma.

Lemma 1 Denote L = (LT
(1), . . . ,L

T
(q))

T , where L(k) is the kth row of L. Then for any given k, we

have

L(k) = 0 ⇐⇒ Dkk = 0 and Dkj = Djk = 0,∀j.

The proof is straightforward, and we omit it in this paper. Lemma 1 indicates that if the vector

L(k) = 0, then the diagonal element Dkk, known as the variance of the random effect bk, is zero.

Furthermore, for any j 6= k, off-diagonal elements Dkj = 0, which implies that the covariances

between bk and all other random effects are estimated as zero. Thus, the random effect bk can

be excluded from the model. The above observation motivates us to shrink the entire vector L(k)

towards a zero vector. Therefore, we adopt the L2-norm penalty (Yuan and Lin, 2005) for J2(D),

i.e.,

J2(L) =

q∑
k=2

√
L2

k1 + · · ·+ L2
kq. (10)

Note that the summation starts from k = 2, for we intend to keep a random intercept in model,

which generates a minimal within-cluster correlation. Similar as the L1-norm penalty, the L2-norm

penalty is singular at the point L(k) = 0, which encourages L(k) to be estimated as an exact zero

vector.

Furthermore, since Dkk = L2
k1+ · · ·+L2

kq, we can rewrite the J2 penalty as J2(D) =
∑q

k=2

√
Dkk.

Since the value of J2(D) remains unchanged regardless the ordering of Dkk (or random effects)
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appearing in the model, it implies that the estimation for D is invariant with respect to the ordering

of random effects in the Cholesky decomposition.

3 Algorithm

We aim to estimate β and L (D = LLT ) by maximizing the following doubly regularized log-REML

function:

Qn(β, L, σ2) = `n(β, L, σ2)− λ1

p∑
j=1

|βj| − λ2

q∑
k=2

‖L(k)‖2, (11)

where ‖L(k)‖2 =
√

L2
k1 + · · ·+ L2

kq.

To simplify the computation, following Lindstrom and Bates (1988), we estimate σ2 by

σ̂2(β, L) =
1

N − p

n∑
i=1

(Yi −Xiβ)T Vi
−1(Yi −Xiβ). (12)

We substitute this expression into `n(β, L, σ2) to obtain the doubly regularized profile log-

REML, which is

QR(β, L) = PR(β, L)− λ1

p∑
j=1

|βj| − λ2

q∑
k=2

‖L(k)‖2, (13)

where

PR(β, L) = −1

2

n∑
i=1

log
∣∣∣V i

∣∣∣− 1

2
log
∣∣∣ n∑

i=1

XT
i V −1

i X i

∣∣∣
−N − p

2
log

{
n∑

i=1

(
Y i −X iβ

)T

Vi
−1
(
Yi −Xiβ

)}
. (14)

The estimation of β and L can be obtained through an iterative algorithm: we first fix L and

estimate β, then we fix β and estimate L; we iterate between these two steps until the algorithm

converges. Since the value of the objective function (13) decreases over iterations, convergence is

guaranteed.

When L is fixed, maximizing (13) with respect to β is similar to a LASSO type optimization;

hence we can apply either the LARS/LASSO algorithm (Efron et al., 2004) or a quadratic program-

ming package to efficiently solve for β. When β is fixed, directly maximizing (13) with respect to

L is challenging. Following the same spirit as Lin and Zhang (2006), we transform the optimization

to an equivalent problem that is easier to solve.
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Proposition 1 For any given β̂ and λ2, consider the following two optimization problems:

max
Lkj

Q1(β̂, L) = PR(β̂, L)− λ2

q∑
k=2

√
L2

k1 + · · ·+ L2
kq, (15)

max
Lkj ,γk

Q2(β̂, L) = PR(β̂, L)−
q∑

k=2

γ2
k −

λ2
2

4

q∑
k=2

1

γ2
k

( q∑
j=1

L2
kj

)
. (16)

Let L̂kj be the maximizer of (15), and (γ∗k , L
∗
kj) be the maximizer of (16), k = 2, . . . , q, j =

1, . . . , q. Then we have

L̂kj = L∗kj, k = 2, . . . , q, j = 1, . . . , q; (17)

γ∗k =

√
λ2

2
‖L∗

(k)‖2, k = 2, . . . , q. (18)

The proof of Proposition 1 is given in the Supplemental Material. This proposition suggests that,

instead of maximizing (15) with respect to L directly, one can maximize (16) iteratively between

γk and Lkj. Note that when γk is fixed, the objective function (16) resembles a generalized ridge

regression, which can be solved via the Newton-Raphson algorithm. When Lkj’s are fixed, γk can

be easily computed using formula (18). Overall, our proposed algorithm iteratively updates β, γk

and Lkj, and proceeds as follows:

1. Initialization: Initialize β(0), γ
(0)
k and L

(0)
kj with some plausible values.

2. Update Lkj: For iteration r, let

L
(r)
kj = arg max

Lkj

PR(β(r−1), D)− λ2
2

4

q∑
k=1

1(
γ

(r−1)
k

)2

( k∑
j=1

L2
kj

)
. (19)

3. Update γk:

γ
(r)
k =

√
λ2

2
‖L(r)

(k)‖2. (20)

4. Update β by LASSO:

β(r) = arg min
β

1

2

n∑
i=1

(
Y i −X iβ

)T

V
(r)
i

−1
(
Y i −X iβ

)
+ λ1

p∑
j=1

|βj|. (21)

5. If both maxk,j{|L(r)
kj − L

(r−1)
kj |} and maxj |β(r)

j − β
(r−1)
j | are small enough, stop the algorithm.

Otherwise, let r = r + 1 and go back to step 2.
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4 Asymptotic Theory

In this section we present some large-sample properties for the proposed method. Proofs are given

in the Supplemental Material.

4.1 Main Results

Our main results are established on general penalty functions, including the J1(β) given in (9)

and J2(L) given in (10) as special cases. Denote θ = (βT , vec(L)T , σ2)T . Consider the doubly

regularized log-REML function of the following form:

Qn(θ) =
1

n
`n(θ)−

p∑
j=1

fλ1n(|βj|)−
q∑

k=2

gλ2n(|Lk1|, . . . , |Lkq|), (22)

where `n(θ) is given by (7), and both penalty functions fλ1n(|βj|) and gλ2n(|Lk1|, . . . , |Lkq|) are

specified in general forms with tuning parameters λ1n and λ2n being allowed to change with sample

size n. Moreover, the penalty functions are assumed to satisfy the following conditions of convexity

and monotonicity:

1. fλ1n(|a|) ≥ 0, for ∀a ∈ R, with fλ1n(0) = 0, and fλ1n(|a1|) ≤ fλ1n(|a2|), if |a1| ≤ |a2|.

2. gλ2n(|a1|, . . . , |aq|) ≥ 0, for ∀(a1, . . . , aq)
T ∈ Rq, with gλ2n(0) = 0, and gλ2n(|a1|, . . . , |aq|) ≤

gλ2n(|b1|, . . . , |bq|), if |al| ≤ |bl|, ∀ l = 1, . . . , q.

We use θ∗ to denote the true parameter vector θ∗ = (β∗
A

T , β∗
B

T , vec(L∗
C)

T , vec(L∗
D)T , σ2

∗)
T , where

A, B, C and D are index sets, defined as

A = {j : β∗j 6= 0},

B = {j : β∗j = 0},

C = {(k, j) : L∗k1
2 + · · ·+ L∗kq

2 6= 0},

D = {(k, j) : L∗k1
2 + · · ·+ L∗kq

2 = 0}.

Note that A contains the indices of coefficients for fixed effects which are truly non-zero, B

contains the indices of coefficients for fixed effects which are truly zero, C contains the indices

of elements in L whose row (and the variance of the corresponding random effect component) is
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truly non-zero, and D contains the indices of elements in L whose row (and the variance of the

corresponding random effect component) is truly zero.

