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1. Introduction

In the field of medical diagnostic testing, the receiver operating characteristics(ROC)

curve has long been used as a standard statistical tool to assess the accuracy of tests that

yield continuous results. Previous research in the area focused mostly on estimating the

ROC curve, such as the popular empirical ROC curve, a nonparametric estimation of the

ROC curve and the LABROC procedure proposed by Metz et al. (1998).

Recently it has been recognized (Pepe, 1997 & 2000) that various factors can affect the

test performance beyond the disease status. Those factors include different test settings

and/or subject’s demographic data. One example is that for certain test whose test subjects

include both men and women or both younger and older people, its performance may vary

between men and women or between younger and older people. Pepe(2003, chapter 3) listed

several factors that can affect test performance, such as factors associated with test subject

or tester, test settings and severity of disease. It is therefore important to understand such

influence to determine the optimal and suboptimal conditions or populations to perform such

tests. If we find the test doesn’t perform well for certain condition or population, then we

may need to modify the test or even develop a new test for those situations. On the other

hand, if we find that a factor doesn’t influence test performance, we can relax the conditions

under which the test is performed.

Comparing performance between several different tests is a special case of modelling

covariate effects. When a new diagnostic test is developed, before it can be used in the

practice, frequently we need to compare it with an existing test to evaluate whether the

new test provides better discrimination between cases and controls. Under certain situations

(e.g., cost and invasiveness of the test), a new test is favored as long as it is proven to be

non-inferior to its closest competitor.

In this manuscript, we propose a linear regression framework to model covariate effect

on the ROC curve. In section 2 we describe the regression procedures for comparing two
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ROC curves. We illustrate our method using a pancreatic cancer data set in section 3. Using

linear regression procedure for general covariate effects modelling are presented in section 4.

We illustrate our method using an audiology data set in section 5. We give a summary and

some closing remarks in section 6.

2. Comparing ROC Curves

2·1 Paired Tests versus Non-paired Tests

When comparing two diagnostic tests with respect to their performances, the study design

needs to be considered. Pepe(2003) introduced the concepts of paired tests versus non-

paired tests. If each individual in the population receives both tests, we call those tests

paired tests. If the results are from two independent populations of subjects, we call those

tests non-paired tests. Paired tests provide additional statistical challenge when we compare

their performances since we need to account for the correlation between the test results

derived from the same individual.

Since we routinely use the ROC curve to assess the performance of a continuous test,

naturally we compare the performances of two tests by comparing their corresponding ROC

curves. There are two main approaches to compare ROC curves: comparing summary

measures(e.g. AUC) of the ROC curves or using regression methods to compare the ROC

curves directly.

2·2 Comparing ROC curves by AUC statistics

The most popular approach to compare two ROC curves is based on the difference in their

empirical AUC values. Denote two curves by ROCA and ROCB, write the null hypothesis

as

H0 : ROCA = ROCB (1)

Define

∆ÂUCe = ÂUCAe − ÂUCBe (2)
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where ÂUCe is defined to be the area under the emprical ROC curve.

The null hypothesis is tested by comparing ∆ÂUCe/

√
var(∆ÂUCe) with a standard

normal distribution, we call this test a Z-test based on empirical AUC statistics.

We need to point out that comparing AUC statistics is not equivalent to comparing

the ROC curves. Two ROC curves that have cross-overs in the middle can have same AUC

values, hence this approach is probably under-powered for settings when the two ROC curves

cross.

2·3 Compare ROC Curves by Regression

Pepe (1997, 2000) developed the ROC-GLM procedure which is the first regression based

method that can be used for ROC curves comparison. Pepe & Cai (2004) proposed another

regression method based on placement value concept. The common setting for comparing

ROC curves using regression is first to assume a parametric model for the ROC curves.

Although the binormal model is often used, we will present the methods using the more

general form as ROC(t) = g(α0 + α1g
−1(t)). Define indicator variable Xtest as Xtest = 0 for

test A and Xtest = 1 for test B and assume the ROC curves for both tests have the following

parametric form:

ROCtest(t) = g(α0 + α1g
−1(t) + βXtest + γXtestg

−1(t)) (3)

The parameter θ = (α0, α1, β, γ)T . This model specifies that for test A, its ROC curve is

ROC(t) = g(α0 + α1g
−1(t)) (4)

and for test B, its ROC curve is

ROC(t) = g((α0 + β) + (α1 + γ)g−1(t)) (5)

The underlying assumptions for equation (4) is that there exists an unknown monotone

increasing function hA, such that

hA(YD̄,A) ∼ N(0, 1)
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and

hA(YD,A) ∼ N(α0/α1, 1/α
2
1).

