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A Novel Topology for Representing Protein
Folds

Mark R. Segal

Abstract

Various topologies for representing three dimensional protein structures have been
advanced for purposes ranging from prediction of folding rates to ab initio struc-
ture prediction. Examples include relative contact order, Delaunay tessellations,
and backbone torsion angle distributions. Here we introduce a new topology based
on a novel means for operationalizing three dimensional proximities with respect
to the underlying chain. The measure involves first interpreting a rank-based rep-
resentation of the nearest neighbors of each residue as a permutation, then de-
termining how perturbed this permutation is relative to an unfolded chain. We
show that the resultant topology provides improved association with folding and
unfolding rates determined for a set of two-state proteins under standardized con-
ditions. Furthermore, unlike existing topologies, the proposed geometry exhibits
fine scale structure with respect to sequence position along the chain, potentially
providing insights into folding initiation and/or nucleation sites.



The protein folding problem, or problems (Dill et al. 2007), despite considerable recent head-
way, remains one of the greatest challenges facing computational biology. The inter-related folding
problems can be described as (Dill et al. 2008): (a) the folding code: given a protein’s amino
acid sequence, how does the thermodynamic interplay of interatomic forces determine the protein’s
structure? (b) structure prediction: how can a protein’s (native, 3D) structure be computation-
ally predicted from its amino acid sequence? and (c) the folding process: given the vast number
of conformational possibilities embodied in a protein’s amino acid sequence, how does it fold so
quickly to its native state? This last problem, often referred to as the Levinthal (Levinthal 1968)
paradox, has been addressed using a spectrum of theoretical and experimental approaches. Some
remarkable (Grantcharova et al. 2001) and striking (Huang et al. 2007) findings to emerge in recent
years pertain to the fact that folding rates of two-state proteins (those folding without observable
intermediates), which can vary over more than 8 orders of magnitude, from microseconds (Kim and
Baldwin 1990) to hours (Kubelka et al. 2004), and include a wide range of folds and functions, are
largely determined by the topology of the native structure, with relative insensitivity to features
such as the details of inter-atomic interactions and protein length (Plaxco et al. 1998; Shi et al.
2008).

Making such inferences – prediction of folding rates based on protein topology – requires a quan-
tification of topology and a number of derived summaries have been advanced for this purpose.
Generally, these summaries are employed as “bulk” properties – aggregated over the protein struc-
ture – so as to relate to (overall) folding rate. However, more locally defined topological summaries
may prove informative with respect to local attributes such as folding initiation and propagation
sites (Dyson et al. 2006).

It has been noted that (tertiary) native structures ought reflect their folding path histories, at least
for some folding mechanisms (Dill et al. 1993). This motivates our framing of a novel topological
characterization of a folded protein. It is based on the permutation representation of nearest
neighbors, with subsequent use of Kendall’s tau distance metric to capture perturbation from the
unfolded polypeptide chain. We contrast the performance of leading topologies in predicting two-
state protein folding and unfolding rates, demonstrating significant prediction gains for our new
measure. This performance is all the more notable since it is achieved without implicit or explicit
optimization, the new topology being devoid of tuning parameters. Some preliminary exploration
of local properties is also proffered.

The importance of topology in terms of prediction of folding rates was first established for relative
contact order (RCO) (Plaxco et al. 1998). Let ai designate the ith residue in a protein primary
sequence of length n. A (non-local) contact between two residues ai, aj, separated by at least lcut

residues along the sequence, is defined as occurring if there are two heavy (non-hydrogen) atoms,
one from each residue, within a cutoff distance of Rcut. Standard values for lcut and Rcut are 2
(sequence positions) and 6 Å, respectively. Assume there are nc contacting residue pairs. Then
RCO is defined as

RCO =
1

n · nc

nc∑
(ai,aj)

|i− j|

where the sum is over all contacting pairs (ai, aj).
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Several variants of RCO have been proposed, with emphasis on sensitivity to the cutoff parameters,
and the scope (short-, mid-, or long- range) of contacts, as discussed later. An alternate formulation,
termed effective contact order (ECO) (Fiebig and Dill 1993; Dill et al. 1993), operationalizes
contacts and scope in terms of shortest path lengths between residues that can be achieved in the
presence of existing (covalent or topological) links. This formulation attempts to capture effective
loop size, and hence the size of the conformational search space necessary to form a conditional (on
preexisting links) contact and, as such, is postulated to relate to search (folding) speed (Dill et al.
2008). Our new topology captures such constructs but in a distinct framework.

