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SUMMARY

In many clinical trials to evaluate treatment efficacy, it is believed that there may exist
latent treatment effectiveness lag times after which medical treatment procedure or chemi-
cal compound would be in full effect. In this article, semiparametric regression models are
proposed and studied to estimate the treatment effect accounting for such latent lag times.
The new models take advantage of the invariance property of the additive hazards model in
marginalizing over random effects, so parameters in the models are easy to be estimated and
interpreted, while the flexibility without specifying baseline hazard function is kept. Monte
Carlo simulation studies demonstrate the appropriateness of the proposed semiparametric
estimation procedure. Data collected in the actual randomized clinical trial, which evalu-
ates the effectiveness of biodegradable carmustine polymers for treatment of recurrent brain

tumors, are analyzed.

Some key words: Change Point; Clinical trials; Cure models; Mixture models; Random

effects; Semiparametric model; Survival data.



1 Introduction

In comparative randomised clinical trials, efficacy of a new treatment, e.g., a new drug or
medical procedure, is often assessed by comparing collected survival data. As expected, not
all proposed treatments are always taking effect as soon as their initiation. In fact, many
treatments are observed to have slow onset of action after their initiation, such as in Pérez
et al. (1997) to assess the efficacy of an antidepressant treatment. For such phenomenon
of slow onset of action, researchers often believe that there may exist a so-called treatment
effectiveness lag time before the treatment becomes fully effective (Wu, Fisher & DeMets,
1980; Gail, 1985; Lakatos, 1986; Zucker & Lakatos, 1990). A treatment effectiveness lag time
is the time for a biological subject to fully respond to medical procedures or compounds. It
is usually not observable, although certain biomarkers can be used to artificially define the
termination of treatment effectiveness lag time. If the treatment effectiveness lag times are
ignored, the assumptions of the widely-used proportional hazards model (Cox, 1972) with
constant proportionality are often inappropriate and hence not able to correctly accommo-
date the observation of slow onset of action, unless some ad hoc time-dependent structure is

included.

Although the existence of treatment effectiveness lag time was recognized, in most of
previous research in developing appropriate statistical methodologies, researchers used the
notion of a common fixed treatment effectiveness lag time for every individual or tried to
find ad hoc time-dependent lag functions for the proportional hazards model, for instance,
in Self et al. (1988) and Zucker & Lakatos (1990). But due to the heterogeneity among
the biological subjects, such as unobservable different genotypes, the treatment effectiveness
lag times could apparently vary individual-by-individual. In addition, since prior knowledge

about the lag is often rarely available, an accurate lag function is usually unknown and



difficult to be determined.

To account for the latent treatment effectiveness lag time and its heterogeneity among
individuals, an unobservable random variable, U, say, is introduced in this article to rep-
resent such lag time, which is treated as a random effect. In addition, since some of the
treatment effectiveness lag times are too long to allow the full onset of action, a mixture
cure model (Farewell, 1982; Gray & Tsiatis, 1989; Laska & Meisner, 1992) will be adapted
for U. Furthermore, to identify the subject-dependent proportion of long-term treatment
effectiveness lag times, appropriate regression models will be incorporated into the mixture

cure model.

One straightforward approach to estimate the treatment effect accounting for the latent
U is through the proportional hazards model. For a specific example, given a treatment
effectiveness lag time U = u > 0, the relative hazards ratio can be assumed as 1 before u
and 3 after u. This is in fact the simplest version of the proportional hazards model with
change point as random effect (Nguyen, Rogers & Walker, 1984; Basu, Gosh & Joshi, 1988).
Although it carries simple form and straightforward interpretation conditioning on the ran-
dom effect, its marginalized version over the random effect does not own clean multiplicative
form any longer. This leads to some serious consequences, such as “numerical and theoretical

difficulties” in inference procedures and “awkward interpretation” in parameters, as pointed

out in Lin & Ying (1997).

Instead of the multiplicative proportional hazards model, we will propose and study the
change point hazards models with additive random effects to determine the covariate effect.
The remainder of this article is organized as follows. In §2, we will present the mixture
model. The semiparametric inference procedures and its asymptotic properties are studied

in §3. Numerical studies are demonstrated in §4. Some concluding remarks and discussion



are in §5. Mathematical proofs are collected in Appendices.