Similarly, for test B, equation (5) assumes there exists an unknown monotone increasing

function hB, such that

hB(YD̄,B) ∼ N(0, 1)

and

hB(YD,B) ∼ N((α0 + β)/(α1 + γ), 1/(α1 + γ)2).

Notice that hA and hB are not required to be the same.

To test the equivalency of tests A and B, the null hypothesis can be written as

H0 : (β, γ) = (0, 0) (6)

Under H0, if we can show (
β̂
γ̂

)
D−→ N(0, Σβγ) (7)

then the statistic

U =

(
β̂
γ̂

)′

Σ−1
βγ

(
β̂
γ̂

)
(8)

where Σβγ is the covariance matrix for (β̂, γ̂), is distributed as a χ2 distribution with 2

degrees of freedom. In practice, we replace Σβγ with Σ̂βγ and if Σ̂βγ is consistent, we can test

the null hypothesis by comparing U with standard χ2 distribution with 2 degrees of freedom.

This method is first proposed by Metz& Kronman(1980).

We can show in large samples, both g−1(R̂OCA(t)) and g−1(R̂OCB(t)) are Gaussian

processes,

√
nD̄(g−1(R̂OCA(t))− g−1(ROCA(t)))

D−→ N(0, Σe,0) (9)

and

√
nD̄(g−1(R̂OCB(t))− g−1(ROCB(t)))

D−→ N(0, Σe,1) (10)

The proof of the above results and the definitions of Σe,0 and Σe,1 can be found in Zhang

(2004).
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Equation (9) and (10) imply g−1(ROCA(t)) and g−1(ROCB(t)) can be approximated by

g−1(R̂OCA(t)) and g−1(R̂OCB(t)), respectively. Combining that with equation (4) and (5),

motivates the following estimation procedure. We first calculating the pairs (tp,test, R̂OC(tp,test))

for each test separately, let test = 0 for test A and test = 1 for test B.

1. Choose values for the boundary points a and b where 0 < a < b < 1. We recommend

a = 0.0001 and b = 0.9999 to ensure the maximal number of data points are included,

if the goal is to estimate the entire ROC curve. However, a and b can be chosen as any

values between 0 and 1 when only estimating part of the curve;

2. Divide the interval [a, b] into nD̄,test-1 equally spaced sub-intervals and let the midpoints

be denoted by Ttest = {tp,test};

3. For each tp,test, find the smallest threshold value cp,test, such that tp,test ≤ F̂PF (cp,test) =
∑nD̄,test

j=1 I[YD̄j ,test ≥ cp,test]/nD̄,test;

4. Calculate R̂OC(tp,test) = T̂PF (cp,test) =
∑nD,test

i=1 I[YDi,test ≥ cp,test]/nD,test;

5. Exclude (tp,test, R̂OC(tp,test)) if R̂OC(tp,test) is either 0 or 1;

6. Let design matrix M be

M ′ =
(

M ′
0 O′

M ′
1 M ′

1

)
(11)

where M ′
0 =

(
1 ... 1 ...

g−1(t1,0) ... g−1(tp,0) ...

)
, M ′

1 =

(
1 ... 1 ...

g−1(t1,1) ... g−1(tp,1) ...

)
and

O is a matrix with 0 in every entry.

7. Let Ỹ = (Ỹ0, Ỹ1), where Ỹk = (g−1(R̂OC(t1,0))...g
−1(R̂OC(tp,0))...)

T , k = 0, 1;

8. By the asymptotic distribution of R̂OC(tp,test), we can write

g−1(R̂OC(tp,test))
.
= α0 + α1g

−1(tp,test) + βXtest + γXtestg
−1(tp,test) + εtest (12)

where n
1
2

D̄,test
εtest is normally distributed with mean 0 and asymptotic covariance matrix

Σe,test;
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9. Our OLS estimator for θ is

θ̂ = (M ′M)−1M ′Ỹ (13)

Asymptotic distribution theory for the OLS estimator when the tests are not paired is

developed in Zhang(2004), in which the OLS estimator is shown to be unbiased and normally

distributed. Asymptotic theory for the OLS estimator when the tests are paired needs to be

developed in the future since joint asymptotic distribution for two paired ROC curves is not

yet available.

