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Attributable Risk Function in the

Proportional Hazards Model

Abstract

As an epidemiological parameter, the population attributable fraction is an
important measure to quantify the public health attributable risk of an exposure
to morbidity and mortality. In this article, we extend this parameter to the
attributable fraction function in survival analysis of time-to-event outcomes,
and further establish its estimation and inference procedures based on the widely
used proportional hazards models. Numerical examples and simulations studies
are presented to validate and demonstrate the proposed methods.
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1 Introduction

Time-to-event outcomes have been collected in many epidemiological cohort studies as end-

points, e.g., in risk assessment of hazardous exposures on disease incidences. The association

between the time-to-event outcomes and the exposures is usually measured by relative risk.

It is often quantified by the incidence ratio of events between those exposed and unexposed.

For instance, in the widely used proportional hazards model (Cox, 1972),

λ(t | Z) = λ0(t) exp(βTZ), (1)

the regression parameter β ∈ B is the hazards ratio in log-scale and thus quantifies the

relative risk, when the covariate Z ∈ Z is the exposure indicator. Here, λ(· | Z) is the

hazard function for Z and λ0(·) is the baseline hazard function, respectively.

As pointed in Greenland (2001), however, there is also substantial public health interest

in the disease risk attributable to the exposure for a given population. The quantity to

measure such attribution is often referred as the population attributable fraction. Let D be

the binary disease indicator. When Z takes value of 0 or 1, the attributable fraction (Levin,

1953) is usually defined as

ϕ =
pr{D = 1} − pr{D = 1 | Z = 0}

pr{D = 1} . (2)

As noted in Greenland & Robins (1988), the attributable fraction ϕ may differ in the person-

time analysis and the proportion analysis, unless the disease is rare. However, much of the

previous methodology development involving the attributable faction has been focused on

its estimation and inference when the disease is binary under the logistic regression models.

In this article, we consider an extended attributable fraction function of ϕ(t) in the

situation when the outcome of interest is continuous time-to-event and subject to potential

censoring. A simple estimator is proposed and studied with the proportional hazards model.

Simulation studies are conducted to evaluate its validity and performance. The proposed

methods are applied to a dataset of multicenter AIDS cohort study for demonstration.
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2 Attributable Fraction Function

Let T be the nonnegative random variable of the time-to-event. A straightforward extension

of ϕ for T is, for some t > 0,

ϕ̃(t) =
pr{T ≤ t} − pr{T ≤ t | Z = 0}

pr{T ≤ t} =
F (t)− F (t | Z = 0)

F (t)
,

where F (·) is the cumulative distribution function of T . That is, the attributable fraction of

disease risk due to an exposure can be time-dependent. When t is the end of follow-up period

for a cohort study, τ , say, ϕ̃(τ ) is the attributable fraction in (2). For rare diseases, when

F (·) are usually approximated by their respective cumulative hazard functions of Λ(·), ϕ̃(t)

can be also expressed in {Λ(t)−Λ(t | Z = 0)}/Λ(t). Within an infinitesimal neighbourhood

of t, a reasonable measure of the attributable fraction function for T is thus

ϕ(t) =
λ(t) − λ(t | Z = 0)

λ(t)
. (3)

An equivalent measure of ϕ(t) is ϕ̄(t) = t−1
∫

t

0
ϕ(u)du. It is called the average attributable

fraction function. In particular, ϕ̄ = ϕ̄(τ ) can be a useful summary measure of ϕ(·). When

the reference population is a subset, Z0 ⊂ Z, a general form of ϕ(t) is

ϕ(t | Z0) =
λ(t) − λ(t | Z0)

λ(t)
.

As shown in the rest of this article, however, the estimation and inference procedures estab-

lished for ϕ(t) can be mostly generalised to ϕ(t | Z0) as well. We would thus focus on ϕ(t)

for simpler demonstration.