In addition to the common regularity conditions for MLE (Lehmann and Casella, 1998) and

REML (Jiang, 2007), we also assume the following regularity conditions:

A1 : lim
n→∞

1

n
Xi

T (σ2
∗Vi(L

∗))−1Xi = I(β∗), where I(β∗) is a positive definite matrix.

A2 :
1

n

∂3`n(θ)

∂θi∂θj∂θk

= Op(1), for all θ in a small neighborhood of θ∗.

A3 : For any two bounded column vectors a and b, and for any two rows of Xi : Xi(j) and Xi(j′),

1

n

n∑
i=1

(Xi
T
(j)a)(Xi

T
(j′)b)T = Op(1).

Condition A1 guarantees that the Fisher information matrix for β exists and is positive definite.

Condition A2 implies that the third and higher order expansions of `n are ignorable. Condition A3

indicates that the product of two bounded linear combinations of two rows of the design matrix

X is bounded. Note that if a and b are chosen to be column vectors with only 1 element being

nonzero, then condition A3 is equivalent to the common condition 1
n

∑n
i=1 XT

i X i = Op(1) for a

linear model.

We also define

an = max
{∂fλ1n(|β∗j |)

∂|βj|
: β∗j 6= 0

}
,

bn = max
{∂2fλ1n(|β∗j |)

∂|βj|2
: β∗j 6= 0

}
,

cn = max
{∂gλ2n(|L∗k1|, . . . , |L∗kq|)

∂|Lkj|
: L∗k1

2 + · · ·+ L∗kq
2 6= 0

}
,

dn = max
{∂2gλ2n(|L∗k1|, . . . , |L∗kq|)

∂|Lkj|∂|Lkj′|
: L∗k1

2 + · · ·+ L∗kq
2 6= 0

}
.

Then we have the theorem that contains the result on estimation consistency.

Theorem 2 Suppose conditions A1-A3 hold. If both an and cn are of order O(n−1/2), and both

bn and dn are of order o(1), then there exists a local maximizer θ̂ of Qn(θ) in (22) such that

‖θ̂ − θ∗‖2 = Op(n
−1/2).

Theorem 2 implies that by choosing proper penalty functions fλ1n and gλ2n as well as proper

tuning parameters λ1n and λ2n, the doubly regularized REML estimator is root-n consistent. It
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immediately leads to the following corollary for the doubly regularized REML proposed in Section

2.3.

Corollary 1 Consider the following penalty functions:

fλ1n(|βj|) = λ1n|βj|,

gλ2n(|Lk1|, . . . , |Lkq|) = λ2n

√
L2

k1 + · · ·+ L2
kq, k ≥ 2.

If λ1n = O(n−1/2) and λ2n = O(n−1/2), then there exists a
√

n-consistent local maximizer θ̂ =

(β̂, L̂, σ̂2) of Qn(θ) given in (11).

Below we establish the sparsity property and the asymptotic normality.

Theorem 3 Suppose θ̂ = (β̂
T
, vec(L̂)T , σ̂2)T is a

√
n-consistent local maximizer of Qn(θ) in (22).

Under conditions A1-A3, we have the following results:

(a) For all j ∈ B (i.e. β∗j = 0), if
√

n
∂fλ1n

(|β̂j |)
∂|βj | →∞, then Pr(β̂j = 0) → 1 as n →∞.

(b) For all (k, j) ∈ D (i.e. L∗k1
2 + · · · + L∗kq

2 = 0), if
√

n
∂gλ2n

(|L̂k1|,...,|L̂kq |)
∂|Lkj |

→ ∞, then Pr(L̂kj =

0) → 1 as n →∞.

(c) If for all j ∈ A (i.e. β∗j 6= 0),
√

n
∂fλ1n

(|β∗j |)
∂|βj | → 0, and bn = o(1), then under part (a), we

have
√

n
(
β̂A−β∗

A

)
d→ MVN

(
0, I−1

A (β∗
A)
)
, n →∞, where IA is the part of the (full) Fisher

Information matrix corresponding to the parameter subvector βA.

(d) If for all (k, j) ∈ C (i.e. L∗k1
2 + · · ·+ L∗kq

2 6= 0),
√

n
∂gλ2n

(|L∗k1|,...,|L
∗
kq |)

∂|Lkj |
→ 0, and dn = o(1), then

under part (b), we have
√

n
(
L̂C − L∗

C

)
d→ MVN

(
0, I−1

C (L∗
C)
)
, n → ∞, where IC is the part

of the (full) Fisher Information matrix corresponding to the parameter subvector vec(LC).

Theorem 3 implies that by choosing proper penalty functions fλ1n and gλ2n , as well as proper

tuning parameters λ1n and λ2n, the doubly regularized REML estimators hold the sparse property

for the zero parameters indexed by B and D; that is, with probability tending to 1, β̂B = 0 and

L̂D = 0. Moreover, the doubly regularized REML estimators for the nonzero parameters, β̂A and

L̂C, follow the same asymptotic distributions as they would follow if the zero parameters were

known in advance. Therefore, we can declare that asymptotically, the doubly regularized REML
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estimators perform as well as if the true underlying model were provided in advance; in other words,

the proposed doubly regularized REML estimation method possesses the oracle property of Fan and

Li (2001).

4.2 Improving Regularized REML Regression

Though Corollary 1 indicates that, when λ1n and λ2n are properly selected, there exists a root-n

consistent estimate for the doubly regularized REML regression (11), the sparse property, however,

may not hold for (11), i.e., there is no guarantee that β̂B = 0 or L̂D = 0 with probability approaching

1. To overcome this limitation, we employ the idea of adaptive regularization that has been used

in the literature, for example, Breiman (1995), Wang et al. (2007), Zhang and Lu (2007), Zou

(2006), among others. Essentially, the adaptive idea allocates different penalty weights on different

parameters. Specifically, we propose a modified version of the doubly regularized REML function

given as follows:

QW
n (θ) =

1

n
`n(θ)− λ1n

p∑
j=1

wβ
nj|βj| − λ2n

q∑
k=2

wL
nk

√
L2

k1 + · · ·+ L2
kq, (23)

where wβ
nj ≥ 0, j = 1, . . . , p and wL

nk ≥ 0, k = 2, . . . , q are pre-specified non-negative weights. The

intuition behind this modification is that if a fixed effect or a random effect appears strong, its

associated regularization weight should be small, so that the corresponding regression coefficient

or variance component will be lightly penalized. On the other hand, if a fixed effect or a random

effect appears weak, its associated regularization weight should be large, hence the corresponding

regression coefficient or variance component is heavily penalized. With a proper choice for the

adaptive weights, the weighted doubly regularized REML regression possesses the oracle property

as in Theorem 3. The details are stated in the following theorem.

Theorem 4 Define

wβ
n,max = max{wβ

nj : β∗j 6= 0}, wL
n,max = max{wL

nk : L∗k1
2 + · · ·+ L∗kq

2 6= 0},

wβ
n,min = min{wβ

nj : β∗j = 0}, wL
n,min = min{wL

nk : L∗k1
2 + · · ·+ L∗kq

2 = 0}.

Under conditions A1-A3, if
√

nλ1nw
β
n,max = Op(1),

√
nλ1nw

β
n,min → ∞,

√
nλ2nw

L
n,max = Op(1),

and
√

nλ2nw
L
n,min → ∞, then there exists a

√
n-consistent local maximizer θ̂ of (23) such that
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Pr(β̂B = 0) → 1 and Pr(L̂D = 0) → 1 as n → ∞. Furthermore, if
√

nλ1nw
β
n,max = op(1)

and
√

nλ2nw
L
n,max = op(1), then we have

√
n
(
β̂A − β∗

A

)
d→ MVN(0, I−1

A (β∗
A)) and

√
n
(
vec(L̂C) −

vec(L∗
C)
)

d→ MVN(0, I−1
C (L∗

C)) as n →∞.

The following corollary provides one set of choices for proper tuning parameters λ1n and λ2n as

well as proper weights wβ
nj and wL

nk, which satisfy the conditions required in Theorem 4.