2·4 Simulation Studies

We generate data for paired tests under the null hypothesis (i.e. when (β, γ) = (0, 0)) to

address whether the χ2 test has correct size(type I error). The correlations between the

test results range from 0 to 0.75. The data is generated such that the models specified by

equations (4) and (5) hold. The variance calculation is based on the bootstrap method. For

comparison purpose, we will also assess whether the Z-test based on empirical AUC has the

right size.

Simulation settings are as the following: the correlation coefficient (ρ) is 0, 0.25, 0.5 or

0.75; the sample sizes are either nD,0 = nD,1 = 100 or nD̄,0 = nD̄,1 = 50; the parameter values

are (α0, α1, β, γ) = (1.2, 0.45, 0, 0). Data for test A are YD̄,0 ∼ N(0, 1) and YD,0 ∼ N(α0

α1
, 1

α2
1
)

and data for test B are YD̄,1 ∼ ρYD̄,0+N(0, 1−ρ2) and YD,1 ∼ ρYD,0+N(α0+β
α1+γ

−ρα0

α1
, 1

(α1+γ)2
−

ρ2

α2
1
).

For every 500 iterations, we calculated the numbers of iterations that produced p-values

less than 0.05, as that will be used as the criterion to reject the null hypothesis. Our target

for the rejection rate is 5%. Table 1 shows the rejection rates for both the χ2 test and Z test

along with the 95% confidence intervals. It shows that the χ2 test has the right size except

when ρ = 0.25, when the test is slightly conservative. On the contrary, the Z-test based on

the AUC statistics is slightly conservative when the tests are independent. Overall, these

simulation results suggest both tests are acceptable to use in practice.
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(Table 1 goes here)

We also investigated for comparing two ROC curves, whether the OLS approach is more

or less powerful than comparing the AUC values approach. Table 2 summaries the simulation

results. We found that when two ROC curves cross, the OLS method is more powerful. But

when the curves do not cross, AUC method is more powerful.

(Table 2 goes here)

3. Application to Pancreatic Cancer Data Set

This dataset was first published by Wieand et al.(1989). It is a case-control study including

90 cases with pancreatic cancer and 51 controls that did not have cancer but who had

pancreatitis. Serum samples from each patient were assayed for CA-19-9, a carbohydrate

antigen, and CA-125, a cancer antigen, both of which are measured on the continuous positive

scale and higher values are more indicative of disease. A primary question to be addressed

by the study is to determine which of the two biomarkers better distinguishes cases from

controls. We will compare their corresponding ROC curves to address this question.

Since CA-125 and CA-19-9 are paired tests, we use the bootstrap variances in the in-

ference. The distribution of the test results are closer to normal at the log scale, hence we

calculated the correlation coefficients at that scale, which are -0.141 in the control group

and 0.142 in the diseased group. Table 3 shows the parameter estimates when we compare

the curves in the entire range of (0, 1). Data is analyzed by letting g = Φ and using the

boundary value (a, b)= (0.0001, 0.9999). We choose CA-125 to be test 1 and CA-19-9 to

be test 2, therefore, (α0, α1) is the parameter for the CA-125 ROC curve, (α0 + β, α1 + γ) is

the parameter for the CA-19-9 ROC curve and (β, γ) measures the difference between the

two curves. After adjusting for multiple comparisons by Bonferroni method, we found the

p value for γ is 0.0067 < 0.025, but the p value for β is 0.0751 > 0.025, which means that

the slopes of the two curves are statistically significantly different from each other but the

intercepts of the two curves are not. The p value from the χ2 test is 0.0019, which shows
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overall the curves are different. We also calculated the p value by comparing empirical AUC

statistics, which is 0.007, hence we reach same conclusion by both method, but the p value

from AUC-based test is larger, which can be explained by the fact that the two ROC curves

have a cross in the end when t is close to 0.8, which is the setting when AUC-based test may

not be as powerful as OLS-based test.