The range of ϕ(·) is (−∞, 1]. Under the proportional hazards model (1), ϕ(t) ≥ 0 for

all t ≥ 0 if and only if β ≥ 0. In addition, since λ(t | Z = 0) = λ0(t) in (1), ϕ(t) =

{λ(t) − λ0(t)}/λ(t) = 1 − λ0(t)/λ(t). Note that here λ(t) is the hazard function of the

marginal distribution F (t), by ignoring the heterogeneity among the subjects in the given

population. It usually does not equal
∫
Z
λ(t | z)dFZ(z), where FZ(·) is the distribution

3
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function of Z. However, by the Bayes Theorem, we have

λ0(t)F̄ (t) =

∫

Z

F̄ (t | z)λ0(t)dFZ(z) =

∫

Z

F̄ (t | z)λ(t | z) exp(−βTz)dFZ(z)

=

∫

Z

f(t | z) exp(−βTz)dFZ(z) =

∫

Z

fZ | T (z | t)f(t)

fZ(z)
exp(−βTz)dFZ(z)

= f(t)

∫

Z

exp(−βTz)dFZ | T (z | t),

where F̄ = 1−F , f = F ′, and FZ | T (z | t) is the conditional distribution function of Z given

T = t, respectively. As a result,

ϕ(t) = 1 −
∫

Z

exp(−βTz)dFZ | T (z | t). (4)

3 Estimation and Inferences

Suppose that there are n subjects assembled in an epidemiological cohort study. The ob-

served outcomes consist of n iid copies of (Xi,∆i, Zi), i = 1, 2, . . . , n, where Xi = min(Ti, Ci)

and ∆i = I(Ti ≤ Ci), respectively. Here Ci is the potential censoring time. Denote

the at-risk indicator Yi(t) = I(Xi ≥ t). Let s(t) = limn S(t) = limn n
−1

∑
j Yj(t) and

sk(t;β) = limn Sk(t;β) = limn n
−1

∑
j Yj(t) exp(βTZj)Z

⊗k

j , k = 0, 1, 2, respectively. Assume

that β∗ is the true value of β in the semiparametric proportional hazards model (1), in which

λ0(·) is unspecified. The maximum partial likelihood estimator, β̂, can be then obtained by

solving the partial score equations

n∑

i=1

∫ τ

0

{
Zi − Z̄(t;β)

}
dNi(t) = 0,

where Z̄(t;β) = S1(t;β)/S0(t;β) and Ni(t) = I(Xi ≤ t,∆i = 1), respectively. Let Σ(β∗) =

n−1
∑

i

∫
τ

0
{Zi − Z̄(t;β∗)}⊗2Yi(u) exp(βT

∗Zi)λ0(u)du. Standard martingale theory of counting

processes in Andersen & Gill (1982) shows that β̂ is consistent and n1/2(β̂ − β∗) is asymp-

totically equivalent to

Σ−1(β∗) · n−1/2

n∑

i=1

∫ τ

0

{
Zi − Z̄(t;β∗)

}
dMi(t), (5)

4
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where {Mi(t) = Ni(t) −
∫

t

0
Yi(u) exp(βT

∗Zi)λ0(u)du; i = 1, 2, . . . , n} are martingales with

respect to the filtration of Ft = σ{Ni(u), Yi(u), Zi, u ≤ t; i = 1, 2, . . . , n}.

Denote pi(t;β) = Yi(t) exp(βTZi)/S0(t;β). As derived in Xu & O’Quigley (2000), when

C is independent of T and Z, pi’s are the conditional probabilities of the subjects observed

to fail at t given that one of the at-risk subjects would fail at the same time. Therefore, the

conditional distribution function of Z given T = t, FZ | T (z | t), can be consistently estimated

by

F̂Z | T (z | t) =
n∑

i=1

I(Zi ≤ z)pi(t; β̂).

A simple estimator of the attributable fraction function in (4) is thus

ϕ̂(t; β̂) = 1 −
∫

Z

exp(−β̂Tz)dF̂Z | T (z | t) = 1 − S(t)

S0(t; β̂)
.

The following theorem gives the asymptotic properties of this estimator:

Theorem 1. Under the regularity conditions 1-4 specified in the appendix, ϕ̂(t; β̂) is uniformly

consistent for ϕ(t) for t ∈ [0, τ ], i.e.,

sup
t∈[0,τ ]

∣∣∣ϕ̂(t; β̂) − ϕ(t)
∣∣∣ →p 0.

