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Comparison of Affymetrix GeneChip Expression
Measures
Rafael A. Irizarry 1, Zhijin Wu 2 and Harris A. Jaffee 1

1Department of Biostatistics, Johns Hopkins University, 615 N. Wolfe Street,
Baltimore, MD, 21205, U.S.A. and 2Center for Statistical Sciences, Department of
Community Health, Brown University, 167 Angell Street, BOX G-H, Providence, RI,
02912, U.S.A.

ABSTRACT
Motivation: Affymetrix GeneChip expression array tech-
nology has become a standard tool in medical science and
basic biology research. In this system, preprocessing oc-
curs before one obtains expression level measurements.
Because the number of competing preprocessing methods
was large and growing, in the summer of 2003 we devel-
oped a benchmark to help users of the technology identify
the best method for their application. In conjunction with
the release of a Bioconductor R package (affycomp), a
webtool was made available for developers of preprocess-
ing methods to submit them to a benchmark for compari-
son. There have now been over 30 methods compared via
the webtool.
Results: Background correction, one of the main step in
preprocessing, has the largest effect on performance. In
particular, background correction appears to improve ac-
curacy but, in general, worsen precision. The benchmark
results put this balance in perspective. Furthermore, we
have improved some of the original benchmark metrics to
provide more detailed information regarding accuracy and
precision. A handful of methods stand out as maintaining
a useful balance.
Availability: The affycomp package, now version 1.5.2,
continues to be available as part of the Bioconductor
project (http://www.bioconductor.org). The webtool contin-
ues to be available at http://affycomp.biostat.jhsph.edu.
Contact: rafa@jhu.edu

INTRODUCTION
The development of preprocessing methodology for
Affymetrix GeneChip has become an active research
field. Various alternative procedures are available and
new ones are being developed. Conflicting reports have
been published comparing the more popular methods.
Furthermore, developers of new methods usually find a
way to claim over-all superiority. It is common to see
different papers using different assessment data and/or
assessment statistics. To help users of the technology
make sense of the discrepancy found in the literature and

to help them identify the best method for the particular
task, Cope et al. (2004) developed a benchmark. A
webtool implementing this benchmark made it possible
to compare all methods using the same assessment data
and summary statistics/plots. Since its inception in the
summer of 2003 developers have submitted more than
30 methods. In this paper we summarize the compari-
son of these methods, identify the most discriminating
characteristics, and describe enhancements to the original
benchmark that improve the ability to compare methods.
We assume that the reader is familiar with the original
benchmark, Affymetrix probe-level terminology, and the
basic issues of preprocessing. See Cope et al. (2004) for a
summary of all these subjects.
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Fig. 1. Deprogram showing the results of hierarchical clustering
applied to the log expression data obtained from each method when
applied to the HGU-95 spike-in data. The y-axis represents the
clustering height. Correlation was used as a similarity metric. We
used the median correlation to summarize across the 59 arrays.

METHODS
In this section we give a very brief overview of the
methods being compared. We include references that
provide further details. Throughout the paper we will be
using nicknames (in bold) to denote the different methods.

Affymetrix has submitted various entries. The
Affymetrix default algorithm (Affymetrix, 2002) is
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denoted with MAS 5.0. A version of MAS 5.0 that adds
32 to the expression measurements was also submitted
and denoted with MAS5+32. Affymetrix also submitted
their new algorithm (PLIER) and a version that adds 16
to the expression values (PLIER+16).

Two of the algorithms implemented by the dChip
software (http://www.dchip.org) have been submitted.
dChip denotes the PM -only version of the algorithm
described by Li and Wong (2001). dChip PM-MM is the
background adjusted version that uses the PM − MM .