(Table 3 goes here)

Figure 1 shows the OLS-fitted ROC curves as well as the empirical curves for both CA-

125 and CA-19-9. The fitted curves follows the empirical curves well, suggesting a good

fitting.

(Figure 1 goes here)

Table 4 shows the parameter estimates when we are comparing only the part of curves

when the false positive fraction is less than 20%. Data is analyzed by letting g = Φ and using

the boundary value (a, b)= (0.0001, 0.2). The p value for γ is slightly over 0.025(0.032) and

the p value for β is not significant(p = 0.463). The p value from the χ2 test is p < 0.0001.

The smaller p value here reflects the fact that the difference between the two curves are more

prominent in the lower part of the curves.

(Table 4 goes here)

A test based on the difference in empirical partial AUC statistics found the differ-

ence is statistically significantly different from 0 based on bootstrap distribution with p <

0.001(Pepe 2003). Again this p-value is slightly larger than the p-value based on the OLS

method, suggesting the test based on the summary measure is not as powerful as the test

based on comparing the actual curves. Figure 2 shows the OLS-fitted partial ROC curves

as well as the empirical curves for both CA-125 and CA-19-9. The fitted curves follows the

empirical curves well, suggesting a good fitting.

(Figure 2 goes here)

ROC-GLM method yields estimates for β = 0.23(se = 0.71) and γ = −0.91(se =

0.46)(Pepe 2000). Placement value regression method yields estimates for β = 0.02(se =

8
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0.64) and γ = −0.98(se = 0.40)(Pepe & Cai 2002). Hence OLS method is more efficient

than both ROC-GLM and PV regression methods. Notice although the estimates for β and

γ are quite different across all three methods, because of the large se, those estimates are

not inconsistent with each other.

To make conclusions about relative efficiency between the OLS method and the ROC-

GLM method, we simulated data under the fitted model as shown in Table 3 where (α0, α1, β, γ)

= (0.717, 0.986, 0.485, -0.518) and we chose the correlation coefficients to be the same as

the values found in the pancreatic cancer data; ρ = −0.141 for the control group ρ = 0.142

for the diseased group. The simulation results suggested that the OLS estimator is more

efficient than the ROC-GLM estimator under this setting. The variance for (α̂0, α̂1, β̂, γ̂) is

(0.191, 0.130, 0.266, 0.162) for the OLS estimator and (0.193, 0.139, 0.269, 0.171) for the

GLM estimator.

4. Modeling Covariate Effects

The covariates that potentially influence the test performance can be either categorical or

continuous. Examples of categorical covariates include gender of the test subjects and dif-

ferent test settings. Examples of continuous covariates include age of the test subjects.

Although it is natural to model the covariate effects on its given scale, by modeling a contin-

uous covariate, we usually make a stronger model assumption than modeling a categorical

covariate.

To make this idea clear, consider the existing methodology to evaluate covariate effects on

test performance using regression models for the ROC curve. The common feature for those

methods is that they all assume a parametric model for the ROC curve. Those methods

usually include the continuous covariates as linear terms, by doing that, they make an

additional assumption that the ROC curves are “linearly” related, i.e. the tests are either

getting progressively better or worse when the covariates values are getting larger. This is a

pretty strong assumption and may not be appropriate for all covariates. For example, a test
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may perform best in the young adults but not so good in children and elderly people. Hence

the relationship between the test performance(ROC curve) and the age is not linear. By

modeling the covariates as a categorical variable, however, we make less assumption about

the directions of the covariates effect.

Although we argue here for the advantage of using categorical covariate in the model,

interpretation from the model that uses continuous covariates is usually simpler. It is not

our intention to discourage the use of continuous covariates in the model all together.

4·1 Uncorrelated versus Correlated Subsets

Suppose there are N categorical covariates available to us and we wish to include all of

them in our model. Those covariates essentially partition the entire data into K subsets,

each subset represents an unique combination of those N covariates. Those subsets could

be correlated or uncorrelated. For example, when the covariate is the test setting and each

individual receives tests under more than one setting, then the subsets would be correlated.