Furthermore, n1/2{ϕ̂(t; β̂) − ϕ(t)} converges weakly to a zero-mean Gaussian process. Its

covariance function of σϕ(s, t), s, t ∈ (0, τ ), can be consistently estimated by σ̂ϕ(s, t) =

n−1
∑

i v̂i(s)v̂i(t), where v̂i(t) is

S(t) exp(β̂TZi)Yi(t)

S0(t, β̂)2
− Yi(t)

S0(t, β̂)
+
S(t)S1(t, β̂)TΣ̂−1(β̂)

S0(t, β̂)2

∫ τ

0

{
Zi − Z̄(u, β̂)

}
dM̂i(u),

and M̂i(t) = Ni(t) −
∫

t

0
Yi(t) exp(β̂TZi)dΛ̂(t), respectively.

As a result, the variance of n1/2{ϕ̂(t, β̂) − ϕ(t)} is approximately σ̂2
ϕ
(t; β̂) = n−1

∑n
i=1 v̂i(t)

2,

and the pointwise 100(1 − α)% confidence intervals for ϕ̂(t) can be constructed as ϕ̂(t) ∓

z1 − α/2n
−1/2σ̂ϕ(t; β̂), where z1 − α/2 is the 100(1 − α/2)th percentile of the standard normal

distribution.

5
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In addition to the pointwise confidence intervals, it is as well of practical interest to

consider simultaneous 100(1 − α)th percentile confidence bands, ϕl(·) and ϕu(·), say, such

that

pr{ϕl(t) ≤ ϕ(t) ≤ ϕu(t), 0 ≤ t ≤ τ} = 1 − α.

Due to the fact that there is no independent increment structure in the limiting process of

n1/2{ϕ̂(·; β̂) − ϕ(·)}, it is not straightforward to be transformed into the standard Brownian

bridge in direct confidence bands calculation. To find appropriate confidence bands, however,

the simulation approach in Lin, Fleming & Wei (1994) can be adapted for relatively easy

implementation. Specifically, consider n iid standard normal deviates {εi, i = 1, 2, . . . , n} in

ψ̂(t; β̂) =
S(t)

S0(β∗, t)2

{
1

n

n∑

i=1

Yi(t) exp(β̂TZi)εi

}
− 1

S0(β̂, t)

{
1

n

n∑

i=1

Yi(t)εi

}

+
S(t)S1(β̂, t)

TΣ̂−1(β̂)

S0(β̂, t)2

[
1

n

n∑

i=1

∫ τ

0

{
Zi − Z̄(t; β̂)

}
εidNi(t)

]
.

For any set of finite number of time points (t1, t2, . . . , tm), 0 ≤ t1, . . . , tm ≤ τ , the conditional

limiting distribution of (ψ̂(t1; β̂), ψ̂(t2; β̂), . . . , ψ̂(tm; β̂))T given the observed {(Xi,∆i, Zi)} is

the same as the unconditional distribution of (ψ(t1;β∗), ψ(t2;β∗), . . . , ψ(tm;β∗))
T. As a result,

n1/2ψ̂(·; β̂) and n1/2{ϕ̂(·; β̂) − ϕ(·)} have the same limiting distribution by the tightness of

ψ̂(t; β̂). Therefore, 100(1−α)th percentile simultaneous confidence bands can be constructed

as ϕ̂(t; β̂) ∓ z̃1 − α/2n
−1/2σ̂ϕ(t; β̂), where z̃1 − α/2 is computed such that

pr

{
sup

t∈[0,τ ]

n1/2|ψ̂(t; β̂)|
σ̂ϕ(t; β̂)

≤ z̃1 − α/2

}
≈ 1 − α.

4 Numerical Studies and Examples

To gain some concrete sense of the proposed attributable fraction functions of ϕ̃(·) and ϕ(·)

in §2, we assume that the proportional hazards model (1) holds for the exponential baseline

hazard functions of 1 and 0.01, respectively. Let β = log 2 for the exposed Z = 1 against

the unexposed Z = 0. Three proportions of exposure are considered: 25%, 50% and 75%,

6
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respectively. As shown in Figure (1), the attributable fraction function defined by either

ϕ̃(·) or ϕ(·) is not necessarily constant over time, even when the baseline hazard function

themselves are constant. When the baseline hazard function is larger, the attribution fraction

functions change more rapidly over time. They change less when otherwise. That is, when

the disease is less (more) frequent among the unexposed subjects, the disease risk attributable

to the exposure tend to change less (more) rapidly over time. In addition, by comparing

ϕ(·) with ϕ̃(·), we find that ϕ(·) better approximates ϕ̃(·) for the less frequent disease and

the smaller proportion of exposure.