Corollary 2 Let β̃j and L̃kj be nτ -consistent estimators with 0 < τ ≤ 0.5. If λ1n = λ2n =

1/{
√

n log(n)}, wβ
nj = 1/|β̃j|r1 , j = 1, . . . , p, and wL

nk = 1/(L̃2
k1 + · · · + L̃2

kq)
r2 , k = 2, . . . , q, with

r1 > 0, r2 > 0, then there exists a
√

n-consistent local maximizer θ̂ of (23) such that as n →∞,

Pr(β̂B = 0) → 1,
√

n
(
β̂A − β∗

A

)
d→ MVN(0, I−1

A (β∗
A))

Pr(L̂D = 0) → 1,
√

n
(
vec(L̂C)− vec(L∗

C)
)

d→ MVN(0, IC(L
∗
C)
−1).

In practice, we may choose β̃j and L̃kj as the consistent estimates from the unpenalized LMM

when p < n, and ridge LMM regression when p > n.

5 Simulation Studies

In this section, we report simulation results concerning the performance of the doubly regularized

REML estimation. We considered four examples. In each example, there are n=200 clusters, with

mi=5 repeated observations in each cluster. The LMM used to generate data is detailed as follows.

• Example 1: There are p=6 predictors. Data are generated from the following LMM:

Yij = 1 + 2Xij,1 + 2Xij,2 + 2Xij,3 + 0Xij,4 + 0Xij,5 + 0Xij,6

+bi0 + bi1Xij,1 + bi3Xij,3 + εij, i = 1, . . . , 200, j = 1, . . . , 5,

where Xij,1 ∼ N(0, 22), Xij,2 = Xi2 ∼ Bernoulli(0.5), Xij,3 = j, and the other three predictors

Xij,4, Xij,5, Xij,6 are independent N(0, 1) variables; random effects bi0, bi1, bi3 are independently

generated from N(0, 0.52); and errors εij are i.i.d. N(0, 1).

• Example 2: The LMM is the same as that in Example 1, except for nonzero correlations

among the random effects, which are given as: bi0, bi1, bi3 ∼ N(0, 0.52), corr(bi0, bi1) = 0.5,

corr(bi0, bi3) = 0.2, and corr(bi1, bi3) = 0.3.
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• Example 3: There are p=8 predictors that are serially correlated. The LMM that generates

the data is as follows:

Yij = 1 + 3Xij,1 + 1.5Xij,2 + 0Xij,3 + 0Xij,4 + 2Xij,5 + 0Xij,6 + 0Xij,7 + 0Xij,8

+bi0 + bi1Xij,1 + bi5Xij,5 + εij, i = 1, . . . , 200, j = 1, . . . , 5,

where Xij,k ∼ N(0, 1), k = 1, . . . , 8, with corr(Xij,k, Xij,k′) = 0.5|k−k′|; random effects

bi0, bi1, bi5 are independent according to N(0, 0.82), and errors εij are i.i.d. N(0, 1).

• Example 4: The model is the same as that in Example 3, except for correlated random effects:

bi0, bi1, bi5 ∼ N(0, 0.82), corr(bi0, bi1) = 0.5, corr(bi0, bi5) = 0.2, and corr(bi1, bi5) = 0.3.

When fitting the model, we included all the predictors in both the fixed effects component

(p = 8) and the random effects component (q = 8) plus the random intercept. We applied both

the non-adaptive doubly regularized REML regression and its adaptive version to select important

effects. Following Wang et al. (2007), we selected tuning parameters λ1 and λ2 by minimizing the

BIC criterion:

BIC = −2PR(β̂, L̂) + d log(n), (24)

where d is the total number of nonzero estimates in (β̂, L̂).

For each example, we repeated for 200 times. The results are summarized in Tables 1-4. In

particular, we recorded the selection frequency of fixed effects and random effects, and calculated

average estimates of regression coefficients and variance components. Empirical standard errors of

the average estimates are also reported. Since the random intercept was always included in the

model, we omit the corresponding selection frequency.

As we can see from the tables, in all four simulation settings, the non-adaptive doubly regularized

REML was very effective at identifying important fixed and random effects and reasonably effective

in removing unimportant ones. We can also see that the non-adaptive doubly regularized REML

method had very little bias in estimation for the fixed effects, but there was noticeable downward

bias in the estimation of the variance components (upper parts of Tables 1-4). This bias, however,

was reduced significantly by the adaptive doubly regularized REML method (lower parts of Tables

1-4). The adaptive version of the doubly regularized REML was also more effective at removing

unimportant fixed and random effects than the non-adaptive method. In conclusion, both versions
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of doubly regularized REML are effective to identify positive signals and useful in the building of

prediction models. However, for the purpose of discovery, the adaptive version is recommended,

since it appears to have a better control of false discoveries than the non-adaptive vesion.

6 Data Analysis

In this section, we apply the proposed method in a real world data analysis. The data were collected

from a longitudinal randomized controlled intervention trial on adolescent children (11-21 years old)

with HIV+ parents in a Hispanic population in New York city (Rotheram-Borus et al., 2004). The

primary outcome of interest was a certain psychiatric symptom, specifically, a negative state of

mind measured repeatedly by a Basic Symptoms Inventory (BSI) over a period of 6 years (with

an average of 11.5 visits per person). Interested readers may refer to Weiss (2005) for detailed

definition and normalization of the BSI score variable.

There were six covariates, including treatment (1 for the treatment group and 0 for the control

group), age at baseline, gender, indicator for race (1 if the subject is Hispanic and 0 otherwise), time

of visit (logarithm of year), and season of visit. Seasonality was coded according to three different

periods: Winter refers to November through February, Spring corresponds to March through June,

and Summer represents July through October. In our analysis, we used Spring as the reference level

and created two dummy variables for Summer and Winter. We also included two-way interactions

between treatment and time, gender, or Hispanic. Thus, the LMM for the data analysis takes the

following form:

BSI ∼ Age at Baseline + Gender + Hispanic + Summer + Winter + Time + Treatment

+Time ∗ Treatment + Gender ∗ Treatment + Hispanic ∗ Treatment,

where these 10 predictors were included in both X i for fixed effects and Zi for random effects, that

is, p = 10 and q = 11 (one for the random intercept). The treatment effect was evaluated by the

interaction between Time and Treatment in terms of whether there is a difference in the trend of

changes of BSI in control and treatment groups. We fitted the model using the non-adaptive doubly

regularized REML regression and selected tuning parameters using the BIC in (24). The results are

summarized in Table 5 (left part). As we can see, our method selected Hispanic, Time, Summer,
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Winter, Time*Treatment and Gender*Treatment for nonzero fixed effects, and Time, Summer,

Winter and Time*Treatment for nonzero random effects.

To assess this selection, we drew 100 bootstrap samples from the original dataset. Each bootstrap

sample was then analyzed in the same way as done for the original dataset. The selection frequency

and average estimates of the regression coefficients and variance components are reported in the

upper part of Table 6.

We can see that Time, Summer, Winter, Time*Treatment and Gender*Treatment had high

selection frequencies while Hispanic had low selection frequency among the fixed effects; regarding

the random effects, Time, Summer, Winter and Time*Treatment had high selection frequencies.

We also applied the adaptive doubly regularized LMM regression on the BSI dataset. For

the construction of adaptive weights, we used the inverse of the estimates from ridge-penalized

LMM. The results are also summarized in Table 5 (right part). As we can see, similar as the

non-adaptive method, the adaptive method also selected Time, Summer, Winter, Time*Treatment

and Gender*Treatment for nonzero fixed effects, and Time, Summer, Winter and Time*Treatment

for nonzero random effects. However, unlike the non-adaptive method, the adaptive method did

not select Hispanic, which agrees with the low selection frequency from the 100 bootstrap sample

analysis. In terms of the magnitude of the estimates, the non-adaptive and adaptive methods

provided similar estimates for the fixed effects, while the estimates for the variance components

from the adaptive method are slightly larger than those from the non-adaptive method.

Similar as the assessment done for the non-adaptive method, we also used bootstrap to evaluate

the selection of the adaptive method. The results are reported in the lower part of Table 6, and

they are similar to those from the non-adaptive method.