2 The mixture model

Suppose that there are n independent participants in the study. For ¢ = 1,2,... n, the
failure time and censoring time for individual ¢ are T; and ()}, respectively; and U; is the
latent treatment effectiveness lag time, i.e., after which the treatment is fully effective. The

actual observed data consist of the triplets of (X;,A;, 7Z;). Here X; = min(7T;,C;) is the

survival time, and
1 T <

Ai=I(T; = Ci) = { 0 otherwise

is the censoring indicator, where [I(-) is the indicator function taking the value of 1 if the
condition is satisfied and 0 otherwise. Let superscript T denote the transpose of vector or
matrix and Z;(t) = (WX (t), RF(t))" be the p-vector covariate. In particular, to estimate
a treatment effect such as in a two-arm randomised clinical trial, W; can be the treatment
indicator being 1 if the participant is in the treatment group and 0 otherwise; and R;(t) is
the concomitant risk factors or confounding variables, for which the treatment effect needs

to be adjusted, such as demographic variables or social-economic status. In addition, we

assume that (7}, C;) are independent conditional on Z;.

2.1 Distribution of treatment effectiveness lag times

In practice, it is noticeable that there exists possibility with which a portion of population
may never respond to the treatment. For example, when the treatment dosage does not
meet the participant’s minimal threshold for response, the treatment may never be able to
take full effect. In this case, the treatment effectiveness lag is considered as “long-term.”

Or, when the treatment effectiveness lag time is relatively long enough to exceed certain



pre-determined time point ug, e.g., 6 weeks in antidepressant therapy trials (Pérez et al.,
1997), the treatment effectiveness lag time is also considered as “long-term”. Otherwise,
the treatment effectiveness lag time subject to early full treatment response is called “short-

term.”

Denote Y; the indicator of short-term treatment effectiveness lag time for the ith partic-

ipant, 1i.e.

Vi — 1 if ith treatment effectiveness lag time is short-term;
" | 0 ifith treatment effectiveness lag time is long-term.

Furthermore, let Fy(t;7) = 1 — Fy(t;7) be the conditional survival function for Y; = 1,7 =
1,2,...,n. Then the treatment effectiveness lag time U;’s survival function G;(t) = 1 —G;(¢)

Y

t €[0,00) is assumed of the cure mixture model (Farewell, 1992):

Gi(t) = Pr{Y;=1} x Pr{U; > t|Y; = 1} + Pr{Y; = 0}

= piko(t;mo) + (1 —pi) (1)

for i = 1,2,...,n, where p; € [0,1]. There are varieties of choices for F(¢;7), for example,

distributions of Exponential, Weibull and Gamma.

From model (1), it seems in form that G;(¢) is not a rigorously defined distribution
function in probability theory, whenever p; < 1. However, it implicitly carries the message
that a treatment effectiveness lag time can be long-term, or even infinite, which exactly
describes the possible scenarios discussed above. If necessary, to make (; more statistically
concrete, for example, an artificial truncation time, ug, say, can be chosen. Then the form
of G;(t) does not change when 0 < ¢ < ug but is 0 when ¢ > ug (Laska & Meisner, 1992;
Tamura, Faries & Feng, 2000). Nevertheless, whether or not choosing a truncation time
should not undermine the development of our proposed method in this article, as seen in the

later development.



In model (1), p; is the probability of the ith participant having short-term treatment
effectiveness lag time. The larger the magnitude of p;, the easier the treatment to be fully
effective within a reasonable time range. It can also be linked to the corresponding covari-
ate Z; through appropriate regression models. For example, the logistic regression models

(Farewell, 1992) can be used:

log % — a1 Z:(0). (2)

Other choices include probit, log-log and complementary log-log regression models (McCul-

lagh & Nelder, 1989, p. 108).

2.2 Additive hazards models with latent lag time

Denote A(-) as the hazard function for the failure time, 7. We first use the following model

to determine the covariate effect with the treatment effectiveness lag time:
MEZi(8), Uiz B0} = Xolt) + 79 Rilt) + 1(Us < )87 Wilt), (3)

where 0y = (34,74)" is p-vector parameter and \o(¢) an unknown baseline hazard function.
In model (3), conditional on the treatment effectiveness lag time U;, the hazard function
of Z:(t) is Ao(t) + vd Ri(t) before U; and Ao(t) + 74 Ri(t) + BLWi(t) after. Therefore, the
parameter [y characterizes the full effect of W;(t) after the treatment effectiveness lag time,

which is often of the most interest, e.g., when W;() is the treatment indicator.