If test results from those subsets are uncorrelated, this is analogous to the non-paired tests

situation we discussed in the previous chapter. If, however, the test results from different

subsets are correlated, we have “paired-tests” situation. Inference for uncorrelated and

correlated subsets is a generalization of the inference for non-paired and paired tests, where

in the latter case, the number of covariate is one and the number of subsets is two.

4·2 Regression Model for Covariate Effects

Assume there are N categorical covariates, resulting in K unique combination. Partition the

data into the corresponding K subsets.

For subset 1(reference subset), assume

g−1(ROC1(t)) = β1 + γ1g
−1(t) (14)

For subset k, k = 2, ..., K, assume

g−1(ROCk(t)) = β1 + γ1g
−1(t) + βk + γkg

−1(t) (15)
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Hence βk is the difference in the intercept parameter of the ROC curves for subset k and

the reference subset and γk is the difference in the slope parameter of the ROC curves for

subset k and the reference subset.

The underlying assumptions for equation (14) is that there exists an unknown monotone

increasing function h1, such that

h1(YD̄,1) ∼ N(0, 1)

and

h1(YD,1) ∼ N(β1/γ1, 1/γ
2
1).

Similarly, for subsequent subset k, k = 2, 3, ..., K, equation (15) assumes there exists an

unknown monotone increasing function hk, such that

hk(YD̄,k) ∼ N(0, 1)

and

hk(YD,k) ∼ N((β1 + βk)/(γ1 + γk), 1/(γ1 + γk)
2).

Notice that hks are not required to be the same for different k. The parameter we need to

estimate here is θ = (β1, γ1, ..., βK , γK)T . We can show in large samples, g−1(R̂OCk(t)) for

k = 1, 2, ...K are Gaussian processes,

√
nD̄,1(g

−1( ̂ROC1(t))− g−1(ROC1(t)))
D−→ N(0, Σe,1) (16)

and

√
nD̄,k(g

−1( ̂ROCk(t))− g−1(ROCk(t)))
D−→ N(0, Σe,k) (17)

The proof of the above results and the definitions of Σe,1 and Σe,k can be found in Zhang

(2004).

4·3 Estimating Procedures

Equation (16) and (17) imply g−1(ROCk(t)) can be approximated by g−1(R̂OCk(t)). Com-

bining that with equation (14) and (15), motivates the following estimation procedure:
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1. Follow the steps 1-5 from section 2.3 to calculate the pairs (tpk, R̂OC(tpk)) for each

subset separately;

2. Let design matrix M be

M =




M1 O O .. O
M2 M2 O .. O
M3 O M3 .. O
. . . .. .

MK O O .. MK




(18)

where M ′
k =

(
1 ... 1 ...

g−1(t1,k) ... g−1(tpk) ...

)
and O is a matrix with 0 in every entry.

3. Let Ỹ = (Ỹ1, Ỹ2, ..., ỸK)T and Ỹk = (g−1(R̂OC(t1k))...g
−1(R̂OC(tpk)))

T ;

4. Our linear model is:

for subset 1,

g−1(R̂OC1(tp,1))
.
= β1 + γ1g

−1(tp,1) + ε1 (19)

where
√

nD̄,1ε1 is normally distributed with mean 0 and asymptotic covariance matrix

Σr,1;

For subset k, k = 2, 3, ..., K

g−1(R̂OCk(tp,k))
.
= β1 + γ1g

−1(tp,k) + βk + γkg
−1(t) + εk (20)

where
√

nD̄,kεk is normally distributed with mean 0 and asymptotic covariance matrix

Σr,k;

5. Our OLS estimator for θ is

θ̂ = (M ′M)−1M ′Ỹ (21)

Asymptotic distribution theory for the OLS estimator when the subsets are not correlated

is developed in Zhang(2004), in which the OLS estimator is shown to be unbiased and

normally distributed. Asymptotic theory for the OLS estimator when the data are correlated

needs to be developed in the future since joint asymptotic distribution for correlated multiple

ROC curves is not yet available.
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4·4 Covariate Consideration

We present our method by assuming all covariates are categorical. If we want to include

continuous covariate Z in the model, we need to have ŜD̄,Z and ŜD,Z for all possible values

of Z. Since it is impossible to do this non-parametrically, we are left with the choice of

semiparametric and parametric modelling of ŜD̄,Z and ŜD,Z . Semiparametric and parametric

modeling of ŜD̄,Z has been proposed by several authors(see Pepe(2003) for a comprehensive

review), it is possible to impose a semiparametric or parametric model on ŜD,Z as well. We

need to be more carefully here though, since for certain disease, the disease status makes the

distribution of test results more irregular and unpredictable.