What constitutes folding from a topological (rather than mechanistic) perspective? Clearly, any
definition must be dependent on the underlying polypeptide chain, since purely 3D coordinate
based definitions would give rise to a multitude of (irrelevant) “folds”. One widely used primitive
is based on backbone dihedral angles as depicted in Ramachandran plots (Ramachandran et al.
1963). These plots have been used for crystallographic quality control purposes to detect angular
outliers since many angle combinations do not occur due to steric hindrance. Further, by modeling
sequential angular dependencies along the chain using dynamic Bayesian networks, successful gen-
erative models of local protein structure have been devised (Hamelryck et al. 2006; Boomsma et al.
2008). However, unlike RCO above, topological summaries derived from angular representations
have not been employed in relation to predicting attributes such as folding rates.

As an alternative to backbone angles and contact orders, we can conceptualize folding as resulting
in some residues being brought closer together relative to their positions in a denatured random
coil. While related to the underpinnings of contact order, it is by operationalizing this notion,
without invoking contact distances, that we arrive at our new topology.

Let ui = (xi, yi, zi) denote the three dimensional coordinates of the Cα atom of residue ai. We
compute the n× n matrix of Euclidean distances between all Cα pairs:

D = [dij]; dij =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2

Then, for each residue (i.e., for each row of D) we map its Euclidean distance to a “nearest neighbor”
ranking:

R = [ri·]; ri· = rank{dij : j = 1, . . . , n} (1)

This enables use of cycle structure to capture topology with respect to an underlying chain, which
is not available using Euclidean distances directly. A useful byproduct of such rank based ap-
proaches is their relative insensitivity to noise, a known concern with regard experimental (X-ray
crystallography or NMR) determination of atomic coordinates (Nigham and Hsu 2008).

As a first step we treat r1· as a permutation of {1, 2, . . . , n} and, as such, an element of the
symmetric group Sn. This provides access to a wealth of techniques and theory, some of which
is germane to folding. Every permutation can be written as a product of disjoint cycles. For
example, corresponding to the permutation that takes the red (sequence) ordering to the blue
(nearest neighbor) ordering in Figure 1A we have(

1 2 3 4 5 6 7 8 9
1 3 5 4 2 6 9 8 7

)
= (1)(2 3 5)(4)(6)(7 9)(8)
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where (b1b2 . . . bk) means b1 → b2, b2 → b3 . . . bk → b1. Intuitively, we expect fold topology to
relate to cycle structure. If we (simplistically) regard a highly denatured (unfolded) protein as an
unstructured molecule, and focus on the N-terminal residue a1, the above process gives the identity
permutation composed of n 1-cycles. When folded, as depicted in the two dimensional cartoon in
Figure 1A, we obtain a cycle structure that captures the loops.

Figure 1: Sequence position (red) and nearest neighbor (blue) orderings for a cartoon fold schematic.
A. Sequence numbering proceeds along the chain from position 1 (N-terminal) to 9 (C-terminal).
Nearest neighbors, from position 1, are computed using ranked Euclidean distances. B. As for
A but with an interior referent position: position 1 (red, original position 4). The red sequence
numbering illustrates referent N-terminal re-ordering. Nearest neighbor ranks (blue) are computed
from this new referent. The (unstandardized) Kendalls tau distance between the referent and
nearest neighbor orderings for residues 1 through 9 are 7, 4, 6, 11, 12, 4, 2, 2, 11 respectively. C.
A simple schematic mimicking a two-dimensional projection of an α helix. Here the referent and
nearest neighbor orderings coincide for each residue, so each Kendalls tau distance is 0.