[Figure (1) about here]

Simulations are conducted to evaluate the validity and performance of the proposed esti-

mator of ϕ(·) in §3. In addition to assuming that the baseline hazard functions are constant

of 0.01 and 1.00, respectively, time-to-events are generated according to the proportional

hazards model (1) with β = 0 and log 2, respectively. Sample sizes are selected to be 200

and 500, respectively. Each subject’s binary exposure indicator is generated according to

the Bernoulli trial with the exposure probability of 25% and 50%, respectively. Censoring

times are generated to yield about 30% and 10% of censored observations. The estimators

and their associated variances are calculated at the 75%-tile and median of the marginal

survival distribution, t1 and t2, respectively. Simulation results are listed in Table (1). For

each entry in the table, 1000 simulated data sets are generated to calculate the bias and

95% nominal coverage probability. Here the bias is the difference between the average of the

1000 estimates and the true attributable fraction, and the 95% nominal coverage probability

is the percentage of 1000 95% confidence intervals containing the true attributable fraction.

As shown in the table, the proposed estimators are virtually unbiased and their confidence

intervals maintain the desired coverage probabilities. In addition, the sample standard errors

of each 1000 ϕ̂(t) and the average of 1000 σ̂ϕ(t) are calculated, respectively. It is shown that

they are close to each other, which suggest the accuracy of variance calculation in Theorem

1. Given the plethora of statistical literature on simulated confidence bands approaches, we

7
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skip their simulation and demonstration in this article.

[Table (1) about here]

We demonstrate the developed methods with a publically released dataset of the Multi-

center AIDS Cohort Study. This is an ongoing prospective study of the natural and treatment

histories of HIV-1 infection in homosexual and bisexual men in four U.S. cities of Baltimore,

Chicago, Pittsburgh and Los Angeles since 1984 (Kaslow, et al., 1987). For the demon-

stration purpose, we use a subset of 3341 subjects of the original cohort who were HIV-1

infection free at the initial enrollment. Among these subjects, a total of 508 seroconversions

are reported in the dataset through 1999. Two risk factors are considered for the attributable

risk calculation for this cohort: ever having sex with AIDS partner (Z1 = 1) and ever having

anal receptive sex (Z2 = 1). Some summary statistics and the estimates of the hazards

ratio are listed in Table (2). For the risk factor Z1, the HIV infection incidence rate ratio is

17.8%/11.5%=1.54, which is consistent with the proportional hazards model estimate of β̂

of exp(0.470) = 1.599. That means, the relative risk for HIV infection is about 1.5-1.6 times

for those ever having sex with AIDS partners of those without. The finding is similar for the

risk factor Z2. As far as the attributable risks are concerned, the risk factor Z1 attributes

about 24.1% and Z2 attributes about 18.6% to the overall risk, respectively. If either activity

is involved, then it attributes about 37.2% to the overall risk. Their estimated attributable

fraction functions are also plotted in Figure 2, respectively. For this particular dataset, the

model-based ϕ̂(·) for the times-to-HIV infection tend to be uniformly larger than that of

the crude ϕ̂ for the binary HIV infection outcomes. It is also interesting to see that the

attributable fraction functions of ϕ(·) are not much varying over time, although they appear

monotonically decreasing. In the future work, rigorous statistical procedures need to be

developed for testing the constancy.

[Table (2) and Figure (2) about here]

8
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5 Discussion

When the outcomes of interest are binary, i.e., the actual times of their occurrence are

ignored, the logistic regression model, such as

pr{D = 1 | Z} = {1 + exp(−α− βTZ)}−1,

is often used, where α and β are the regression parameters. It is then discovered by

Drescher & Becher (1997) that the attributable fraction can be expressed as

ϕ = 1 −
∫

Z

exp(−βTz)dFZ | D(z | D = 1)

for the rare diseases. In contrast with ϕ(t) in (4), this would be exactly ϕ(τ ) if the actual

occurrence times of the events were scaled up to the same time of τ . Thus, ϕ(·) can be con-

sidered as a natural extension of ϕ to the time-to-event outcomes following the proportional

hazards model.