If certain covariate value is given on the continuous scale, we need to categorize it into

appropriate groups first before applying OLS method. The categorization should depend on

both the question of interest(i.e. scientific relevance) and the actual data, i.e., we need to

make sure there are sufficient observations in each group. Based on our simulation studies,

a sample size where the minimum of nD and nD̄ is at least 50 seems sufficient.

Least squares approach can also accomodate disease-specific covariates. For example,

suppose there is a covariate for disease severity that has two categories: mild and severe.

Then for each level of severity, we can just use the non-diseased observation as the reference

population and calculate the corresponding TPF and FPF .

5. Application to DPOAE Data Set

The DPOAE data set was first published by Stover et.al (1996). DPOAE stands for dis-

tortion product otoacoustic emission, which is an audiology test used to separate normal-

hearing from hearing-impaired ears. We only analyze a subset of the entire data set. The

test is administrated under 9 different auditory stimulus conditions with three levels of fre-

quency(1001, 1416 and 2002 Hz) and three levels of intensity(55, 60 and 65 dB SPL). A total

of 210 subjects were included in the study. The subjects were considered cases with hearing

impairment at a given frequency if their audiometric threshold exceeds 20dB HL measured
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by a behaviour test(gold standard). Each subject was tested in only one ear. Test result is

the negative signal-to-noise ratio, -SNR, with higher value being more indicative of hearing

impairment. The objective of the analysis is to determine the optimal setting for the clinical

use of DPOAE to separate normal from hearing-impaired ears, but bear in mind an ear may

be determined to be hearing impaired or normal at different frequencies.

We partition the data into nine subsets, corresponding to the nine test settings. Since

each subject is tested under more than one setting, those subsets are correlated, therefore we

will use bootstrap method to estimate the variance. The bootstrap is done by sampling the

subjects with replacement and use all the test results associated with each sampled subject.

We apply the OLS method to the DPOAE data set using the models specified in (19)

and (20). Data is analyzed by letting g = Φ and using the boundary value (a, b)= (0.0001,

0.9999). We choose the reference subset (subset 1) to be the test setting with frequency value

of 1001Hz and intensity value of 55 dB SPL. The standard error is estimated from bootstrap

method. (β1, γ1) is the intercept and slope estimates for the ROC curve for setting (1001,

55) and the subsequent βk and γk, with k = 2, .., 9, represent the differences in the intercept

and slope parameters of the ROC curves between subset k and subset 1. We found none of

the γ̂k is statistically significantly different from 0 (P value> 0.5).

We also develop a χ2 test statistic γ̂
′
Σ̂γ γ̂, where γ = (γ2, ...γ9) and Σ̂γ is the estimated

covariance matrix of γ̂. Write the null hypothesis as H0 : γ = 0 and compare the above

statistic with a χ2 distribution with 8 degrees of freedom gives a P-value of 0.84, which

is consistent with the result from testing the significance of each γk separately that the

interaction terms in model (4.2) are not statistically significant.

We re-analyze the data with the interaction terms omitted and Table 5 summarizes the

results. From Table 5, we can see within the nine test settings, the setting (1416, 55)

generates a ROC curve with the largest intercept estimate and the difference between it

and the intercept estimate for the reference ROC curve (β4) is statistically significant with

a P-value 0.0041. The P-value for other parameters(β2, β3, β5 to β9) are not significant.
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The estimated ROC curve for setting (1416, 55) is ROC(t) = Φ(2.54 + 0.82Φ−1(t)) with

estimated AUC value of 0.975, which is the largest among all settings. We know the larger

the AUC value, the better the test in discrimating cases versus controls. From the sign of

the estimates, we can see the performance of the test gets worse with the increasing intensity

when we fix the frequency value. This analysis suggests (1416Hz, 55 dB SPL) is a better

test setting than the reference setting.

