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Adjustment Uncertainty in Effect Estimation

Ciprian M. Crainiceanu∗ Francesca Dominici †

Giovanni Parmigiani ‡

August 26, 2006

Abstract

The selection of confounders and their functional relationship with the out-

come affects exposure effect estimates. In practice, there is often substantial

uncertainty about this selection, which we define here as “adjustment uncer-

tainty”. We address the problem of estimating the effect of exposure on an

outcome with focus on quantifying the effect of unknown confounders from a

large set of potential confounders. We propose a general statistical framework

for handling adjustment uncertainty in exposure effect estimation, a specific

implementation called “Structured Estimation under Adjustment Uncertainty

(STEADy)”, and associated visualization tools. Theoretical results and simula-

tion studies show that STEADy consistently estimates the exposure of interest

and its associated variability. An important by-product of our methodology is

that it reveals that the standard version of Bayesian Model Averaging (BMA)

can fail to estimate the effect of scientific interest and can over or underestimate

statistical variability of the exposure effect estimate. This is essentially due to

the fact that BMA averages parameter estimates, only a subset of which can
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actually be interpreted as being the adjusted effect of interest. While this has

been previously acknowledged, our methodology provides the theoretical plat-

form for performance analysis of BMA estimation. We compare our approach

(STEADy) to BMA on time series data on levels of fine particulate matter

(PM10, PM2.5) and mortality and hospitalization counts.

Keywords: Adjustment uncertainty; Bayesian Model Averaging; Air pollution

1 Introduction

Estimating health risks associated with an exposure X and properly characteriz-

ing their uncertainty is one of the most common goals in epidemiology. Regression

models are generally used to estimate the effect of X on a response Y , while con-

trolling for unknown confounders from a set of M potential confounders U , where

M can be very large. Examples include both controlled and observational studies in

nearly all fields of scientific investigation. We refer to the uncertainty in the selection

of confounders and their functional relationship with the outcome as “adjustment

uncertainty”. There are important conceptual differences between adjustment uncer-

tainty and model uncertainty, as commonly implemented. In adjustment uncertainty,

the estimation of the adjusted exposure effect (e.g. the regression coefficient of X in

a model for Y ) is the goal of the analysis. Additional covariates U are included to

account for potential confounding. In model uncertainty, all predictors (X, U ) are

equally important, and their inclusion into the regression model is generally evalu-

ated based on measures that reflect prediction performance, rather than adequacy in

controlling for confounders of X.

We propose a general statistical framework for adjustment uncertainty in exposure

effect estimation, a specific implementation called “Structured Estimation under Ad-

justment Uncertainty (STEADy)”, and associated visualization tools. STEADy has

two-stages. In the first stage we find a sequence of exposure models, αm,X , containing

the best set of m predictors, Uαm,X
, of exposure X among the potential confounders
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U for every m = 1, . . . ,M . We plot the exposure effect estimate for the model with

Y as outcome, X as exposure, and Uαm,X
as confounders for each m. We also plot

the deviance difference between models αm,X and αm−1,X to visualize the exposure

prediction change. The set of confounders is identified using stabilization of the ex-

posure effect estimates and deviance differences. The second stage includes the set of

confounders identified in the first stage, together with X, into the regression models

for Y . The outcome model space is then explored using the same technique to identify

additional covariates that are good predictors of Y .

A nice feature of STEADy is its practical visualization. For example, we produce

plots of point estimates and confidence intervals for the exposure effect as a function

of different levels of confounding adjustment. The set of models identified can be

used to assist model selection based on expert opinion. Moreover, our methodology

provides a sound statistical platform for identifying unknown confounders from a large

set of potential confounders and quantifying their effect on exposure effect estimates.

The methodological development of this paper is motivated by time series studies

of health effects of air pollution exposure. Time series studies of air pollution and

health carried out around the world provide important epidemiological evidence for

regulatory purposes [1, 2, 6, 8, 12, 13, 23, 24, 25, 28] and are at the center of an intense

national debate in the U.S. [11, 19, 20, 21]. Therefore properly accounting for adjust-

ment uncertainty is of fundamental importance in this context. Air pollution studies

estimate whether day-to-day changes in ambient concentrations of air pollution (X)

are associated with day-to-day changes in the daily number of deaths or hospital ad-

missions for different diseases (Y ) after accounting for time-varying confounders, such

as weather and seasonality (U ). Time series data on pollution and mortality are gen-

erally modeled using Poisson regression for over–dispersed counts [4, 8, 14, 26, 28].