Model (3) is a change point model which generalizes the notion of fixed treatment ef-
fectiveness lag time in Zucker & Lakatos (1990) by introducing heterogeneous treatment
effectiveness lag time U;’s. This reflects the truth that different individuals may have dif-
ferent paces and hence different treatment effectiveness lag times. Jointly, model (1) and
(3) determine both the probability with which the treatment effect is fully effective within a

reasonable time range and the magnitude of full treatment effect.
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Model (3) is also an additive hazards model with random effects. As argued in Breslow
& Day (1980, p. 53-59; 1987, p. 122-131) and Lin & Ying (1997, p. 188-189), an additive
hazards model is able to provide sound interpretation in clinical studies. And, more impor-
tantly, it yields a much simpler marginal model after the random effects are integrated. As

shown in Appendix 1, the marginalized model (3) is:
MUZi(t), 00} = Xo(t) + 7o Rilt) + Bo Wilt) Hilt; Bo, o). (4)

where

fi = B G s )

0

foT el Ja Wi(s)dsdG(u§ QbO) + G(t; qbo) 7

H;(t; Bo, po) = (5)
and ¢o = (70, o).

Assume that R;(t) and W;(?) are bounded. Furthermore, if there exists an i € {1,2,...,n}

such that Pr{U;, <T;,} > 0, then it is easily seen that when p =1,

1. 0 < H(t; Bo, do) < 1;
2. limy_o H(t; Bo, o) = 0, limyoe H(t; o, do) = 1;

3. H(t; Bo, ¢o) is non-decreasing.

Here, the additional assumption of Pr{U;, < T, } > 0 is an identifiablity condition to
secure the estimability of parameter 3, and the above properties. Otherwise, E[[(U; <
T;)B3Wi(t)] = 0 for any 7 and hence 3, is not estimable. This essentially requires that the
treatment effectiveness lag time is not always longer than the failure time for every individual

in study.

In fact, H(t; 3o, do) corresponds to the lag function the researchers have been looking

for. It is also of interest that H(t; 8y, ¢o) owns similar properties of cumulative distribution

function (CDF). When W (t) = 0, H(?) is exactly the distribution function of G, although
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its effect on the hazard function is nullified by zero W(t). In §4, we will demonstrate what

H(t; By, o) may appear to be by studying some special H(%; Fo, ¢o)’s.

In general, the identifiability can be critical for models with arbitrary random effects.
This usually does not impose serious challenges upon model (3), as seen in the following

theorem:

THEOREM 1. If W;(t) and the parameter space B are bounded, then model (3) is identifiable

if and only if ¢ in G is identifiable.

To prove the above theorem, it is sufficient to show that for two treatment effectiveness

lag time distribution functions of G; and (s, they are equal almost everywhere if
/ o= 00 1(ust) f, Wil s 1y (us o) = / o= 00 1(ust) f, Wil 4Gy (us o),
0 0

which is straighforward to be established under the assumed conditions.

3 Inference Procedures and Asymptotic Properties

In this section, we present a semiparametric estimation procedure by fully utilizing the

unaltered additive structure in model (3).

Let Ni(t) = I(X; < t,A; = 1) and Y;(¢t) = I(X; > t), 1 = 1,2,...,n. Consider the
filtration F; defined by
Define
t
Mi(5:0,6.0) = P(1:0.6) — [ Vis)irals)
0
where P;(t; 0, ¢) = Ni(t)—fg Yi(s){yT R (s)+BTW;(s) H;(s;0, ¢) }ds. Tt is true that M;(+; 0o, ¢o)
are local square integrable martingales of F;. Therefore similar to the partial score equations

8



for the proportional hazards model (Fleming & Harrington, 1991), the following estimating

equations can be used to estimate (g, ¢):
S [ QUst.6)3(10, 00506 0) = 0 (®
i=1 Y0

where Q(t; 6o, &) is a measurable weight function with respect to F;, which converges uni-
formly to a deterministic function of ¢(¢; 6o, ¢o), and J;(; 6, @) are smooth functions of same

dimension of (6, ¢), which are also predictable processes of ¢,1 =1,2... n.