(Table 5 goes here)

We have also analyzed the data by ROC-GLM method without the interaction terms and

Table 6 summarizes the results.

(Table 6 goes here)

Table 5 and 6 show that OLS and ROC-GLM methods generate similar estimates for

parameters β and γ. They have similar standard error estimates and inference based on

either method is the same that both suggest setting (1416, 55) constitutes a better test than

the reference setting (1001,55).

Figure 3 shows the empirical and the OLS-fitted ROC curves for all nine test settings.

It shows the fitted ROC curves follows the empirical ROC curves very well, indicating good

fittings.

(Figure 3 goes here)

6. Discussion

This manuscript addresses statistical methods to compare diagnostic tests performance and

more generally, assess potential covariate effects on the test performance. Often a new

developed test is being compared with an existing test to determine whether the new test

has any advantage. If each individual in the population receives both tests, those tests are

called paired tests; otherwise, they are called non-paired tests. We demonstrate how to use

linear regression method(OLS) to compare ROC curves by assuming a parametric model for

each curve and test the difference in the intercept and slope parameters of the curves. A
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χ2 test statistic is developed under the regression framework to test the overall difference

in the two curves. The asymptotic distribution theory for the OLS estimators is developed

when the two tests are non-paired, in which the estimators are shown to be consistent and

normally distributed asymptotically.

Summary measures like AUC or pAUC statistics can be used to compare two ROC curves

as well. Although intuitive, this approach is underpowered in the situation when the two

curves have cross-overs. Simulation studies are carried out to assess the size of the χ2 test as

well as the size of the Z-test based on the empirical AUC statistics. We find both tests are

slightly conservative in some cases but are suitable to be used in practice. We illustrate our

method using the pancreatic cancer data set and find the two biomarkers are statistically

significantly different from each other and CA-19-9 is a more accurate test. Standard error

estimates for the OLS estimator is smaller than the estimates from other regression based

methods when we compare partial ROC curves.

Various factors can affect a test performance beyond the disease status, which motivates

incorporating the covariate information into the ROC curve analysis. We demonstrate how to

use linear regression to estimate covariate effects. We illustrate our method on an audiology

test(DPOAE) data set, in which we show that OLS and ROC-GLM estimators have similar

standard error estimates in estimating the ROC curve parameters.

One topic left for comparing two ROC curves is the development of asymptotic theory

for the OLS estimators when the two tests are paired. What is needed here is the joint

distribution of two correlated empirical ROC curves. If shown that they have a bivariate

normal distribution asymptotically, the asymptotic distribution theory for the OLS estimator

can be approved easily.

For covariate effects modelling, we have only included categorical covariates in our linear

regression model. We would like to explore whether continuous covariates can be accomo-

dated in the model as well. One possible approach is for a given covariate Z, using either

semiparametric or parametric model to model ŜD,Z in addition to modeling ŜD̄,Z(Pepe,
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2003).

In summary, the proposed linear regression framework provides an unified approach for

the ROC curve analysis. It can be used to estimate or compare ROC curves, as well as

incorporate covariate information in the model. The application of ROC curve goes beyond

the medical diagnostic field and it can be used for evaluating any discrimination tools. It is,

and will continue to be an important and exciting area to engage in research.
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Table 1: Rejection rates and confidence intervals for χ2 test based on the OLS estimator and
Z-test based on the empirical AUC statistics. Results are based on 500 simulation runs.

ρ χ2 test Z-test
0 4.8%(2.9%,6.7%) 3.2%(1.7%,4.7%)

0.25 3.2%(1.7%,4.7%) 6.4%(4.3%,8.5%)
0.5 5.0%(3.1%,6.9%) 6.0%(3.9%,8.1%)
0.75 5.0%(3.1%,6.9%) 5.4%(3.4%,7.4%)

Table 2: Power of the OLS method and the AUC method. Results are based on 1000
simulation runs. (α0, α1)=(0.5,0.75) and ρ = 0.

(β, γ) OLS AUC Curves cross
(0.1, 0) 0.046 0.069 No
(0.2, 0) 0.429 0.454 No

(0.1,−0.25) 0.318 0.112 Yes

Table 3: Comparison of the whole ROC curves for CA-19-9 and CA-125 from the pancreatic
cancer data set by the OLS method.