Various version of the RMA methodology (Irizarry
et al., 2003) have been submitted as well. RMA performs
background correction, normalization, and summarization
in a modular way. The different versions explore changes
to these components. RMA NBG is a version that does
no background subtraction. RMA VSN uses the variance
stabilizing normalization, described by Huber et al.
(2002), instead of the default quantile normalization
(Bolstad et al., 2003). The method denoted VSN is like
RMA VSN except the RMA background correction is
not applied. Notice that the procedure described in Huber
et al. (2002) tries to account for background. VSN scale
is a version VSN that has been transformed by a shift
and re-scale of the log expression level data. Notice
that this shifted version will result in identical values
for many of the assessment summaries. The method
denoted with qn.p5 is a version of RMA that arbitrarily
uses only the 5-th probe in the probeset as a summary.
GS RMA and RMA GNV are implementations of RMA
that give practically equivalent results to RMA. The latter
is GeneSpring’s implementation. GCRMA is a version
of RMA with a background correction component that
makes use of probe sequence information (Wu et al.,
2004). GS GCRMA is GeneSpring’s implementation of
GCRMA .

Other methods that have been submitted are: ChipMan
(Lauren, 2003), GL (Freudenberg, 2005), GLTRAN and
ZL (Zhou and Rocke, 2005), GSVDmin and GSVDmod
(Zuzan, 2003), MMEI (Deng et al., 2005), ProbeProfiler
(http://www.corimbia.com), gMOS v.1, mgMOS gs and
mmgMOSgs (Liu et al., 2005), RSVD (Liu et al.,
2003), UM-Tr-Mn (Giordano et al., 2001), PerfectMatch
(Zhang et al., 2003), and ZAM (Åstrand, 2003).

MOTIVATION
Figure 1 shows the results of hierarchical clustering of all
the above mentioned methods. Figure 1 helps us ascer-
tain three important facts: The first is that there are groups
of methods that result in practically identical measures.
Notice in particular the group of eight with close to 0
distance. The second is that clustering is mainly driven
by the type of background correction. Methods that do
not, or hardly, correct for background, cluster together,
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Fig. 2. Accuracy versus precision plots. The solid line is the
identity line. A) A slope estimate that represents the expected
log-fold-change of a gene with a fold-change of 2 is plotted against
the 99.9th percentile of log-fold-change among genes that are not
differentially expressed. Notice that in an array with 10,000 genes
we expect 100 genes to reach this level. PM-MM dChip, PLIER,
and ProbeProfiler are not shown because their x-axis values were
too high (10.83, 18.75, and 123.27 respectively). B) As A) but the
y-axis has the slope estimate for low expressed genes. The range of
the x-axis has been limited to show the better performing measures.

and most of the methods that background correct using
the mismatch probes or sequence information form an-
other cluster. The third fact is that the non background
correction methods cluster more tightly than those that
do. Note that RMA NBG and VSN have a correlation of
0.998. These two methods differ only in the normalization

2

https://biostats.bepress.com/jhubiostat/paper86



step. By comparing different version of RMA, Cope et al.
(2004) demonstrated that normalization and summariza-
tion have slight effect compared to the differences between
RMA and MAS 5.0. This suggest that background correc-
tion is the main factor that explains differences between
methods.

Statistical models for probe-level data predict that no
background correction leads to attenuated estimates of dif-
ferential expression (bias) and that naive background cor-
rection procedures can lead to highly variable estimates of
differential expression (Durbin et al., 2002; Huber et al.,
2002; Wu et al., 2004). This fact probably led Affymetrix
to submit entries that add a constant to the expression data.
Figure 2a, which plots benchmark assessments of over-all
accuracy and precision against each other, provides empir-
ical corroboration. This picture demonstrates that the most
precise methods are, in general, the least accurate. Fur-
thermore, the statistical models for probe-level data also
predict that the bias due to lack of background correction
is greater for low-expressed genes (Wu et al., 2004). Fig-
ure 3a (Figure 4a in the benchmark) confirms this empiri-
cally. In this figure, we included six methods as represen-
tative of methods that do no or little background correc-
tion (RMA NBG and VSN scale), moderate background
correction (RMA, RSVD), and more vigorous background
correction (PLIER+16, GCMRA).