In general, however, ϕ̃(·) may be of more straightforward interpretation for being directly

expressed in the cumulative risk without the assumption of rare disease. In presence of

potential confounding variables, W ∈ W, say, ϕ̃(·) can be further extended to adjust for W .

A W -specific attributable fraction function can be defined as

ϕ̃(t | W ) =
F (t |W ) − F (t |W,Z = 0)

F (t |W )
.

Thus, the adjusted attributable fraction function, ϕ̃adj(t), can be defined by either
∫
W ϕ̃(t |

W )dFW(w) or

ϕ̃adj(t) =

∫
W F (t | w)dFW(w) −

∫
W F (t |W,Z = 0)dFW (w)∫

W F (t | w)dFW(w)
.

The latter is considered as an extension of that in Whittemore (1982) to the time-to-event

outcomes.

Similarly, the hazard-based ϕ(·) can be extended to adjust for W as well, i.e., the W -

specific

ϕ(t |W ) =
λ(t |W ) − λ(t | W,Z = 0)

λ(t |W )
.

9

http://biostats.bepress.com/uwbiostat/paper254



Under the proportional hazards model of λ(t | Z,W ) = λ0(t) exp(βTZ + γTW ), ϕ(t | W )

can be further expressed by ϕ(t | W ) = 1 −
∫
Z

exp(−βTZ)dFZ | T, W(z | t,W ). Thus, the

adjusted attributable fraction function, ϕadj(t) can be simply defined as
∫
W ϕ(t | W )dFW(w).

Compared with that of ϕ̃adj(t), ϕadj(t) may have more advantage in practical application with

its straightforward adaptability with the proportional hazards model. It is yet necessary

to point out that such applicability of ϕ(·) depends on the assumption of the underlying

proportional hazards model. One natural way is use the flexible hazard-based models in ϕ(·)

to relax the assumption, for instance, by the general relative risk model of λ(t | Z,W ) =

λ0(t)r(t;Z,W ) in Prentice & Self (1983), where r(·) is a general form of hazards ratio.

In the estimation and inferences of the proposed ϕ̂(·), we adopted the stronger version

of independence assumption for (T,C,Z) as in Xu & O’Quigley (2000), for ease of the pre-

sentation and asymptotic property derivation. The weaker version of the usual conditional

independence assumption can be extended as well in the development, when the amount

of exposure can be quantified and grouped into finite number of categories as seen in most

of the epidemiological studies. The techniques and guidelines in Murray & Tsiatis (1996)

for continuous exposure would be useful in constructing and extending ϕ̂(·), as cited in

Xu & O’Quigley (2000).

Appendix

Proof of Theorem 1

To establish the asymptotic properties in Theorem 1, we assume the necessary regularity

conditions specified in Theorem 4.1 of Andersen & Gill (1982):

1. Λ0(t) is continuous, nondecreasing, and Λ0(τ ) <∞.

2. There exists a compact neighborhood B of β∗ such that

E

{
sup
β∈B

‖Z‖2 exp (βtZ)

}
<∞;

10
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3. pr{Y (τ ) = 1} > 0;

4. Σ =
∫

τ

0
v(t, β∗)s0(t, β∗)λ0(t)dt is positive definite, where v(t, β) = s2(t, β)/s0(t, β) −

{s1(t, β)/s0(t, β)}⊗2.

First we decompose the estimator ϕ̂(t, β̂) = 1 −
∑

i Yi(t)/
∑

i Yi(t) exp(β̂TZi) into

{
1 −

∑
i Yi(t)∑

i Yi(t) exp(βT
∗Zi)

}
+

{ ∑
i Yi(t)∑

i Yi(t) exp(βT
∗Zi)

−
∑

i Yi(t)∑
i Yi(t) exp(β̂TZi)

}
= A(t)+B(t).