Although the baseline hazard function is unknown in (6), a reasonable estimator of Ag(?)

of Breslow-type, nevertheless, is

Ao(t;0,¢) = / {des;e,qﬁ)} {Zm@)} (7)

as in Lin and Ying (1994). Thus we can use the following equations to estimate the param-

eters of interest:

> [ Q001000 0,000 =0, 0
where Mi(t; 0,90, Ao) = Pi(t;0,0) — ngi(s)d/A\o(s; 0,0).

Denote the left-hand side of equation (6) as I'(f, ¢). Some algebraic manipulation shows
that ['(0, @) is equal to

00.00= Y [ Q0.0 11:0.6) - Tt:0. 10,0 )

where J(t;0,0) = {> i, Yi(t)Ji(t; 0, 0) H{ D, Yi(t)}

To study the asymptotic properties of solutions by solving I'(#,¢) = 0, we first assume

the following regularity conditions:

1. There exists a time ¢g > 0 such that lim,,— E?:l Yi(to) > 0;



2. There exists an integrable function v(¢) such that, for any ¢ € [0, 1],

‘IZY ()it 00, do) — J(t: 00, 60) Y2 Au(t]Z) — w(t) 5 0.

where a®° = 1, ¢®' = ¢ and a®? = aa”;

3. For any € > 0 such that

—IZ/ M (t|Z;)
< || Ti(t; o, b0) — J(t; 00, G0) |2 T{n | Ji(t; O, o) — J(1: 00, d0)||* > €hds =5 0,

where || - || defines the Euclidean norm.

Consider the process I'(t;0,¢) = > ", fo 0,0){J:(5;0,0) — J(s;0,0)}dPi(s;0, ). Tt is

also true that I'(¢; 6y, o) is an Fi-martingale.

LEMMA 2. With regularity conditions 1-3, n='/?T(t; 0y, ¢o) converges weakly in D[0, 1]
to a zero-mean Gaussian process with independent increments and the variance function

V(t; 0o, o) = fo s)ds, which is

nmn—lg / Q55 00, o) Vi) (15 00, d0) — T (1500, o) o2 Ni(1] 2 ) s

n—0oo

PROOF. See Appendiz 2.1.

Define the solution of I'(#,¢) = 0 as ((9 qb) The following theorem establishes the asymp-

A~

totic properties for (é, ?).

THEOREM 3. Suppose that there exvists non-singular D(8o, ¢o) such that

L 0T (00, ) 00T
Dl o) = Jirg, =n ( O (01, 60) /06" ) '

With the regularity conditions 1-3, if all the partial derivatives are bounded and continuous

in a neighbourhood of (0o, ¢o), then (é,qAb) is uniquely defined and

n1/2 ( Z:i(; ) - N{Ov D_l((gOv¢0)V(007¢0)D_1((907¢0)T}7 (10)

10



where V (0o, po) = V (to; 0o, do).

PROOF. See Appendiz 2.2.

In practice, to make inference about the estimates of parameters, it is natural to use the

empirical estimates of its asymptotic variance-covariance matrix by its consistent estimator

AAAAAA

D7(0,0)V(0,6)D71(0, )", where

D0.6) = -IZ / QUt.0, 8D {Ji(1:0,68) — T(1:0, &) AT Ri(t) + BTWi(t) Hi(1: 0, 6) Y s

V(0,4 = —12/ Q(1,0,6){Ji(t:0,0) — J(1;0, ) Y22dN ().