To better understand the relationship between
bias/variance and overall expression we have extended
some of the current assessment measures and plots. In the
next section we describe these extensions.

ENHANCEMENTS TO BENCHMARK
For the below described measures, a 28 array subset of the
HGU95 spike-in that balances concentration levels across
experiment was used. This subset is described by Wu et al.
(2004).

Accuracy
Because accuracy depends on the overall expression of
genes, we separated the main accuracy assessment, (Sig-
nal detect slope (row 6 in Table 1 in Cope et al. (2004))
into three components. To do this, we stratified the spiked-
in genes into low expressed (nominal concentration less
than 4 picoMolar), medium expressed (nominal concen-
tration between 4 and 32) and high expressed (nominal
concentration larger than 32). For each of these subgroups
we followed the same procedure used to compute the sig-
nal detect slope. Specifically, observed log expression val-
ues were plotted against nominal concentration for each
spiked-in gene, a regression line fitted, and the slope es-
timate recorded as the assessment measure. The new as-
sessment measures are referred to as low, med, and high
slopes.
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Fig. 3. A) Observed log (base 2) expression versus nominal log
concentration (in picoMolar). B) The difference between one (the
desired value) and local slopes, or bias, versus nominal log
concentration (in picoMolar).

To better assess the concentration dependent bias, we
added the plot shown in Figure 2b to the benchmark.
In this figure, local slopes are calculated by taking the
difference between the average observed log expression
values between consecutive nominal concentration levels.
The difference between 1 and these local slopes are plotted
against the larger of the two concentration levels. We
subtract from 1 because we are using log base 2, thus all
these slopes should be one (when nominal concentration
doubles so should the observed concentrations).
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Precision
To provide a more practical context for the new accuracy
assessment measures, we defined the null log-fc 99.9%
statistic. Row 6 in Table 1 of Cope et al. (2004) presented
the inter-quartile range (IQR) of the observed log-fold-
changes among the genes that are known not to be
differentially expressed. The new statistics gives the
99.9% instead of the (IQR). We have also added a measure
related to the Median SD represented by row 1 in Table
1 of Cope et al. (2004). The previous measure used
the dilution study data. Similarly, a spike-in experiment
version of Figure 2 in the original benchmark was added.

Overall detection ability
One of the chief uses of expression arrays is the iden-
tification of genes that express differently under various
experimental conditions. The simplest identification rule
filters genes with fold change exceeding a given thresh-
old. Receiver Operator Characteristic (ROC) curves offer
a graphical representation of both specificity and sensitiv-
ity for such a rule. ROC curves are created by plotting the
true positive (TP) rate (sensitivity) against false positive
(FP) rate (1-specificity) obtained at each possible thresh-
old value. Cope et al. (2004) presented two ROC plots,
both using log fold change as a filter. Since only spiked-
in genes are actually differentially expressed in these ex-
periments, it is easy to determine TP and FP. For the first
plot every concentration pair was used to determine TP.
Because many concentration pairs result in unrealistically
high nominal fold-changes, a second plot used only com-
binations yielding fold-changes of 2 (Figure 4a). The x-
axis stops at 100 false positives because lists of genes with
more errors are not typically useful. As summary statistics
we reported the area under the curve (AUC).