Overall, it seems that there were strong time effects and season effects on the psychiatric symp-

tom in the study. There was also some evidence that the treatment program was effective and the

program worked better for boys than girls, due to the nonzero interaction effects between Time and

Treatment and between Gender and Treatment. The negative coefficient for Time indicates that

the average symptom score decreased over time. The fitted coefficients for Winter and Summer also

indicate that symptoms were more severe in spring than in winter or summer, while the summer

and winter were not much different from each other.

Furthermore, some population heterogeneity seemed to exist in the time effect, season effects
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(Summer and Winter), and treatment effect (interaction between Time and Treatment) indicated

by the corresponding nonzero variance components. This implies that subject-specific effects are

imperative to interpret the relationship between the symptom and the four predictors. For example,

the expected psychiatric symptom in the summer is different among the subjects, conditional on

the other predictors being fixed.

7 Discussion

We have proposed a doubly regularized REML to select important fixed effects and random effects

simultaneously. We have shown that an adaptive version of the doubly regularized REML enjoys

the oracle property; that is, it performs as well as if the true model structure were given in advance.

Numerical results indicate that our methods work well for the selection of both fixed and random

effects. There is a downward bias in the estimation of the variance components, however, it can be

reduced by the adaptive method.

We would like to note that our choice of REML is rooted in the fact that the REML method

is more popular and superior over many other methods for estimation and inference in the LMM.

For example, EM may be an alternative for estimation in LMM; however, since the regularization

shrinks the number of random effects, the dimension of the posterior distribution of the random

effects may vary from iteration to iteration. In such situations, it is not clear whether the EM

algorithm would still converge. The slow convergence rate of the EM also limits its capability for

handling a large number of random effects, the scenario where the proposed method intends to be

effective. Furthermore, the doubly regularized REML can be naturally extended to the generalized

linear mixed-effects models (GLMM) via the Laplace approximation (e.g. Breslow and Clayton,

1993), which is currently being investigated by the authors.

Another direction for future work arises from the possible hierarchy between fixed effects and

random effects. That is, one may prefer the composition of random effects be a subset of the

included fixed effects. In other words, if a predictor is identified to have a subject-specific effect,

then the corresponding fixed effect should also be included in the model. The proposed doubly

regularized REML can be easily generalized to handle this constraint.

Without loss of generality, suppose Zi is the first q columns of X i, for i = 1, . . . , n. Now consider
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a reparameterized Cholesky decomposition

D =

 β1

. . .

βq

LLT

 β1

. . .

βq

 , (25)

where L is a lower triangular matrix with positive diagonal elements. Clearly, if βj = 0, the jth

row and the jth column of D are also zero, regardless of the value of L(j).

For regularization, we may then consider the following optimization problem:

(β̂, L̂ij) = arg max
β,L

PR − λ1

p∑
j=1

|βj| − λ2

q∑
k=2

‖L(k)‖2. (26)

As pointed out above, if β̂j = 0, from (25) the penalty on L will guarantee that L̂(j) is also estimated

as zero. As a result, when a fixed effect βj is shrunk to zero, the corresponding random effect will

be automatically excluded from the model. The algorithm proposed in Section 3 can be applied to

solve (26) with a slight modification.
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Table 1: Simulation results for Example 1. The upper part is for the non-adaptive method, and
the lower part is for the adaptive method. “Sel. Freq.” represents the selection frequency over
200 repetitions. Averaged estimates over 200 repetitions and the corresponding standard errors
(numbers in the parentheses) are also reported.

Intercept X1 X2 X3 X4 X5 X6

Non-adaptive DRLMM
Fixed Effects

Sel. Freq. (%) — 100 100 100 21 25 21

β̂j 1.14 1.96 1.82 1.98 0.002 -0.001 0.001
(0.13) (0.05) (0.20) (0.04) (0.03) (0.03) (0.03)

Random Effects

Sel. Freq. (%) — 100 5.5 100 17 17.5 18.5√
D̂kk — 0.37 0.004 0.37 0.005 0.004 0.005

(—) (0.04) (0.02) (0.04) (0.01) (0.01) (0.01)

Adaptive DRLMM
Fixed Effects

Sel. Freq. (%) — 100 100 100 4 3.5 3.5

β̂j 1.05 2.00 1.92 1.99 0.001 -0.001 0.001
(0.12) (0.04) (0.17) (0.05) (0.01) (0.01) (0.02)

Random Effects

Sel. Freq. (%) — 100 10 100 0.5 0 0√
D̂kk — 0.46 0.03 0.45 0.0001 0 0

— (0.046) (0.058) (0.050) (0.001) (0) (0)
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Table 2: Simulation results for Example 2. Descriptions are referred to the caption of Table 1.

Intercept X1 X2 X3 X4 X5 X6

Non-adaptive DRLMM
Fixed Effects

Sel. Freq. (%) — 100 100 100 21 24.5 23

β̂j 1.14 1.96 1.80 1.98 0.0001 0.0004 0.0023
(0.16) (0.05) (0.21) (0.05) (0.03) (0.02) (0.03)

Random Effects

Sel. Freq. (%) — 100 4.4 100 20 16.7 16.7√
D̂kk — 0.38 0.003 0.37 0.005 0.005 0.004

— (0.04) (0.02) (0.04) (0.01) (0.01) (0.01)

Adaptive DRLMM
Fixed Effects

Sel. Freq. (%) — 100 100 100 7.5 6.5 6.0

β̂j 1.04 1.99 1.93 2.00 0.0004 0.0002 -0.001
(0.12) (0.04) (0.19) (0.05) (0.02) (0.01) (0.01)

Random Effects

Sel. Freq. (%) — 100 5.5 100 0 1 0√
D̂kk — 0.46 0.02 0.45 0 0.001 0

— (0.046) (0.038) (0.051) (0) (0.008) (0)
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Table 3: Simulation results for Example 3. Descriptions are referred to the caption of Table 1.

Intercept X1 X2 X3 X4 X5 X6 X7 X8

Non-adaptive DRLMM
Fixed Effects

Sel. Freq. (%) — 100 100 17 13.5 100 13.5 9 7.5

β̂j 1.00 2.91 1.46 0.009 0.009 1.89 0.007 0.004 0.001
(0.08) (0.09) (0.05) (0.02) (0.02) (0.09) (0.02) (0.02) (0.02)

Random Effects

Sel. Freq. (%) — 98 22 13.5 16.5 91 18.5 11.5 12√
D̂kk — 0.54 0.009 0.006 0.007 0.50 0.009 0.004 0.006

(—) (0.12) (0.02) (0.02) (0.02) (0.19) (0.02) (0.01) (0.02)

Adaptive DRLMM
Fixed Effects

Sel. Freq. (%) — 100 100 6.5 2.0 100 3.0 5.0 2.5

β̂j 1.00 3.00 1.49 0.0002 -0.0001 1.98 0.0003 0.0005 0.0001
(0.077) (0.077) (0.047) (0.012) (0.008) (0.073) (0.009) (0.008) (0.005)

Random Effects

Sel. Freq. (%) — 100 2.5 4.0 4.0 100 6.5 4.0 2.0√
D̂kk — 0.75 0.002 0.003 0.003 0.75 0.005 0.004 0.002

(—) (0.08) (0.01) (0.01) (0.01) (0.08) (0.02) (0.01) (0.01)

Hosted by The Berkeley Electronic Press



Table 4: Simulation results for Example 4. Descriptions are referred to the caption of Table 1.