The daily number of deaths is the outcome with the, possibly lagged, daily level

of pollution being the linear predictor. Air pollution effect estimates on mortality/

morbidity could be affected by observed and unobserved time-dependent confounders

(such as weather variables, other pollutants, season, and influenza epidemics) that
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vary in a similar manner as the air pollution and mortality/morbidity time series. To

account for these, smooth functions of weather, calendar time, and other factors are

also included into the semi-parametric Poisson regression model.

There remains substantial controversy in the scientific community about whether

current statistical approaches for air pollution effect estimation properly account for

the inherent uncertainty in confounding adjustment. For example, the selection of

the number of degrees of freedom in the smooth functions of time and temperature

(df), and whether to include other important potential confounders in the model

such as co–pollutants, can have a large impact on the magnitude and statistical

uncertainty of the mortality/morbidity relative rate estimates. In the absence of

strong biological hypotheses, these choices have been based on expert judgment [8, 14],

or on optimality criteria [4, 28]. Dominici et al. 2004, [7], focus on uncertainty

associated with the selection of the number of degrees of freedom in the smooth

function of time, and calculate the asymptotic bias and variance of the air pollution

risk estimates. One important result is that selecting enough df to best predict air

pollution provides more efficient estimates than methods based on selecting df to best

predict the mortality outcome. In a simulation study Peng et al., [22], confirmed these

results by comparing them with statistical methods commonly used for confounding

adjustment in semiparametric regression.

Bayesian Model Averaging (BMA) is a general framework for addressing model

uncertainty, by assuming that the true model is an unknown random variable [9,

16]. BMA predictions work out to be weighted averages of the individual models’

predictions, using the posterior model probabilities as weights. In prediction, BMA

can be justified from a decision theoretic standpoint [3] and performs well compared

to model selection [17]. In air pollution research, weighted average of model-specific

coefficients using the posterior probabilities as weights has been advocated as a way

of handling adjustment uncertainty in the estimation of effects [5, 15].

Our theoretical results and simulations show that STEADy consistently estimates

the exposure of interest and its associated variability. They also reveal that the

4

http://biostats.bepress.com/jhubiostat/paper89



standard version of Bayesian Model Averaging (BMA) can fail to estimate the effect

of scientific interest and over or underestimate the statistical variance of the exposure

effect estimate. This is due to the fact that BMA averages parameter estimates only

a subset of which can actually be interpreted as being the adjusted effect of interest.

The paper is organized as follows. In section 2 we introduce our general framework

for adjustment uncertainty and describe STEADy. In section 3 we present theoret-

ical results. In section 4 we carry out a simulation study to compare adjustment

uncertainty versus model uncertainty. In Section 5 we apply our methods to time

series data on particulate matter and both mortality and hospital admission counts

for COPD. Finally, in section 6 we discuss technical details of the new methodology

and addresses practical problems related to air pollution health research and its im-

pact on decision making. The open source R package STEADy implementing this

methodology for Generalized Linear Models (GLMs) is publicly available at

www.biostat.jhsph.edu/~ccrainic/webpage/software/STEADy_1.2.tar.gz

2 Statistical approaches for Adjustment Uncertainty

2.1 Likelihood models and estimands
In this section we outline our general framework. Suppose that we are interested in the

relationship between exposure (X) and outcome (Y ), while correcting for the effect

of potential confounders U = (U1, . . . , UM). We allow a set of additional covariates

Z = (Z1, . . . , ZK) to always enter into the model due to their scientific importance.

A critical point is to correctly identify the estimand. Consider, for example, a

model space including models of the form

Yi = βαXi +
K∑

k=1

γα
k Zik +

M∑
m=1

αmδα
mUim + εα

i ,

where i = 1, . . . , n, n is the sample size and M is the number of potential confounders.

Here α = (α1, . . . , αM)T ∈ {0, 1}M with αi = 1 if and only if the ith covariate is

included in the model. We refer to the vector α as the model and use the notation

5
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α ⊆ α′ if the model α is nested within model α′. The meaning of the coefficient βα

may vary with α.

We assume that the M potential confounders include all the relevant confounders

necessary for identifying the true exposure effect. In our notation this means that

the true model α∗ belongs to the model space and we denote by β∗ = βα∗ the

corresponding true effect. In addition we assume that all models nesting α∗ estimate

the same true effect, so βα = β∗ whenever α∗ ⊆ α.

In this setting, adjustment uncertainty in effect estimation is estimation of β∗

when α∗ is unknown. Identifying α∗ is a hard problem, but identifying a reasonable

α0 such that α∗ ⊆ α0 is easier and will be the focus of the STEADy procedure

described in the next section. Note that if α∗ ⊆ α then we can provide unbiased

estimators β̂α of β∗. Typically Var(β̂α) ≥ Var(β̂∗) and confidence intervals based on

model α will tend to be conservative.