By Taylor’s theorem, B(t) equals

∑
i Yi(t){

∑
i Yi(t) exp(β̂TZi) −

∑
i Yi(t) exp(βT

∗Zi)}∑
i Yi(t) exp(β̂TZi)

∑
i Yi(t) exp(βT

∗Zi)
=

∑
i Yi(t)

∑
i Yi(t) exp(β̃TZi)Z

T
i (β̂ − β∗)∑

i Yi(t) exp(β̂TZi)
∑

i Yi(t) exp(βT
∗Zi)

,

where β̃ is on the line segment connecting β̂ and β∗. Following Theorem 4.1 and Corol-

lary III.2 of Andersen & Gill (1982), we know that s0(t, β) and s1(t, β) are continuous in β ∈

B. In addition, s0(t, β) is bounded away from zero on [0, τ ]×B. Since supt∈[0,τ ] |S(t) − s(t)| →p

0 and supt∈[0,τ ],β∈B |Sk(t, β)− sk(t, β)| →p 0, for k = 0, 1, 2, respectively,

∑
i Yi(t)

∑
i Yi(t) exp(β̃TZi)Z

T
i∑

i Yi(t) exp(β̂TZi)
∑

i Yi(t) exp(βT
∗Zi)

→ s(t)s1(t, β∗)
T

s0(t, β∗)2

uniformly for t ∈ [0, τ ]. Due to the consistency of β̂ for β∗ we know B(t) →p 0 uniformly on

[0, τ ]. Also,

B(t) =
s(t)s1(t, β∗)

T

s0(t, β∗)2
(β̂ − β∗) +Op(n

−1). (A·1)

It thus follows that ϕ̂(t, β̂) →p 1 − s(t)/s0(t, β∗) uniformly for t ∈ [0, τ ].

To prove the uniform consistency of ϕ̂(t, β̂), we only need to show ϕ(t) = 1−s(t)/s0(t, β∗).

Under the proportional hazards model (1), λ(t) equals

lim
∆t→0+

pr{T ∈ [t, t+∆t) | T ≥ t}/∆t = lim
∆t→0+

E [pr{T ∈ [t, t+ ∆t) | T ≥ t, Z} | T ≥ t]/∆t

= E
[

lim
∆t→0+

pr{T ∈ [t, t+ ∆t) | T ≥ t, Z}/∆t
∣∣∣ T ≥ t

]
= E {exp(βT

∗Z) | T ≥ t}λ0(t).

11
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Therefore, ϕ(t) = 1−λ0(t)/λ(t) = 1− 1/E{exp(βT
∗Z) | T ≥ t}. On the other hand, s0(t, β∗)

equals

E {Y (t) exp(βT

∗Z)} = E {exp(βT

∗Z) | Y (t) = 1}pr{Y (t) = 1} = E {exp(βT

∗Z) | Y (t) = 1} s(t).

Hence, ϕ(t) = 1−s(t)/s0(t, β∗) = 1−1/E{exp(βT
∗Z) | Y (t) = 1}. Under the assumption that

C is independent of (T,Z), E{exp(βT
∗Z) | Y (t) = 1} = E{exp(βT

∗Z) | T ≥ t}. Therefore,

the uniform consistency of ϕ̂(t, β̂) holds.

To prove the asymptotic normality, ϕ̂(t, β̂) − ϕ(t) can be written as
{

1 −
∑

i Yi(t)∑
i Yi(t) exp(βT

∗Zi)

}
−

{
1 − s(t)

s0(t, β∗)

}
+B(t).

By the expression of B(t) in (A·1) and the martingale representation of β̂ − β∗, it further

equals

s(t)

s0(t, β∗)2
n−1

n∑

i=1

{Yi(t) exp(βT

∗Zi) − s0(t, β∗)} −
1

s0(t, β∗)
n−1

n∑

i=1

{Yi(t) − s(t)}

+
s(t)s1(t, β∗)

T

s0(t, β∗)2
Σ−1 · n−1

n∑

i=1

∫
τ

0

{Zi − z̄(u, β∗)} dMi(u) +Op(n
−1),

where z̄(t, β∗) = s1(t, β∗)/s0(t, β∗). Thus n1/2{ϕ̂(t, β̂) − ϕ(t)} = n−1/2
∑

i vi(t) + op(1). Here,

vi(s) =
s(t)Yi(t) exp (βT

∗Zi)

s0(t, β∗)2
− Yi(t)

s0(t, β∗)
+
s(t)s1(t, β∗)

T

s0(t, β∗)2
Σ−1

∫
τ

0

{
Zi − z̄(u, β∗)

}
dMi(u).