Intercept X1 X2 X3 X4 X5 X6 X7 X8

Non-adaptive DRLMM
Fixed Effects

Sel. Freq. (%) — 100 100 18 17.5 100 19.5 15 12

β̂j 1.00 2.91 1.47 0.007 0.007 1.89 0.008 0.001 -0.0004
(0.07) (0.08) (0.05) (0.03) (0.02) (0.10) (0.03) (0.03) (0.02)

Random Effects

Sel. Freq. (%) — 100 21 7.5 19.5 99 12 10 7.5√
D̂kk — 0.50 0.007 0.003 0.006 0.49 0.004 0.004 0.003

(—) (0.12) (0.02) (0.01) (0.02) (0.16) (0.02) (0.02) (0.01)

Adaptive DRLMM
Fixed Effects

Sel. Freq. (%) — 100 100 5.5 4.0 100 7.5 5.5 4.0

β̂j 1.00 2.98 1.49 0.0001 0.0002 1.98 0.0006 0.0021 0.0002
(0.067) (0.071) (0.048) (0.014) (0.009) (0.075) (0.020) (0.020) (0.006)

Random Effects

Sel. Freq. (%) — 100 3.0 4.5 3.5 100 4.0 7.0 1.0√
D̂kk — 0.76 0.002 0.004 0.004 0.76 0.003 0.005 0.002

(—) (0.08) (0.01) (0.02) (0.01) (0.08) (0.01) (0.01) (0.01)
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Table 5: Results for the psychiatric symptom data analysis. The numbers are estimated fixed effects

β̂j’s and the estimated variance components of random effects
√

D̂kk’s.

Non-Adaptive Adaptive
Fixed Effect Variance Component Fixed Effect Variance Component

Age at baseline 0 0 0 0
Gender 0 0 0 0
Hispanic 0.010 0 0 0
Time −0.060 0.142 -0.069 0.182
Summer −0.045 0.014 -0.033 0.033
Winter −0.041 0.010 -0.029 0.029
Treatment 0 0 0 0
Time*Trt −0.027 0.002 -0.006 0.005
Gender*Trt 0.075 0 0.065 0
Hispanic*Trt 0 0 0 0
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Table 6: Summary of bootstrap results in the psychiatric symptom data analysis. “Sel. Freq.” rep-
resents the selection frequency over 200 bootstrap samples. Averaged estimates over 200 bootstrap
samples and the corresponding standard errors (numbers in the parentheses) are also reported.

Fixed Effect Variance Component
Sel. Freq. (%) Averaged Estimate Sel. Freq. (%) Averaged Estimate

Non-Adaptive Method

Age at baseline 21 0.005 (0.009) 7 0.001 (0.009)
Gender 37 0.014 (0.030) 6 0.018 (0.155)
Hispanic 34 0.021 (0.044) 15 0.009 (0.067)
Time 99 −0.062 (0.017) 100 0.125 (0.048)
Summer 97 −0.043 (0.017) 93 0.014 (0.020)
Winter 98 −0.039 (0.016) 87 0.010 (0.011)
Treatment 11 −0.003 (0.018) 2 0.003 (0.020)
Time*Trt 64 −0.021 (0.020) 81 0.006 (0.011)
Gender*Trt 72 0.065 (0.064) 10 0.009 (0.084)
Hispanic*Trt 10 −0.005 (0.047) 8 0.016 (0.114)

Adaptive Method

Age at baseline 23 0.006 (0.011) 16 0.001 (0.003)
Gender 16 0.010 (0.031) 18 0.041 (0.221)
Hispanic 45 0.028 (0.043) 27 0.024 (0.081)
Time 98 −0.063 (0.020) 100 0.160 (0.070)
Summer 84 −0.035 (0.021) 83 0.026 (0.031)
Winter 77 −0.030 (0.021) 77 0.020 (0.031)
Treatment 20 −0.011 (0.036) 12 0.002 (0.013)
Time*Trt 43 −0.018 (0.026) 78 0.027 (0.064)
Gender*Trt 74 0.093 (0.077) 27 0.004 (0.015)
Hispanic*Trt 22 −0.012 (0.044) 23 0.010 (0.051)
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Supplemental Material

Proof for Proposition 1 First, (18) can be obtained by using the inequality a2 + b2 ≥ 2ab. Next,

we prove L̂kj = L∗kj.

Denote P and Q be the objective functions corresponding to the two optimization problems:

P = −PR + λ2

q∑
k=2

‖L(k)‖2

Q = −PR +

q∑
k=2

γ2
k +

λ2
2

4

q∑
k=2

1

γ2
k

( k∑
j=1

L2
kj

)
After some algebra, we can see that P (L∗kj) = Q(γ∗k, L

∗
kj), so P (L̂kj) ≤ Q(γ∗k , L

∗
kj). Then let

γ̂k =
√

λ2

2
‖L̂(k)‖2. After some algebra, we can see that Q(γ̂k, L̂kj) = P (L̂kj), so Q(γ∗k, L

∗
kj) ≤ P (L̂kj).

Therefore, P (L̂kj) = Q(γ∗k, L
∗
kj) = Q(γ̂i, L̂kj). Since the objective function Q is convex, so the

minimizer is unique, then we have L∗kj = L̂kj.

In order to prove Theorem 2 and Theorem 3, we need the log REML function `n(θ) has several

properties, which are stated in the following lemma.

Lemma 2 Denote

`n(β, L, σ2) = −1

2

n∑
i=1

log
∣∣∣σ−2Vi

∣∣∣− 1

2
log
∣∣∣σ−2

n∑
i=1

Xi
T Vi

−1Xi

∣∣∣
− 1

2σ2

n∑
i=1

{
Yi −Xiβ

}T

Vi
−1
{

Yi −Xiβ
}

,

`R(β̃(L),L, σ2) = −1

2

n∑
i=1

log
∣∣∣σ−2Vi

∣∣∣− 1

2
log
∣∣∣σ−2

n∑
i=1

Xi
T Vi

−1Xi

∣∣∣
− 1

2σ2

n∑
i=1

{
Yi −Xiβ̃(L)

}T

Vi
−1
{

Yi −Xiβ̃(L)
}

,

where

β̃(L) = arg min
β

n∑
i=1

(Yi −Xiβ)T Vi
−1(Yi −Xiβ). (27)
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Denote τ = (vec(L)T , σ2)T , and Iβ, Iτ and Iθ be three positive definite matrices given by

Iβ = lim
n→∞

1

n

n∑
i=1

Xi
T (σ2Vi)

−1Xi (28)

Iτ =

(
IL a
aT Iσ

)
= lim

n→∞
− 1

n

∂2`R

∂τ∂τ T
(29)

Iθ =

(
Iβ

Iτ

)
(30)

Under assumptions A1− A3, we claim that

1√
n

∂`n(θ∗)

∂θ
= Op(1);

1√
n

∂`n(θ∗)

∂β

d→ MVN(0, Iβ(β∗));
1√
n

∂`n(θ∗)

∂vec(L)

d→ MVN(0, IL(L∗))(31)

− 1

n

∂2`n(θ∗)

∂θ∂θT

p→ Iθ(θ
∗) (32)

Proof : First, under the true parameter (β∗, L∗, σ2
∗), from the estimating equation theory, we know

that β̃ is a
√

n-consistent estimator, and we also have

√
n
(
β̃ − β∗

)
d→ MVN(0, I−1

β (β∗)) (33)

Second, the REML function `R has the following properties (Jiang, 1996):

1√
n

∂`R(β̃, L∗, σ2
∗)

∂τ

d→ MVN(0, Iτ (τ ∗)), (34)

− 1

n

∂2`R(β̃, L∗, σ2
∗)

∂τ∂τ T

p→ Iτ (τ ∗) (35)

In order to show the properties of `n, we decompose `n to be the summation of `R and two

items, which is

`n(β, L, σ) = `R(β̃, L, σ) + E1 + E2, (36)

where

E1 = − 1

2σ2
(β̃ − β)T

( n∑
i=1

Xi
T Vi

−1Xi

)
(β̃ − β) (37)

E2 = − 1

2σ2
(β̃ − β)T

n∑
i=1

Xi
T Vi

−1(Yi −Xiβ̃) (38)
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Consider the first derivatives of E1 and E2. After some algebra, we have

1√
n

∂E1(β
∗, L∗, σ2

∗)

∂β
=

( 1

n

n∑
i=1

Xi
T (σ2

∗Vi)
−1Xi

)√
n(β̃ − β)

1√
n

∂E1(β
∗, L∗, σ2

∗)

∂vec(L)
=

1

2σ2
∗

√
n(β̃ − β)T

(
1

n

n∑
i=1

Xi
T Vi

−1Zi
∂LLT

∂vec(L)
Zi

T Vi
−1Xi

)
(β̃ − β)