Furthermore, replacing the parameters of (6, ¢) with (é, qAb) in (7) leads to a natural estima-
tor of the cumulative baseline hazard function. As shown in Appendix 2.3, nl/z{f\o(t; é, qAb) —
Ao(1)} converges weakly to a zero-mean Gaussian process with covariance function of ¥(t1,t5),

which is the limit of
/min(tl,tg) n EnZI dNZ(t)
0 Yoy Yi(l) Yol Ya(t)
+ KlT(tz)D‘IV(D‘I)TAI( ) = KN (t)DTVK (1) — K () D7 K (t,).

where

Ko(t:00,60) = /

=1

Z (s){70 Bils) + Bo Wils) Hi(s: 00, o) } ]{ZYz } ds,

n

/\

(s){70 Ri(s) + By Wi(s) Hi(s; 0o, p0) } Jil.s; 907%)] {Z Yz’(S)}

=1

Ka(t:00,60) = /

=1

z”: (s){70 Ri(s) + Bg Wils) Hi(s: 00, 60)} ] {ZY (s; 907%)})

=1

gt }_2

Although the proposed estimating equations can be viewed as parallel to the partial

Mz

score equations for the proportional hazards model, they are still ad hoc. However, by the
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techniques in Lai & Ying (1992) and Lin & Ying (1994), we can compute the semiparametric

efficiency bound for the family of parametric submodels as
MHUZ(1)} = dol(t) + 7" R(t) + BTW () H(t: 8, 0) + (1),

where v, 3, ¢ and ) are parameters and n(-) is a fixed function. As a result, the optimal

estimating function for g is computed as:

Lope (0 Z/ oD+ R(O)+B Wi Hi(l; 8,6)} I (40, 0) =T (10,6, Xo) YA Pi(1; 6, ),

where
Ri(t)
Ji(t:0,0) = | Wilt)Hi(t) + BTWi(t) Hi(t; 8, 6) ]
BIWi(t) H(t; 8, ¢)
and

_ X Y0 Dolt) 9" Rt + B W1 (1 5. 0} (1:0.0)
YO (t) FATR() 4+ BTWI(E) Hi(t; 8, 9) 1 :

However it is difficult to use 'y, in practice, because the estimating functions themselves

involve the baseline hazard function. Although adaptive procedures using special techniques
such as sample-splitting in Lin & Ying (1994) are available, the estimation of Ay always

imposes an imminent challenge, especially when sample size is small.

To practically implement the optimal estimating functions, similar versions can be used

instead for convenience. For example, one choice suggested in Lin & Ying (1994, 1995) is to

use Iope without including {Ao(t) + T Ri(t) + BTWi(t) Hi(t; 3, 4)} 7, ie

=3 [ 0.6~ (0.0, 0)dP(1:0.9), (11)

where

JH(150,6,h) = 21 “{/(f)e@

Apparently, when the ignored term does not vary much from a constant, then I'* should not

lose much efficiency.
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4 Numerical Studies

4.1 Examples of Lag Function H (t; 3y, ¢¢)

As proposed in section 2.1, the distribution of GG is a mixture cure distribution. In this

section, we select some special (G’s to demonstrate their corresponding lag functions.

As seen in the definition of G, Fy(t) is in fact the conditional probability that the treat-
ment effectiveness lag time occurs after time ¢ for short-term treatment effectiveness lag

times. One simple example is that let Fy(¢) be Exponential with survival function of:
Fo(t;mo) = e ™ I(t > 0).
Furthermore, let W (t) be constant Wy. Then

H(t; Bo, ¢o) = 7ﬁ;—%};50f)7_0(6_70t — e~ PoWot)

Top(ao)

Foe— (€ = e 4 plag)e™ +{L = plao)}| - (12)

as seen in Appendix 3.

In addition, if a truncation time is preferable, the truncated survival distribution of
Exponential can be used (Gray & Tsiatis, 1989; Laska & Meisner, 1992). That is, we choose
the truncated exponential distribution of form

—Tot _ —ToUQ

€ €

1 — e~mouo

Then

Top(a) e~ ot _ ¢=PoWot
H(t; Bo, ¢0) N BoWo — 1o ( 1 — e~7ouo

| pta) (S e () + 41 - plan] B

BoWo — 1o 1 — e~Touo 1 — e~Tou0

13



when 0 <t < ug and 1 otherwise. Apparently, when ug goes to oo, H(%; (o, ) has limit as
in (12).

In addition, let W;(t) = 1, By = 1 and 7o = 1.01, 1.5, 2.0. Fig. 1 displays the lag functions
when wg = oo. As shown in Figure 1, since there is no truncation time for the treatment
effectiveness lag times, the final lag functions are smooth. When p(ag) = 1, i.e, 100% short-
term treatment effectiveness lag times, then marginally, the treatment will eventually reaches
the full effect in long run. But if there is any proportion of long-term treatment effectiveness
lag times, then the full effect is not reachable, but instead, the treatment effect is washed

out in long run, although it may have some effect for early period of time.