According Figure 4a, methods with no or little back-
ground correction performed best. However, many of
these methods performed rather poorly in the accuracy
plots seen in Figure 3. The reason for this apparent
discrepancy is that in the benchmark experiment the
spiked-in concentration resulted in abnormally high
levels of observed expression. This is demonstrated by
Figure 5 which compares the intensity distributions of
the spiked-in genes and non-spiked-in genes. To allow
the ROC curves to provide a more realistic summary we
divided the ROC curve plots into three components. For
each of the concentration groups, defined for the accuracy
assessment, we created a different ROC curve and we
consider only sample pairs with fold-changes equal to 2.
Figure 4b shows the low intensity ROC curves for the
same six methods in Figure 3. The AUC for these three
ROC curves are added as summary statistics. To give a
one number summary we consider a weighted average of
these three AUCs (see Table 1). The weights are chosen
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Fig. 4. A typical identification rule for differential expression filters
genes with fold change exceeding a given threshold. This figure
shows average ROC curves which offer a graphical representation
of both specificity and sensitivity for such a detection rule. a)
Average ROC curves based on comparisons with nominal fold
changes equal to 2. b) As a) but consider only low concentration
spiked-in genes.

according to the percentage of genes expected to be in

each concentration group.

An MA-plot that only shows the spiked-in genes in each

of these concentration groups with fold-changes smaller

than 4 was also added.
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DISCUSSION
Figure 2a plotted the original benchmark’s signal detect
slope against the 99.9 percentile log-fold-change among
the genes that are not differentially expressed. Notice that
in a microarray with 10,000 genes, 100 false positives are
expected to surpass the value represented in the x-axis.
The value in the y-axis represents the expected log-fold-
change of a gene with a true fold-change of 2. These two
statistics give an intuitive and practical summary related
to the ability to detect differentially expressed genes.
In general, the higher above the identity line, the more
preferable the method. Notice that various methods are
well below the identity line (very large variance). This is
likely explained by the use of naive background correction
procedures. For most of these, a method with the same
accuracy exists but with much better precision. However,
there are various methods above the identity line with
differences in both accuracy and precision. To compare
such cases we turn our attention to Figure 3 which
demonstrated that methods that do not background correct
have worst bias for low expressed genes. We will focus our
attention on VSN scale and RMA NBG, the methods that
appears to perform best in 2a and 4a. In Figure 4b, we see
that the curve for RMA NBG, which does no background
correction, flattens out dramatically at the low end. Notice
that, except for a stretch caused by the multiplication of
a constant, VSN scale (which by definition will have an
identical curve to VSN) has a similar shape to RMA NBG.
Figure 2b plots the signal detect slope obtained for genes
with low expression, as described in the Accuracy Section,
against the 99.9 percentile seen in Figure 2a. Notice
that some of the method that appeared to be performing
best in Figure 2a, such as VSN scale and RMA NBG,

Table 1. Table showing the new assessment summary statistics described in

the text. The methods are ordered by their performance in the weighted

average AUC value.

slope
Method SD 99.9% low med high AUC

GCRMA 0.08 0.74 0.66 1.06 0.56 0.70
GS GCRMA 0.10 0.79 0.62 1.03 0.55 0.66

MMEI 0.04 0.23 0.16 0.54 0.46 0.62
GL 0.05 0.25 0.16 0.55 0.46 0.62

RMA NBG 0.04 0.24 0.16 0.56 0.46 0.61
RSVD 0.00 0.58 0.42 0.85 0.40 0.61

ZL 0.22 0.52 0.35 0.71 0.45 0.61
VSN scale 0.09 0.43 0.28 0.91 0.70 0.59

VSN 0.06 0.28 0.18 0.6 0.46 0.59
RMA VSN 0.09 0.48 0.31 0.74 0.46 0.57

GLTRAN 0.07 0.42 0.23 0.61 0.45 0.55
ZAM 0.09 0.50 0.30 0.70 0.47 0.54

RMA GNV 0.11 0.58 0.35 0.76 0.47 0.52
RMA 0.11 0.57 0.35 0.76 0.47 0.52

GSrma 0.11 0.57 0.35 0.76 0.47 0.52
GSVDmod 0.07 0.44 0.22 0.64 0.42 0.51

PerfectMatch 0.05 0.40 0.18 0.56 0.43 0.50
PLIER+16 0.13 0.83 0.49 0.80 0.46 0.48
GSVDmin 0.08 0.60 0.22 0.62 0.41 0.41