1√
n

∂E1(β
∗, L∗, σ2

∗)

∂σ2
∗

=
1

2σ4
∗

√
n(β̃ − β)T

(
1

n

n∑
i=1

Xi
T Vi

−1Xi

)
(β̃ − β)

1√
n

∂E2(β
∗, L∗, σ2

∗)

∂β
=

1

2σ2
∗

1√
n

n∑
i=1

Xi
T Vi

−1(Yi −Xiβ̃)

1√
n

∂E2(β
∗, L∗, σ2

∗)

∂vec(L)
=

1

2σ2
∗

√
n(β̃ − β)T 1

n

n∑
i=1

Xi
T Vi

−1Zi
∂LLT

∂vec(L)
Zi

T Vi
−1(Yi −Xiβ)

− 1√
n

∂E1(β
∗, L∗, σ2

∗)

∂vec(L)

1√
n

∂E2(β
∗, L∗, σ2

∗)

∂σ2
=

1

2σ4
∗

1√
n

(β̃ − β)T

n∑
i=1

Xi
T Vi

−1(Yi −Xiβ̃)

With the assumption A1− A3 and equation (33), by using Slutsky theorem, we have

1√
n

∂E1(β
∗, L∗, σ2

∗)

∂β
→d N(0, Iβ);

1√
n

∂E1(β
∗, L∗, σ2

∗)

∂vec(L)
= op(1);

1√
n

∂E1(β
∗, L∗, σ2

∗)

∂σ2
∗

= op(1);

From equation (27), we can see that
∑n

i=1 Xi
T Vi

−1(Yi −Xiβ̃) = 0. Therefore,

1√
n

∂E2(β
∗, L∗, σ2

∗)

∂β
= 0;

1√
n

∂E2(β
∗, L∗, σ2

∗)

∂σ2
= 0

For 1√
n

∂E2(β∗,L∗,σ2
∗)

∂vec(L)
, consider 1

n

∑n
i=1 Xi

T Vi
−1Zi

∂LLT

∂vec(L)
Zi

T Vi
−1(Yi −Xiβ).

Denote Si = Xi
T Vi

−1Zi
∂LLT

∂vec(L)
Zi

T Vi
−1(Yi −Xiβ), then we have

E(Si) = 0 (39)

V ar(Si) = Xi
T Vi

−1Zi
∂LLT

∂vec(L)
Zi

T Vi
−1Zi

∂LLT

∂vec(L)
Zi

T Vi
−1Xi (40)

With assumption A1−A3, we have 1
n2

∑n
i=1 V ar(Si) → 0. Then by Chebyshev’s LLN, we have

1
n

∑
i Si →p 0. Therefore,

1√
n

∂E2(β
∗, L∗, σ2

∗)

∂vec(L)
= op(1).

Combining the properties of `R and properties of E1 and E2, we have proved:

1√
n

∂`n(θ∗)

∂θ
= Op(1);

1√
n

∂`n(θ∗)

∂β
→d N(0, Iβ);

1√
n

∂`n(θ∗)

∂vec(L)
→d N(0, IL).
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Next, we consider the second derivatives of E1. After some algebra, we have

1

n

∂2E1(β
∗, L∗, σ2

∗)

∂β∂βT
= − 1

n

n∑
i=1

Xi
T (σ2

∗Vi)
−1Xi

1

n

∂2E1(β
∗, L∗, σ2

∗)

∂β∂vec(L)T
= − 1

σ2
∗

( 1

n

n∑
i=1

Xi
T Vi

−1Zi
∂LLT

∂vec(L)
Zi

T Vi
−1Xi

)
(β̃ − β)

1

n

∂2E1(β
∗, L∗, σ2

∗)

∂β∂σ2
= − 1

σ4
∗

( 1

n

n∑
i=1

Xi
T Vi

−1Xi

)
(β̃ − β)

1

n

∂2E1(β
∗, L∗, σ2

∗)

∂vec(L)∂σ2
= − 1

2σ4
∗
(β̃ − β)T

(
1

n

n∑
i=1

Xi
T Vi

−1Zi
∂LLT

∂vec(L)
Zi

T Vi
−1Xi

)
(β̃ − β)

1

n

∂2E1(β
∗, L∗, σ2

∗)

∂(σ2)2
= − 1

4σ6
∗
(β̃ − β)T 1

n

n∑
i=1

Xi
T Vi

−1(Yi −Xiβ̃)

1

n

∂2E1(β
∗, L∗, σ2

∗)

∂vec(L)∂vec(L)T
=

1

2σ2
∗
(β̃ − β)T (−2G1 + G2)(β̃ − β),

where

G1 =
1

n

n∑
i=1

Xi
T Vi

−1Zi
∂LLT

∂vec(L)
Zi

T Vi
−1Zi

∂LLT

∂vec(L)
Zi

T Vi
−1Xi (41)

G2 =
1

n

n∑
i=1

Xi
T Vi

−1Zi
∂2LLT

∂vec(L)∂vec(L)T
Zi

T Vi
−1Xi (42)

With assumptions A1− A3 and the consistency of β̃, we can see that

− 1

n

∂2E1(β
∗, L∗, σ2

∗)

∂β∂βT
= Iβ + op(1),

and all other second derivatives of E1 at true parameters (β∗, L∗, σ2
∗) are op(1).
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Then, we consider the second derivatives of E2. After some algebra, we have

1

n

∂2E2(β
∗, L∗, σ2

∗)

∂β∂βT
= 0

1

n

∂2E2(β
∗, L∗, σ2

∗)

∂β∂vec(L)T
= − 1

2σ2
∗

1

n

n∑
i=1

Xi
T Vi

−1Zi
∂LLT

∂vec(L)
Zi

T Vi
−1(Yi −Xiβ)

− 1

2σ2
∗

(
1

n

n∑
i=1

Xi
T Vi

−1Zi
∂LLT

∂vec(L)
Zi

T Vi
−1Xi

)
(β̃ − β)

− 1

n

∂2E1(β
∗, L∗, σ2

∗)

∂β∂vec(L)T

1

n

∂2E2(β
∗, L∗, σ2

∗)

∂β∂σ2
= − 1

nσ4
∗

n∑
i=1

Xi
T Vi

−1(Yi −Xiβ̃) = 0 (from the definition of β̃)

1

n

∂2E2(β
∗, L∗, σ2

∗)

∂vec(L)∂σ2
= − 1

2σ4
0

(β̃ − β)T 1

n

n∑
i=1

Xi
T Vi

−1Zi
∂LLT

∂vec(L)
Zi

T Vi
−1(Yi −Xiβ)

− 1

n

∂2E1(β
∗, L∗, σ2

∗)

∂vec(L)∂σ2

1

n

∂2E2(β
∗, L∗, σ2

∗)

∂(σ2)2
= − 1

4σ6
∗
(β̃ − β)T 1

n

n∑
i=1

Xi
T Vi

−1(Yi −Xiβ̃) = 0 (from the definition of β̃)

1

n

∂2E2(β
∗, L∗, σ2

∗)

∂vec(L)∂vec(L)T
=

1

2σ2
∗
(β̃ − β)T (−2G3 + G4)−

1

n

∂2E1(β
∗, L∗, σ2

∗)

∂vec(L)∂vec(L)T
,

where

G3 =
1

n

n∑
i=1

Xi
T Vi

−1Zi
∂LLT

∂vec(L)
Zi

T Vi
−1Zi

∂LLT

∂vec(L)
Zi

T Vi
−1(Yi −Xiβ) (43)

G4 =
1

n

n∑
i=1

Xi
T Vi

−1Zi
∂LLT

∂vec(L)∂vec(L)T
Zi

T Vi
−1(Yi −Xiβ) (44)

With assumptions A1− A3, by using Chebyshev’LLN, we have

1

n

n∑
i=1

Xi
T Vi

−1Zi
∂LLT

∂vec(L)
Zi

T Vi
−1(Yi −Xiβ) = op(1)

G3 = op(1); G4 = op(1)

Then it is straightforward to prove all of second derivatives of E2 at true parameters (β∗, L∗, σ2
∗)

are op(1). Then we have proved

− 1

n

∂2`n(θ∗)

∂θ∂θT
→p Iθ

This finishes the proof for the lemma.