Parameter Estimate SE(bootstrap) P value
α0 0.717 0.206 0.0005
α1 0.986 0.165 < 0.0001
β 0.485 0.273 0.0751
γ -0.518 0.191 0.0067

Table 4: Comparison of the partial ROC curves for CA-19-9 and CA-125 when the false
positive fractions are below 20%.

Parameter Estimate SE(bootstrap) P value
α0 0.594 0.565 0.293
α1 1.030 0.306 0.0008
β 0.455 0.619 0.463
γ -0.687 0.321 0.032
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Table 5: Covariates effects on the ROC curves estimated by the the OLS method for the
DPOAE test.

(Frequency,
intensity) Parameter Estimate Std.Err P value AUC
(1001,55) β1 1.73 0.26 < 0.0001
(1001,55) γ1 0.82 0.12 < 0.0001 0.910
(1001,60) β2 -0.20 0.14 0.1455 0.882
(1001,65) β3 -0.36 0.19 0.0607 0.855
(1416,55) β4 0.81 0.28 0.0041 0.975
(1416,60) β5 0.36 0.29 0.2172 0.947
(1416,65) β6 0.19 0.28 0.5064 0.931
(2002,55) β7 0.47 0.29 0.1052 0.956
(2002,60) β8 0.42 0.28 0.1293 0.952
(2002,65) β9 0.10 0.27 0.7019 0.921

Table 6: Covariates effects on the ROC curves estimated by the ROC-GLM method for the
DPOAE test.

(Frequency,
intensity) Parameter Estimate Std.Err P value
(1001,55) β1 1.84 0.29 < 0.0001
(1001,55) γ1 0.95 0.13 < 0.0001
(1001,60) β2 -0.21 0.13 0.1097
(1001,65) β3 -0.32 0.19 0.1029
(1416,55) β4 0.82 0.30 0.0073
(1416,60) β5 0.39 0.31 0.2022
(1416,65) β6 0.18 0.30 0.5436
(2002,55) β7 0.41 0.28 0.1496
(2002,60) β8 0.46 0.29 0.1082
(2002,65) β9 0.06 0.27 0.8221
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Figure 1: The OLS-fitted ROC curves along with the empirical curves for CA-125 and CA-
19-9

False Positive Fraction

T
ru

e 
P

os
iti

ve
 F

ra
ct

io
n

0.0 0.05 0.10 0.15 0.20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Top: CA-19-9
Bottom: CA-125

Figure 2: The OLS-fitted partial ROC curves along with the empirical curves for CA-125
and CA-19-9

21

Hosted by The Berkeley Electronic Press



False Positive Fraction

T
ru

e 
P

os
iti

ve
 F

ra
ct

io
n

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

frequency= 1001Hz, intensity= 55dB

False Positive Fraction

T
ru

e 
P

os
iti

ve
 F

ra
ct

io
n

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

frequency= 1001Hz, intensity= 60dB

False Positive Fraction

T
ru

e 
P

os
iti

ve
 F

ra
ct

io
n

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

frequency= 1001Hz, intensity= 65dB

False Positive Fraction

T
ru

e 
P

os
iti

ve
 F

ra
ct

io
n

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

frequency= 1416Hz, intensity= 55dB

False Positive Fraction

T
ru

e 
P

os
iti

ve
 F

ra
ct

io
n

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

frequency= 1416Hz, intensity= 60dB

False Positive Fraction

T
ru

e 
P

os
iti

ve
 F

ra
ct

io
n

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

4
0.

8

frequency= 1416Hz, intensity= 65dB

False Positive Fraction

T
ru

e 
P

os
iti

ve
 F

ra
ct

io
n

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

frequency= 2002Hz, intensity= 55dB

False Positive Fraction

T
ru

e 
P

os
iti

ve
 F

ra
ct

io
n

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

frequency= 2002Hz, intensity= 60dB

False Positive Fraction

T
ru

e 
P

os
iti

ve
 F

ra
ct

io
n

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

frequency= 2002Hz, intensity= 65dB

Figure 3: The empirical and fitted ROC curves for DPOAE data set
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