[Figure 1. about here]

Figure 2 displays the lag functions when ug = 5. Since almost all the treatment effective-
ness lag times are assumed to happen before wug, it is not surprising to see similar patterns as
in Fig. 1 before ug. In practice, since ug often serves as the termination of data collection,
we should not be able to observe anything informative after ug. But as a demonstration, we
still show the possible picture from simulation in Fig. 2 after ug. As shown in Fig. 2, the

treatment will eventually reaches its full effect if no lag time exists.

[Figure 2. about here]

Nevertheless, as seen in both Figures 1 and 2, when 7 is bigger, the treatment effective-
ness lag time becomes shorter, and then the mode of H tends to be reached earlier, which

means the ultimate treatment effect is reached faster.

More examples of lag functions obtained from Weibull and Gamma distributions can be

found in Appendix 3. In addition, the derivatives of H with respect to different parameters

14



are given as well.

4.2 Simulation Studies

Simulation studies have been conducted to study the performance of estimation procedure
proposed in Section 3. Two covariates are generated, R, which is continuous, following the
uniform distribution on [0,1], and W, which is 0 or 1 with equal probability of 1/2, mimicking
a treatment indicator. The baseline hazards function is chosen to be a Weibull distribution.
Lag times are generated according to mixture distribution in (1) with Fy to be exponential
and p(ap) to be constant. Then Failure times are generated according to model (3), with
(70, B0) = (0,0), (0,1) and (1,0). Independent censoring times are generated from exponential
distribution with different means to yield two censoring percentages of approximately 25%
and 50%. Sample sizes are of 100 and 200. Estimating functions in (11) will be used for

parameter estimation.

Simulation results are listed in Table 1. For each entry in the table, one thousand repli-
cates are simulated to compute the bias and empirical coverage probability. Here, bias is
defined as the difference between the sample mean of the estimates over the 1,000 simu-
lated data sets and its respective true value; and 95% emipirical coverage probability is the
percentage of Wald-type 95% confidence intervals that include the true parameters. It is
evident that the estimators are virtually unbiased and the nominal confidence intervals for

the parameters have reasonable coverage probabilities.

[Table 1. about here]
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4.3 Real Data Examples

The data to be analyzed are collected from a randomised placebo-controlled trial of the ef-
fectiveness of biodegradable carmustine polymers for treatment of recurrent brain malignant
gliomas (Brem et al. 1995). After the recurrent brain tumor was removed, a medicated or
placebo polymer was placed to fill in the cavity. To reach a higher local drug concentration,
the medicated polymers were supposed to gradually release carmustine over a 2 to 3 week pe-
riod following the placement, because it would be more effective than systematic application
(Tamargo et al., 1993; Brem et al., 1995). In 27 medical centers of this trial, 222 patients
were randomized to either the carmustine polymer treatment group (110 patients) or the
placebo polymer group (112 patients). Their survival times measured in weeks, treatment
assignment and prognostic factors can be found in Piantadosi (1997, p. 496-509). Some

exploratory analysis results can be found in Brem et al. (1995) and Chen & Wang (2000).

In addition to the treatment indicator (W), another prognostic covariate of age (R)
is also considered for analysis. Results from the proportional hazards model A(t|7) =
Ao(t) exp(B7), the additive hazards model A(t|Z) = Xo(t) + 87 and the proposed model
(3) that assumes the exponential Fy and logistic model for response proportions, are listed
in Table 2. As shown in the table, after adjusting for age, although the treatment effect
does not appear significant in either the proportional hazards model or the additive hazards
model, it is significant if the treatment effectiveness lag time is taken into account. That
is, given the presence of the lag time, the treatment will significantly decrease the hazard
of placebo group by 0.014, adjusting for age. The estimated average treatment effectiveness
lag time is about 2.502 weeks for those who have short-term lag times. Its confidence in-
terval does not contain 0, which implies the significant presence of such lag times. In fact,

as shown in Figure 1 of Chen & Wang (2000), the two groups are almost indistinguishable
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till the 7th or 8th week, if the effect of age is ignored, which also graphically suggests the
potential existence of such lag time. Furthermore, because of the non-significant «’s, the pro-
portions of the short-term responders seem not varying according to treatment assignment

or participant’s age.