5 Hosted by The Berkeley Electronic Press



Proof of Theorem 2 : It is sufficient to show that for any given ε > 0, there exists a large

constant Mε such that

P

{
sup

‖u‖2=Mε

Qn(θ∗ + n−1/2u) < Qn(θ∗)

}
≥ 1− ε, (45)

where

θ∗ = (β∗T , vec(L∗)T , σ2
∗)

T (46)

u = (u1
T , u2

T , u3)
T (47)

This implies with probability at least 1 − ε that there exists a local maximum in the ball

{θ∗ + n−1/2u : ‖u‖2 ≤ Mε}. Therefore, there exists a local maximizer such that ‖θ̂ − θ∗‖2 =

Op(n
−1/2).

Consider

Dn(u) = Qn(θ∗ + n−1/2u)−Qn(θ∗)

=
1

n

(
`n(θ∗ + n−1/2u)− `n(θ∗)

)
−

p∑
j=1

(
fλ1n(|β∗j + n−1/2u1,j|)− fλ1n(|β∗j |)

)
−

q∑
k=2

(
gλ2n(|L∗k1 + n−1/2u2,k1|, . . . , |L∗kq + n−1/2u2,kq|)− gλ2n(|L∗k1|, . . . , |L∗kq|)

)
Without loss of generality, we assume the first p1 fixed effects are important, i.e., β∗1 , . . . , β

∗
p1
6=

0, β∗p1+1 = . . . β∗p = 0, and the first q1 random effects are important, i.e., L∗
(1), . . . ,L

∗
(q1) 6= 0, L∗

(q1+1) =

· · · = L∗
(q) = 0.

Using the fact that fλ1n(0) = 0 and gλ2n(0, . . . , 0) = 0, we have

Dn(u) ≤ 1

n

(
`n(θ∗ + n−1/2u)− `n(θ∗)

)
−

p1∑
j=1

(
fλ1n(|β∗j + n−1/2u1,j|)− fλ1n(|β∗j |)

)
−

q1∑
k=2

(
gλ2n(|L∗k1 + n−1/2u2,k1|, . . . , |L∗kq + n−1/2u2,kq|)− gλ2n(|L∗k1|, . . . , |L∗kq|)

)
=̂ An −Bn − Cn.
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First, by applying Taylor expansion around θ∗ to the log-REML function, we have

An = n−1
{

n−1/2 ∂`n(θ∗)

∂θ

}T

u− 1

2
n−1u′

(
−n−1∂2`n(θ∗)

∂θ∂θT

)
u + n−1op(n

−1‖u‖2
2)

From Lemma 2, we have n−1/2 ∂`n(θ0)
∂θ

= Op(1) and −n−1 ∂2`n(θ0)

∂θ∂θT = Iθ + op(1). Then we have

An ≤ n−1Op(1)‖u‖1 −
1

2
n−1uT

{
Iθ + op(1)

}
u + n−1op(n

−1‖u‖2
2)

≤
√

p + q + 1n−1‖u‖2Op(1)−
1

2
n−1uT Iθu + op(n

−1‖u‖2
2)

= A1n + A2n + A3n,

where ‖u‖1 is the L1-norm of u, i.e., ‖u‖1 = |u1|+ · · ·+ |ut| with t be the length of u, and it can

be easily checked that ‖u‖ ≤ t‖u‖2.

Second, by applying Taylor expansion to the penalty function, we have

Bn =

p1∑
j=1

(∂fλ1n(|β∗j |)
∂|βj|

sgn(β∗j )n
−1/2u1,j +

1

2

∂2fλ1n(|β∗j |)
∂|βj|2

n−1u2
1,j + op(n

−1u2
1,j)
)

≤ √
pn−1/2an‖u1‖2 +

1

2n
bn‖u1‖2

2 + op(n
−1‖u1‖2

2)

=
√

p‖u1‖2Op(n
−1) + op(n

−1‖u1‖2
2) (using an = Op(n

−1/2), bn = op(1))

= B1n + B2n

Cn =

q1∑
k=2

( q∑
l=1

∂gλ2n(|L∗k1|, . . . , |L∗kq|)
∂|Lkl|

sgn(L∗kl)n
−1/2u2,kl

+
1

2

q∑
l1=1

q∑
l2=1

∂2gλ2n(|L∗k1|, . . . , |L∗kq|)
∂|Lkl1|∂|Lkl2|

sgn(L∗kl1
)sgn(L∗kl2

)n−1u2,kl1u2,kl2 + op(n
−1(u2

2,k1 + · · ·+ u2
2,kq)

)
≤ √

qn−1/2cn‖u2‖2 +
1

2n
dn‖u2‖2

2 + op(n
−1‖u2‖2

2)

=
√

q‖u2‖2Op(n
−1) + op(n

−1‖u2‖2
2) (using cn = Op(n

−1/2), dn = op(1))

= C1n + C2n

We can see that, by choosing a sufficiently large Mε, A2n dominates A1n, A3n, B1n, B2n, C1n, C2n

uniformly in ‖u‖2 = Mε. This completes the proof.

Proof of Theorem 3 :
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To prove (a), it is sufficient to show that, for any constant M , with probability tending to 1 as

n →∞,

Qn(β̂A,0, L̂, σ̂2) = max
‖βB‖2≤Mn−1/2

Qn(β̂A, βB, L̂, σ̂2) (48)

By applying Taylor’s expansion around θ0 to ∂Qn(θ̂)
∂βj

, the first derivative of Qn, we have

∂Qn(θ̂)

∂βj

= n−1∂`n(θ∗)

∂βj

+
1

2

p∑
l=1

n−1∂2`n(θ∗)

∂βj∂βl

(β̂l − β∗l ) +
1

2n

p∑
l=1

p∑
k=1

∂3`n(θ̄)

∂βj∂βl∂βk

(β̂l − β∗l )(β̂k − β∗k)

−fλ1n(|β̂j|)
∂|βj|

sgn(β̂j),

where θ̄ lies between θ̂ and θ∗. From Lemma 2 and assumption, we have

n−1∂`n(θ0)

∂βj

= n−1/2
(
n−1/2 ∂`n(θ0)

∂βj

)
= Op(n

−1/2),
1

n

∂2`n(θ0)

∂βj∂βl

= Op(1),
1

n

∂3`n(θ̄)

∂βj∂βl∂βk

= Op(1).

Then since ‖β̂ − β0‖2 = Op(n
−1/2), we have

∂Qn(θ̂)

∂βj

= n−1/2

{
Op(1)− n1/2∂fλ1n(|β̂j|)

∂|βj|
sgn(β̂j)

}
(49)

If for any j with β∗j = 0,
√

n
∂fλ1n

(|βj |)
∂|βj | →∞ with probability tending to 1 as n →∞, then when

n is large we have

∂Qn(θ̂)

∂βj

< 0, 0 < β̂j < Mn−1/2,

∂Qn(θ̂)

∂βj

> 0, −Mn−1/2 < β̂j < 0,

which indicates Qn(β̂A,0, L̂, σ̂2) = max‖βB‖≤Mn−1/2 Qn(β̂A, βB, L̂, σ̂2). This completes the proof for

(a).

For (b), similarly we can have

∂Qn(θ̂)

∂Lkj

= n−1/2

{
Op(1)− n1/2 ∂gλ2n(|L̂k1|, . . . , |L̂kq|)

∂|Lkj|
sgn(L̂kj)

}
(50)

If for any (k, j) ∈ D,
√

n
∂gλ2n

(|L̂k1|,...,|L̂kq |)
∂|Lkj |

→ ∞ with probability tending to 1 as n → ∞, then

for any constant M > 0, when n is large we have

∂Qn(θ̂)

∂Lkj

< 0, 0 < L̂kj < Mn−1/2, (51)

∂Qn(θ̂)

∂Lkj

> 0, −Mn−1/2 < L̂kj < 0, (52)
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With the similar argument in the proof for (a), we can prove (b).