Since Yi(t) exp(βT
∗Zi) and Yi(t) are both monotonic processes, n1/2{ϕ̂(t, β̂)−ϕ(t)} converges

weakly to a zero-mean Gaussian process with covariance function σϕ(s, t) = E{v1(s)v1(t)},

as shown in the Example 2.11.16 of van der Vaart & Wellner (1996)

In order to prove that σϕ(s, t) is consistently estimated by σ̂ϕ(s, t), it suffices to show by

Cauchy-Schwarz inequality that

n−1

n∑

i=1

{
Yi(t) exp(β̂TZi) − Yi(t) exp (βT

∗Zi)
}2

→p 0; and

n−1

n∑

i=1

[∫
τ

0

{Zi − Z̄(u, β̂)}dM̂i(u)−
∫

τ

0

{Zi − z̄(u, β∗)}dMi(u)

]2

→p 0.
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These can be established by the consistencies of β̂, the uniform consistency of Λ̂(·), and

Sk(·, β), (k = 0, 1, 2), respectively, following Lemma 1 of Lin et al. (2000).
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Figure 1: Attributable fraction functions in the proportional hazards model λ(t | Z = 1) = 2 ·λ(t |

Z = 0) with constant λ(t | Z = 0). Solid lines are ϕ(t) = 1 − λ(t | Z = 0)/λ(t). Dashed lines are

ϕ̃(t) = 1 − F (t | Z = 0)/F (t).
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Figure 2: Estimated ϕ̂(·) and their confidence intervals in the proportional hazards model λ(t | Z = 1) = 2 · λ(t | Z = 0) for the

Multicenter AIDS Cohort Study dataset: (a) risk factor Z1; (b) risk factor Z2; (c) combined risk factor of Z1 or Z2. The solid

lines are ϕ̂(·). The dashed lines are the pointwise confidence intervals. The dotted lines are crude ϕ̂.
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Table 1: Summary of Simulation Studies under the proportional hazards model λ(t | Z) = λ0(t) exp(βT
∗ Z).

β∗ = 0

t1 : S(t1) = 0.75 t2 : S(t2) = 0.50

λ0(t) ≡ λ0 Expo. Prob. Cens.% n |Bias| Cov. Prob. SE Mean SE |Bias| Cov. Prob. SE Mean SE

0.01 0.25 10% 200 0.0002 0.933 0.0448 0.0422 0.0026 0.934 0.0448 0.0426

0.01 0.25 10% 500 0.0011 0.953 0.0265 0.0271 0.0003 0.956 0.0264 0.0271

0.01 0.25 30% 200 0.0020 0.941 0.0489 0.0482 0.0048 0.945 0.0497 0.0486

0.01 0.25 30% 500 0.0007 0.942 0.0315 0.0308 0.0019 0.944 0.0317 0.0308

0.01 0.50 10% 200 0.0015 0.944 0.0746 0.0742 0.0035 0.946 0.0752 0.0746

0.01 0.50 10% 500 0.0026 0.951 0.0474 0.0471 0.0036 0.952 0.0477 0.0472

0.01 0.50 30% 200 0.0027 0.948 0.0869 0.0862 0.0058 0.950 0.0878 0.0846

0.01 0.50 30% 500 0.0006 0.940 0.0552 0.0535 0.0018 0.940 0.0556 0.0536

1.00 0.25 10% 200 0.0010 0.955 0.0426 0.0425 0.0011 0.956 0.0429 0.0425

1.00 0.25 10% 500 0.0008 0.954 0.0275 0.0272 0.0000 0.954 0.0274 0.0272

1.00 0.25 30% 200 0.0006 0.944 0.0478 0.0483 0.0021 0.946 0.0483 0.0485

1.00 0.25 30% 500 0.0000 0.945 0.0315 0.0307 0.0012 0.945 0.0316 0.0307

1.00 0.50 10% 200 0.0006 0.948 0.0750 0.0747 0.0026 0.948 0.0756 0.0751

1.00 0.50 10% 500 0.0008 0.956 0.0470 0.0470 0.0017 0.957 0.0471 0.0471

1.00 0.50 30% 200 0.0028 0.947 0.0860 0.0840 0.0060 0.950 0.0873 0.0846

1.00 0.50 30% 500 0.0019 0.944 0.0553 0.0533 0.0007 0.945 0.0556 0.0553

(Continued in next page)