The second step is to move beyond the extreme N-terminal residue and to define permutations for
each residue from the perspective of its position in the chain. Thus, instead of regarding ri· as a
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permutation of {1, . . . , n} it is treated as a permutation of(
. . . 4 2 1 3 5 . . .
. . . ri,i−2 ri,i−1 ri,i ri,i+1 ri,i+2 . . .

)
(2)

where the top row in (2), termed the referent N-terminal re-ordering and designated ρi, represents
nearest neighbor ordering for residue ai in the unfolded state. This schema is illustrated in Figure
1B. Note that rii = 1 by definition (each Cα is closest to itself), so that every cycle representation
will contain the 1-cycle (1). Of course, we could equally utilize a C-terminal based re-ordering, as
discussed later.

In this manner we obtain a permutation and its attendant cycle representation for each residue.
We can then entertain characterizing a folded protein structure using properties or summaries of
this collection. For example, we could summarize each residue by maximal cycle length, and then
further summarize a structure by the maximum (over all residues) of these maxima. However,
this summary proves to be not very useful. At the residue level, maximal cycle length is strongly
dependent on whether a referent N-terminal or C-terminal re-ordering is employed, an arbitrariness
to avoid. And, on the protein level, we obtain maximal cycle lengths of ≈ n−2 across a wide range
of structures. This is consistent with modal cycle length under random permutation.

So, we take a more direct approach to capturing the difference between 3D nearest neighbor and
sequence orderings. The referent N-terminal re-ordering is obviously a permutation of {1, . . . , n},
and so an element of Sn. Now, a variety of metrics have been defined on Sn (Diaconis 1988). Here,
as recommended (Diaconis 1988), we focus on Kendall’s tau (Kτ) which, for π, σ permutations in
Sn, is defined as

Kτ(π, σ)
def
= minimum number of pairwise adjacent transpositions taking π−1 to σ−1

the inverses being used to make the metric right invariant. Then, as our third and final step to
operationalizing a nearest neighbor : sequence position based topology, we define our Kendall’s tau -
nearest neighbor (Kτ -NN) summary for residue i, designated Γi, as Γi = Γi(ρi, ri·) = Kτ(ρi, ri·)/

(
n
2

)
where division by

(
n
2

)
standardizes such that Γi ∈ [0, 1]. We do not employ optimization in arriving

at a bulk summary, but simply take the average over all residues: Γ̄ = 1/n
∑n

i=1 Γi.

Importantly, Γi is insensitive as to whether an N-terminal or C-terminal referent re-ordering is
employed. This is a simple consequence of the triangle inequality: let ηi represent the referent
C-terminal re-ordering as given by the top row of (3)(

. . . 5 3 1 2 4 . . .

. . . ri,i−2 ri,i−1 ri,i ri,i+1 ri,i+2 . . .

)
(3)

Then by a version of the triangle inequality |Γi(ρi, ri·) − Γi(ηi, ri·)| ≤ Γi(ρi, ηi) = O(n−1). This
agreement is exemplified in Figure 2 which showcases near perfect agreement for N-terminal and
C-terminal reorderings and illustrates the dependence on sequence length, the structures possessing
65 and 294 Cα’s respectively.
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Figure 2: Kτ -NN contrasting N-terminal and C-terminal referent re-orderings: A. PDB 2CI2 which
has 65 Cα’s; B. PDB 1L8W (Chain B) with 294 Cα’s.

Some distinctions between Kτ -NN and RCO and related topologies are worth highlighting. It
is important to recognize the complete absence of tuning (parameters) in computing Γ. While
refinements involving incorporation of tuning possibilities are discussed subsequently, all results
presented herein use the (untuned) formulation described above. In contrast, use of RCO requires
specification as to what physical (Euclidean) distance constitutes a contact, and what minimal
sequence separation should be imposed. For the former a value of 6 Å is commonly used, this being
the original specification (Plaxco et al. 1998), but other choices (e.g., 8 Å: Gromiha and Selvaraj
2001; Bonneau et al. 2002) have been advocated. While some studies indicate that results are
insensitive to this specification (Plaxco et al. 1998; Yuan 2005), others suggest that the choice
has a strong influence (Mirny and Shakhnovich 2001). Additionally, there are disparate ways
of operationalizing contact order scope: local, mid, and long range contacts being distinguished
(Gromiha and Selvaraj 2001; Zhou and Zhou 2002). Similarly, for example, the geometric distance
based on Delaunay tessellation (DT) (Ouyang and Liang 2008) requires specification of sequence
and spatial separation parameters.