MAS 5.0+32 0.14 1.07 0.35 0.71 0.44 0.12
ChipMan 0.27 2.26 0.44 1.11 0.68 0.12

qn.p5 0.12 1.09 0.13 0.50 0.52 0.11
dChip 0.13 1.44 0.31 0.67 0.39 0.09

mmgMOSgs 0.40 3.27 1.34 1.13 0.45 0.07
gMOSv.1 0.29 3.35 0.98 1.12 0.42 0.06

ProbeProfiler 0.31 18.75 1.61 1.57 0.39 0.03
dChip PM-MM 0.23 14.83 1.40 0.86 0.35 0.02

mgMOS gs 0.36 2.86 0.83 0.86 0.43 0.01
MAS 5.0 0.63 4.48 0.69 0.81 0.45 0.00

PLIER 0.19 123.27 0.75 0.85 0.46 0.00
UM-Tr-Mn 0.32 2.92 0.58 0.83 0.42 0.00

are no longer performing very well. In general, the bias
resulting from lack of background subtraction will be most
noticeable in the summary statistics plotted in the y-axis
of this figure. Methods such as PLIER+16 and GCRMA,
which use model-based background correction, maintain
relatively good accuracy without losing much precision.
RSVD maintains relatively good accuracy except for very
low concentrations.

The advantage of background correcting can be seen in
the ROC curves as well. Figure 4 shows ROC curves for
six methods. Figure 4a shows the overall results presented
in the original benchmark. Figure 4b shows the ROC
curve that considers only low expressed genes. Notice
that for low concentrations methods such as VSN scale
and RMA NBG do not perform as well as GCRMA and
RSVD.

Table 1 suggests that many methods are developed to

5
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perfect accuracy without taking precision into account.
Other appear to be doing the opposite. In general, the latter
are preferred because detection ability is much better.
However, some methods such as RSVD, ZL, PLIER+16,
and GCRMA appear to be finding a balance between
accuracy and precision that permits them to perform well
across the range of gene expression. Furthermore, we
need to keep in mind that in practice it is typical to
have replicate arrays which improves precision but not
accuracy.

CONCLUSION
In this paper we described some enhancements to the
benchmark assessment plots and summaries that fur-
ther elucidate these differences. In the Discussion we
compared the methods submitted for scrutiny via the
benchmark. For the sake of clarity, most of the figures in
this paper compared only six methods. However, using the
benchmark web tool one can compare any combination
of methods via any summary statistic or plot. Beware
that results for the original benchmark, as described
by Cope et al. (2004), are available from the original
assessment link on http://affycomp.biostat.jhsph.edu,
while the enhancements described here are available from
the new assessment link on that webpage.

Because the spiked-in-genes in the benchmark data
are known, over-training is a concern. For this rea-
son we have enhanced the benchmark web tool to
accept results from an independent spike-in experi-
ment (http://www.affymetrix.com/support/technical/
sample data/datasets.affx).We have recently asked all
submitters to make results from both experiments avail-
able. At the time of writing, most of the better performing
methods had only been submitted with one dataset.

The benchmark has been an invaluable tool for com-
paring different preprocessing methods. It has also been
useful for determining the characteristics that differ-
entiate these methods. The comparison made evident
the bias/variance trade-off drive mostly by background
correction. It is important to note that the benchmark is
not intended to be used to determine the “best” method
but rather to permit users to judge each method using
scientifically meaningfully summaries. These can be
used to decide the most appropriate method for their
specific application. We expect this paper, along with
the benchmark web tool, to help researchers continue to
improve preprocessing algorithms. In particular, we have
clearly laid out the importance of balancing precession
and accuracy.

REFERENCES
Affymetrix (2002). Statistical algorithms description document.

Technical report. http://www.affymetrix.com/support/technical/

whitepapers/sadd whitepaper.pdf.
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