17

http://biostats.bepress.com/uwbiostat/paper254



(Table 1 Continued)

β∗ = log2

t1 : S(t1) = 0.75 t2 : S(t2) = 0.50

λ0(t) ≡ λ0 Expo. Prob. Cens.% n Bias Cov. Prob. SE Mean SE Bias Cov. Prob. SE Mean SE

0.01 0.25 10% 200 0.0017 0.945 0.0486 0.0481 0.0018 0.952 0.0329 0.0328

0.01 0.25 10% 500 0.0005 0.954 0.0301 0.0306 0.0004 0.951 0.0207 0.0251

0.01 0.25 30% 200 0.0004 0.960 0.0488 0.0522 0.0034 0.947 0.0330 0.0327

0.01 0.25 30% 500 0.0005 0.965 0.0306 0.0330 0.0011 0.949 0.272 0.0270

0.01 0.50 10% 200 0.0021 0.950 0.0643 0.0644 0.0030 0.950 0.0643 0.0644

0.01 0.50 10% 500 0.0005 0.945 0.0414 0.0414 0.0013 0.949 0.0346 0.0346

0.01 0.50 30% 200 0.0009 0.955 0.0688 0.0686 0.0019 0.957 0.0577 0.0589

0.01 0.50 30% 500 0.0022 0.955 0.0461 0.0461 0.0021 0.956 0.0381 0.0386

1.00 0.25 10% 200 0.0023 0.948 0.0490 0.0491 0.0014 0.951 0.0333 0.0332

1.00 0.25 10% 500 0.0000 0.953 0.0291 0.0307 0.0010 0.954 0.0203 0.0202

1.00 0.25 30% 200 0.0016 0.947 0.0512 0.0519 0.0030 0.956 0.0343 0.0343

1.00 0.25 30% 500 0.0006 0.955 0.0318 0.0311 0.0004 0.945 0.0217 0.0223

1.00 0.50 10% 200 0.0007 0.945 0.0651 0.0654 0.0020 0.950 0.0542 0.0541

1.00 0.50 10% 500 0.0021 0.954 0.0399 0.0414 0.0023 0.953 0.0336 0.0346

1.00 0.50 30% 200 0.0034 0.943 0.0737 0.0737 0.0040 0.954 0.0613 0.0620

1.00 0.50 30% 500 0.0008 0.952 0.0462 0.0461 0.0014 0.956 0.0379 0.0385

Expo. Prob., probability of Z = 1; Cens.%, censoring probability; t1, 75%-tile of marginal survival function; t2, median of

marginal survival function; |Bias|, absolute difference between 1000 ϕ̂(t) and the true value; Cov. Prob., percentage of 1000 95%

nominal confidence intervals containing the true value; SE, sample standard error of 1000 ϕ̂(t); Mean SE, average of 1000 σ̂ϕ(t)
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Table 2: Summary statistics and estimates of the proportional hazards model λ(t | Z) =

λ0(t) exp(βTZ) for the Multicenter AIDS Cohort Study dataset

Risk factor Z Size (%) HIV incidence (%) β̂ (SE) ϕ̂

sex with AIDS partner Z1 = 0 1387 (58.5%) 160 (11.5%)

Z1 = 1 1954 (41.5%) 348 (17.8%) 0.470 (0.095) 0.241

anal sex with partner Z2 = 0 1995 (59.7%) 247 (12.3%)

Z2 = 1 1346 (40.3%) 261 (19.4%) 0.475 (0.089) 0.186

anal sex with AIDS partner Z1 = Z2 = 0 871 (26.1%) 83 (9.5%)

otherwise 2470 (73.9%) 425 (15.5%) 0.625 (0.120) 0.372

Size % are the percentages of Z = 0/1 in the cohort, respectively; HIV incidence % are the

percentages of HIV incidences in Z = 0/1, respectively; SE are the standard errors of β̂ in the

proportional hazards model; ϕ̂ is the sample estimates of ϕ
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