[Table 2. about here]

5 Remarks

A more general mixture model for the treatment effectiveness lag time is

G(t) = pFi(t) + (1 = p)Fa(1), (13)

where F(t) is the survival function for p proportion of treatment effectiveness lag times and
Fy(t) is the survival function for the remaining proportion, 1 — p. To see this, let Fy(t) = 1,
then model (13) becomes the cure mixture model. Furthermore, if the hazard function of F}
is monotonically increasing, we should expect the hazard function of treatment effectiveness
lag time to be initially increasing but decreasing later, as the p proportion of short-term
treatment effectiveness lag times dropping out of the risk set with relatively more long-term

treatment effectiveness lag times left.

In the potential presence of treatment effectiveness lag time, the so-called “intention-
to-treat” principle (Sheiner & Rubin, 1995) may be arguable to be used to estimate the
full treatment effect. For example, if W (¢) is a binary treatment indicator taking the value
of 0 or 1 as assumed in model (3), then given the treatment effectiveness lag time U, the
treatment will not be fully effective before U, i.e., it is still a true “control” before U.
Therefore marginally, he or she should be equivalently counted as a member of treatment

with probability of H(t; (o, o) exactly, although the participant is physically assigned to the
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treatment group. As shown in Fig. 1, when ¢q increases as in the Exponential distribution,
i.e., the treatment effectiveness lag time tends to be shorter, the treatment reaches its full

effect quicker.

In Model (3), the most critical part is the random effects are additive to possibly gain
benefit in designing simple inference procedures. It is less critical whether or not the fixed
effect of R;(1) to be additive or multiplicative. Thus another class of change point hazards

models with additive random effects is:
Mt Zi(1), Ui 0} = Ao(£)e B0 4 [(U; < )3T Wi(1). (14)

In contrast to the general additive-multiplicative hazards model in Lin & Ying (1995), it is
not to difficult to find that model (14) is a parallel model but with random effects included
in the additive component. Nevertheless, the marginalized model (14) should have same H;’s
as in (4). It is then straightforward to extend all the inference procedures and asymptotic

results to model (14).

Although the model proposed in this article has certain prominent advantages, there are
some critical issues in actually implementing this model. The first issue is inherited from the
additive hazards model. That is, the parameter space is restricted by the magnitude of the
baseline hazard function in order to obtain reasonable parameter estimates. One solution is to
replace 37 with exp(37), but then the interpretation of 3 becomes cumbersome. The second
issue is inherited from the cure mixture model, which is the potential identifiability problem
with the parameters in the regression model of response proportions and the parameters in
Fo. As pointed out by Farewell (1998, p. 1051-2), the estimates of these parameters here
also tend to have high correlation because of possible over-parametrisation of the lag times.
This issue would be less critical if there is strong pathological evidence to support the notion

of existence of two heterogeneous population. Otherwise, only modelling £y but ignoring p’s
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is good enough to detect the potential existence of the lag time, estimate its average and

derive a good lag function in practice.
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APPENDIX 1

Marginalization of Model (3)

According to model (3), we know that
A(HZ:(1). Us ) = / [hals) + 90 Rals) + 1(Us < )3T Wils) s
— +/ Yo Ri(s ds—l—/t[(Uigs)ﬁoTWi(s)ds
0
— -|-/sz ds+1U<t/ﬁoTW)s

and

S(tZ;(t), Us; o) = exp {—Ao(t) — /Ot Yo Ri(s)ds — 1(U; < 1) /Ut ﬁgm(s)ds} :

Therefore the marginal survival function is then

S(t]Zi(t); 0o, do)
¢—Ao()=7 J§ Ri(s)ds / A I [ Wil)ds 4G (us ¢y ).
0

The marginal hazard function is

d
At Zi(t); 00, ¢o) = —ElogS(ﬂZi(t);@O’qbo)
d o0 .
= Ao(t) + ’YoTRi( ) — 7 log/ e~ P 1(u<t) [, Wl(S)dsdg(u; o)
0