Kτ -NN topology attempts to capture chain deformation / structural information between the refer-
ent and contacting residues, whereas this is ignored in computing RCO and DT. Conversely, Kτ -NN
also incorporates such information beyond contacting residues. It could be argued that inclusion of
such remote (from the referent residue) nearest neighbor rankings is at best irrelevant, and at worst
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distorting, for a topological summary. The following considerations are germane: (i) applications
of topologies are typically to bulk protein attributes, as opposed to residue specific. Summarization
over the entire chain serves to downweight these distant contributions; (ii) a constraint on the range
of sequence positions prior to ranking (1) is a putative tuning parameter; and (iii) transforming Γi to
corresponding proximities via prox(Γi) = 1− exp(−Γi) can be used to achieve such downweighting
(Diaconis et al. 2008) without specifying tuning parameters. Notably, despite these concerns, the
performance of Γi-based summaries in predicting two-state folding rates exceeds that of alternates
as described next.

The dataset used to assess performance of the competing topologies was obtained from a recent
compilation (Maxwell et al. 2005). Critically, this paper was the first to derive and assemble
folding (kf ), and unfolding (ku), rate constants obtained under standard experimental conditions,
necessary for meaningful comparisons. The data provides rate constants for 30 proteins, 27 of which
have PDB identifiers. RCO for these 27 structures was obtained using the Baker lab perl script
http://depts.washington.edu/bakerpg/contact_order/, as well as an online calculator http:
//www.copredictor.ca/. Calculation of Γ̄ and DT made recourse to custom R (R Development
Core Team 2007) code.

Associations between the respective topologies and log folding rates are presented in Figure 3. Note
that the (absolute) correlations attained using Γ̄ are substantially and significantly greater than
those achieved by RCO for both folding and unfolding rates.

Delaunay tessellations have been used in several contexts to capture protein structural attributes,
so it is natural to relate correspondingly defined topologies to folding rates. Doing so for both two-
and multi- state proteins (Ouyang and Liang 2008) yielded impressive results, with DT (Nα in
Ouyang and Liang 2008) outperforming RCO in both settings. However, DT is strongly correlated
with chain length. For multi-state proteins length is known to be a significant determinant of kf

(Ivankov et al. 2003). But, for two-state proteins, results generally show no association between
folding rates and length (Plaxco et al. 1998; Grantcharova et al. 2001). Indeed, for the present set
of two-state proteins, with folding rates determined under standardized conditions, neither length
nor DT are well correlated with kf : absolute correlations being 0.19 and 0.41 respectively, again
significantly less than for Γ̄.

So far, we have utilized the new topology only in terms of a bulk property: its average, Γ̄, over a given
protein. Examination of numerous traces of individual (residue level) Γi versus sequence position
reveals notable fine structure and variation. To illustrate, we showcase behavior for the two proteins
from (Maxwell et al. 2005) with extreme kf values: PBD IDs 1APS and 1LMB. Figure 4 contrasts
profiles of three topological summaries over sequence position for the two proteins. The superposed
smooths (1APS in red, 1LMB in green) were obtained using lowess (R Development Core Team
2007). The measures are, respectively, Kτ -NN (Γi), residue level relative contact order (RCOi), and
average area buried under folding (AABUF), a refinement of hydrophobicity incorporating residue
size (Nishimura et al. 2005; Dyson et al. 2006). For both Γi and RCOi we see clear differences in
terms of overall level between the two proteins, indicative of their bulk (mean) summaries ability to
predict folding rate. No such separation is evidenced for AABUF which, indeed, is not associated
with folding rates, at least for the proteins considered here (not shown). Further, AABUF does not

6
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Figure 3: Folding kf and unfolding ku rates vs Kτ -NN (Γ̄) and relative contact order (RCO)
topologies. summarized. The respective correlations are A. kf vs Γ̄: -0.68; B. ku vs Γ̄: -0.61; C.
kf vs RCO: -0.58; D. ku vs RCO: -0.30.

behave smoothly with respect to sequence position. This is in contrast to RCOi and, to a much
greater extent, Γi, which exhibits well defined local minima and maxima.