For (c), following Theorem 2, 3(a) and 3(b), there exists a
√

n-consistent estimator θ̂ =

(β̂
T

A,0T , vec(L̂)T , σ̂2)T that satisfy the equation

∂Qn(β̂A,0, L̂, σ̂2)

∂βA
= 0 (53)

By applying Taylor expansion around β∗
A to ∂Qn(β̂A,0,L̂,σ̂2)

∂βA
, for any j ∈ A, we have

√
n · 0 =

√
n

(
1

n

∂`n(θ̂)

∂βj

− ∂fλ1n(|β̂j|)
∂|βj|

sgn(|β̂j|)

)

=
1√
n

∂`n(β∗
A,0, L̂, σ̂2)

∂βj

+
1

n

p1∑
k=1

{
∂2`n(β∗

A,0, L̂, σ̂2)

∂βj∂βk

√
n(β̂k − β∗k) + op

(√
n(β̂k − β∗k)

)}

−
√

n
∂fλ1n(|β∗j |)

∂|βj|
sgn(β∗j )−

∂2fλ1n(|β∗j |)
∂|βj|2

√
n(β̂j − β∗j ) + op

(√
n(β̂j − β∗j )

)
Under assumptions A1−A3, if

√
n

∂fλ1n
(|β∗j |)

∂|βj | = op(1) and bn = op(1), then by the
√

n-consistency

of β̂A, L̂, σ̂2, we have

0 =
1√
n

∂`n(β∗
A,0,L∗, σ2

∗)

∂βj

+

{
1

n

p1∑
k=1

∂2`n(β∗
A,0, L∗, σ2

∗)

∂βj∂βk

}
√

n(β̂k − β∗k) + op(1)

⇒

{
− 1

n

p1∑
k=1

∂2`n(β∗
A,0,L∗, σ2

∗)

∂βj∂βk

}
√

n(β̂k − β∗k) =
1√
n

∂`n(β∗
A,0,L∗, σ2

∗)

∂βj

+ op(1)

Then by Slutsky’s theorem, we have

√
n
(
β̂A − β∗

A

)
→ MVN(0, I−1

A (β∗
A)), (54)

where IA is the corresponding part for βA in Fisher’s information matrix.

For (d), Similarly to (c), following Theorem 2, 3(c) and 3(d), there exists a
√

n-consistent

estimator θ̂ = (β̂, vec(L̂C)
T ,0T , σ̂2)T that satisfy the equation

∂Qn(β̂, L̂C,0, σ̂2)

∂vec(LC)
= 0 (55)
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By applying Taylor expansion around vec(L∗
C) to ∂Qn(β̂,L̂C ,0,σ̂2)

∂vec(LC)
, for any (k, j) ∈ C, we have

√
n · 0 =

√
n

(
1

n

∂`n(θ̂)

∂Lkj

− ∂gλ2n(|L̂k1|, . . . , |L̂kq|)
∂|Lkj|

sgn(|L̂kj|)

)

=
1√
n

∂`n(β̂, L∗
C,0, σ̂2)

∂Lkj

+
1

n

q1∑
l=1

q1∑
m=1

{
∂2`n(β̂, L∗

C,0, σ̂2)

∂Lkj∂Llm

√
n(L̂lm − L∗lm) + op

(√
n(L̂lm − L∗lm)

)}

−
√

n
∂gλ2n(|L∗k1|, . . . , |L∗kq|)

∂|Lkj|
sgn(L∗kj)

−
q∑

l=1

{
∂2gλ2n(|L∗k1|, . . . , |L∗kq|)

∂|Lkj|∂|Lkl|
√

n(L̂kl − L∗kl) + op

(√
n(L̂kl − L∗kl)

)}
Then with the similar argument in (c), we can prove (d).

Proof of Corollary 1 : We only need to check the corresponding an, cn = Op(n
−1/2) and bn, dn =

op(1). Since both numbers of fixed effects and random effects are fixed, it is straightforward to

check the two conditions are satisfied when λ1n = Op(n
−1/2) and λ2n = Op(n

−1/2).

Proof of Theorem 4 :

For consistency, by Theorem 2, we only need to check an, cn = Op(n
−1/2) and bn, dn = op(1).

For j : β∗j 6= 0,

∂fλ1n(|β0
j |)

∂|βj|
= λ1nw

β
nj ≤ λ1nw

β
n,max, (56)

∂2fλ1n(|β0
j |)

∂|βj|2
= 0. (57)

Obviously bn = 0. If
√

nλ1nw
β
n,max = Op(1), then an = Op(n

−1/2).

For k :
√

L∗k1
2 + · · ·+ L∗kq

2 > 0,

∂gλ2n(|L∗k1|, . . . , |L∗kq|)
∂|Lkj|

= λ2nw
L
nj

|L∗kj|√
L∗k1

2 + · · ·+ L∗kq
2
≤ λ2nw

L
n,max, (58)

∂2gλ2n(|L∗k1|, . . . , |L∗kq|)
∂|Lkj|2

= λ2nw
L
nj

L∗k1
2 + · · ·+ L∗kj−1

2 + L∗kj+1
2 + · · ·+ L∗kq

2

(L∗k1
2 + · · ·+ L∗kq

2)3/2
≤ λ2nw

L
n,max, (59)

∂2gλ2n(|L∗k1|, . . . , |L∗kq|)
∂|Lkj|∂|Lkj′|

= λ2nw
L
nj

−|L∗kj||L∗kj′|
(L∗k1

2 + · · ·+ L∗kq
2)3/2

≤ λ2nw
L
n,maxM1, (60)
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where

M1 = max
(k,j)

{ −|L∗kj||L∗kj′|
(L0

k1
2
+ · · ·+ L0

kq
2
)3/2

}
.

If
√

nλ2nw
L
n,max = Op(1) (hence λ2nw

L
n,max = op(1)), then cn = Op(n

−1/2) and dn = op(1).

Now we prove the sparsity.

For j : β∗j = 0, if β̂j is a
√

n-consistent estimator, then

√
n

fλ1n(|β̂j|)
|βj|

=
√

nλ1nw
β
nj ≥

√
nλ1nw

β
n,min (61)

For k :
√

L∗k1
2 + · · ·+ L∗kq

2 = 0, if L̂k1, . . . , L̂kq are
√

n-consistent estimators, then

√
n

gλ2n(|L̂k1|, . . . , |L̂kq|)
|Lkj|

=

√
nλ2nw

L
njL̂kj√

L̂2
k1 + · · ·+ L̂2

kq

Since L̂kj’s are
√

n-consistent, we have L̂kj

/√
L̂2

k1 + · · ·+ L̂2
kq

p→ C > 0. Therefore, for any ε > 0,

there is a constant Mε, such that when n is large, P

(
L̂kj

/√
L̂2

k1 + · · ·+ L̂2
kq > Mε

)
≥ 1−ε. Then

P

√n
gλ2n(|L̂k1|, . . . , |L̂kq|)

|Lkj|
=

√
nλ2nw

L
njL̂kj√

L̂2
k1 + · · ·+ L̂2

kq

≥
√

nλ2nw
L
n,minMε

 ≥ 1− ε (62)

If
√

nλ1nw
β
n,min

p→∞ and
√

nλ2nw
L
n,min

p→∞, then (61) and (61) tend to infinity with probability

tending to 1 when n tends to infinity. By Theorem 3, we have

Pr(β̂B = 0) → 1, P r(L̂D = 0) → 1.

For asymptotic normality, using (56) and (58), by Theorem 3, if
√

nλ1nw
β
n,max,

√
nλ2nw

L
n,max =

op(1), we have

√
n
(
β̂A − β∗

A

)
d→ MVN(0, IA(β∗

A)),
√

n
(
L̂C −L∗

C

)
d→ MVN(0, IC(L

∗
C)).

Proof of Corollary 2 : It is straightforward to check that the conditions in Theorem 4 are satis-

fied.
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