4 [ e—P3 1ust) f} Wil)ds (3 (w3 o )
fooo —BTI(u<t) [ Wi(s) sdsdG( : o)
By Wi(s) Jy € b M dGius o)

= do(t) +70 Rilt) -

= Xo(t) + 70 Rilt) +

Jo € IWDEGC u; do) + 1 — Gt o)
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APPENDIX 2

Asymptotics

2.1 Weak convergence of n="/?I'(1; 0y, ¢)
Since n_l/zF(t; fo, o) is an Fymartingale process, with the regularity conditions of
1-3, it is true that the condition (2.5.1) and (2.5.3) of Andersen et al. (1993, p. 83) are
satisfied. Hence the weak convergence of n='/2I(t; 0y, ¢o) is implied for any ¢ € [0, o).

In fact, more delicate arguments can be used as in Ying (1993) to extend ¢y to oo.

2.2 Asymptotics of nl/z(éT — by, qu — )"

It is not difficult to see that

_1 [ O(to; 6o, ¢o)/ Do
"\ 9T (t; 0o, 60) /Dcho

=ty / (D113 0. ) — (13 0. o) HAL Ru(s) + BEWi(3) Hi(s: 05, ) Vi

—nt Z/o {Jilt; 0o, do) — J*(t; 00, ¢0) Y dPi(t; 0o, bo)-

The second term on the right-hand side in the above equation is an average of mar-
tingale integrals, therefore it converges in probability to zero. With the conditions in
Theorem 3, it is true that the first term converges to A. Therefore, —nl"(tg; 6o, o) R
D. In fact, following similar arguments in Lin & Ying (1995), it is also true that
(éT, qAbT)T — (0, 63T consistently. Furthermore, by the Taylor expansion of I'(¢y; 0, qAb)

at (0o, ¢o), we know

0 =0 = -1 aF(tO;H*,gb*)/a@T - —1/2 .
<¢ o )= 1ot (orleaiios )| et i)

Therefore the asymptotic normality of estimators are established. A straightforward

variance calculation would lead to the results in Theorem 3.
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2.3 Asymptotics of nl/z{f\o(t; 0, qAb) —No(t)}
By the decomposition technique outlined in Fleming & Harrington (pp. 300, 1991),

we have

n!2{Ao(t;0,0) — Aol(t; 0o, d0) } +n'*{Ao(t; 0o, do) — Ag(t)} +n'{AG() — Ao(1)},
I 11 11T

(A1)
where Aj(t) = fot I Yi(s) > 0FAo(s)ds.

Through the Taylor expansion and results in Theorem 2.2 in Lin & Ying (1995), term

(1) is
lim K (t)D™'n™?T(to; 0o, o) + 0,(1),

n— 0o
uniformly for ¢ € [0,1y]. In addition, term (II) is 0,(1) by the Lenglart inequality (An-
dersen, et al., 1993). It is also straightforward to see that term (III) is asymptotically
ignorable. Therefore, by the multivariate martingale central limit theorem, then the

asymptotic results of A is established. The variance calculation is straightforward.
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3.1 Ezponential lag time: f(t) = o€~

H

/
Hﬁo

H/

70

APPENDIX 3

Examples of lag functions

Tot

(L - B (e ) g 1 )
(oWop(ao) [(1 — 7ot + BoWot) {(1 = p(ag)) e™"o 4 p(ag)e oMo}

— (L4 plag)e™" — p(an)) e7™'])

s {rop(ag)e ™™t — plag)e™™ BeWo — BoWo + plao)BeWo + 7o — Top(ao) }

plao) [{(1 = plao)) (72t — ToBoWot + BoWo) + plao)BoWoe ™!} ™!
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(BoWo — 7o) (7" — =50Vt £,
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3.2 Weibull lag time: f(t) = 7-17807-201}720—1@—(71075)”0
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1
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— 702 —
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3.3 Gamma lag time: f(t) = T~ (702) 7g02t ™02~ e~ 01!

— B W, t
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I' (7'02) 0
T —BoWot 1 1
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I (7'02) 0 0
To2—1 —BoWot t t
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Figure 1: Lag function of H(¢; B, ¢o) without truncation time
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Figure 2: Lag function of H(¢; B, ¢o) with truncation time
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