The existence of these well defined Γi extremes begs the question as to whether they relate to
attributes of the folding process or properties of the three dimensional protein structure. Unfor-
tunately, there is a dearth of data, at the residue level, for making such assessments. Features of
interest, but for which insufficient data is available, include nucleation as measured by a residue’s
Φ value (Mirny and Shakhnovich 2001; Larson et al. 2002), which provides a measure of the ex-
tent to which the residue participates in native-like interactions during the rate limiting folding
step, and folding initiation sites. We speculate that residues with small Φ values (not part of the
folding nucleus) will have small Γi values, the logic being that these small values of Γi correspond
to residues that are relatively “unperturbed” by the folding process. This pertains for Villin 14T
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Figure 4: Superposed profiles for the proteins with minimal (1APS: red, ◦) and maximal (1LMB:
green, +) kf values: A. Kτ -NN (Γi); B. residue RCO; C. Average Area Buried Under Folding.

(Choe et al. 2000) for which we observe (Figure 5(A)) a significant correlation of 0.66 between Γi

and Φ values after trimming 4 negative and near zero instances for which Φ is less than its standard
error (cf Plaxco et al. 2000). The Γi sequence position profile (Figure 5(B)) reveals considerable
fine structure. A ribbon diagram of Villin 14T, colored according to Γi value (Figure 6), with select
extreme Φ and Γi residues (3, 7, 43, 84: see Figure 5(A)) highlighted, showcases the positive associ-
ation. Similar to the toy example (Figure 1) we generally observe lower values Γi within helices and
strands, and higher values at loop inflections, consistent with zipping and assembly mechanisms
(Dill et al. 2008). However, it is important to recognize the highly presumptive nature of these
putative associations, in some part attributable to the considerable uncertainties in, and sparsity
of, measured Φ values.

Now, focusing exclusively on the protein backbone and disregarding side-chains, the folding process
that transforms a highly denatured random coil, even containing residual sequence-local structure
(Wang et al. 2007), can be coarsely viewed as a mapping T : R3 → R3 that is a contraction:
there is a real q, 0 ≤ q < 1 such that d(Tui, Tuj) ≤ q · d(ui, uj) for all residues i, j where d(·, ·)
is Euclidean distance, and ui gives the coordinates of the ith Cα atom. Then, from the Banach
fixed point theorem (Khamsi and Kirk 2001), we have that T has a unique fixed point u∗ such that
Tu∗ = u∗. Now, consequences of this result are moot since T is unknown, as are atomic coordinates
in the unfolded state. However, by mapping from R3 to Sn and invoking the Kτ -NN topology, we
can identify the residue closest to the fixed point as i∗ : Γi∗ = 0. So, applying this speculation
to 1LMB (green trace, Figure 4A) we can surmise that residue 38 (Γ minima) and neighbors
(in view of smoothness of Γ) are (relatively) fixed and, accordingly, are removed from nucleation
or initiation sites. Future possibilities include incorporation of such predictions into structure
prediction algorithms (Bonneau et al. 2002) as well as developing improved characterizations,
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Figure 5: Relationship between Φ and Γi values for Villin 14T (PDB ID 2VIK): A. Points for which
both Φ and Γi values are available (see text) are plotted using their sequence position. Correlation
= 0.66; B. Γi profile showing local structure the rug (blue) gives the sequence position for which
Φ values were available.

refinements, and applications of the newly proposed topology.
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Figure 6: Ribbon diagram colored according to Γi value (blue: low; red: high) and highlighting
extreme (Φ, Γi) sequence positions (3, 7, 43, 84: see Figure 5(A)).
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