In contrast, considering any model α such that α∗ * α will result in an incorrect

estimand of the exposure effect. Using such a model would provide invalid inferences

from either a frequentist or a Bayesian standpoint. For example, a standard Bayesian

Model Averaging estimate of β∗ is obtained by specifying a prior p(α)p(βα,γα, δα|α)

and forming the estimator

β̃∗ =
∑

α:α∗⊆α
E[βα|α, D]p(α|D) +

∑

α:α∗*α

E[βα|α, D]p(α|D) (1)

where D denotes the data and p(α|D) is the posterior probability of model α. In

expression (1) assigning any weight to models α such that α∗ * α will result in an

additional term that includes estimates of the incorrect quantities. In Section 6 we

illustrate how this can lead to seriously misleading results.

Motivated by these considerations we define and address two problems related to

adjustment uncertainty. First, to identify a reasonable α0 such that α∗ ⊆ α0. Sec-

ond, to devise a computationally tractable framework that describes the relationship

between inference about βα and the model space structure. The former is a global

problem that is often addressed by considering a reasonably large full model. While

6
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this strategy is reasonable in many applications, it may fail when the number of ob-

servations is small and/or the number of potential confounders is large. Moreover,

using only the full model would ignore important information about the effect of var-

ious confounders on the exposure effect inference. This information can be recovered

using a structured search of the model space.

2.2 STEADy: Structured Estimation under Adjustment Un-

certainty
We address the two problems described in the previous section by devising STEADy,

an algorithm for exploration of the exposure and outcome model spaces. In particular,

STEADy will identify a reasonable model α0 such that α∗ ⊆ α0.

Conceptually, STEADy focuses on the joint model for outcome and exposure

[Y, X|Z,U ] = [Y |X, Z, U ][X|Z,U ] . (2)

and can be described in two steps. In the first step, we identify strong predictors of

exposure and focus on the exposure model space MX . More precisely, in MX the

exposure X plays the role of the response, and potential predictors include covariates

Z and any subset of U = (U1, . . . , UM). We then identify the potential confounders

U that are strongly predictive of X and we include them in the full model for Y .

In Section 2.1, we introduced α = (α1, . . . , αM)T ∈ {0, 1}M with αi = 1 if and only

if Ui is in the model. Here we also denote by Uα the subset of potential confounders

of U selected by the indicator vector α. We divide MX into M +1 subsets, or orbits,

corresponding to models with a fixed number of confounders U . For example, the

mth orbit is the set of all regression models α with the property
∑M

i=1 αi = m.

Within orbit m we select the maximum likelihood model and denote by αm,X

the model maximizing the likelihood. While computationally intensive, finding the

maximum likelihood model within each orbit avoids the typical problems of greedy

algorithms such as forward selection or projection–pursuit. Details on the likelihood

maximization are provided in the technical Appendix A1. The set of M +1 regression

models α0,X , . . . , αM,X will be called the dominant model class. Once the dominant
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model class is determined, it is useful to display the deviance differences D(αm,X)−
D(αm+1,X), which show the change in deviance between adjacent orbits and indicate

what combinations of variables are good predictors of X and are likely confounders.

The region where the deviance difference function becomes small identifies a range

for the required dimensionality of the exposure model. Such regions characterize the

right hand side of the graph and are usually easy to identify visually. We recommend

exploring the entire dominant model class and understanding the sequence in which

variables are included into the model. An important visualization is to show the

sequence of point estimates and confidence intervals for the exposure effect in the

outcome models [Y |X, Z,Uα0,X
], . . . , [Y |X, Z,UαM,X

].

In the second step we identify strong predictors of outcome that are weak pre-

dictors of exposure. Thus, the second step of STEADy starts by adding the subset

of U ’s identified at the previous step to Z and deleting it from U . Using a proce-

dure similar to the one for exposure models, the outcome models are partitioned into

L + 1 orbits. Here L ≤ M because the number of potential confounders that are

considered for exclusion is usually reduced during the first phase of the procedure.

Denote by αl,Y the model that maximizes the likelihood of the outcome models on the

lth orbit and call α0,Y , . . . , αL,Y the dominant model class for the outcome models.

The plot of deviance differences D(αl,Y ) − D(αl+1,Y ) indicates what covariates, in

addition to X, Z, are predictive of Y . As before one is interested in finding the re-

gion where the deviance difference function becomes small. We also display the point

estimates and confidence intervals for the parameter of X for the outcome models

[Y |X, Z,Uα0,Y
], . . . , [Y |X, Z,UαL,Y

]. This plot captures variations of the effect of X

on Y when adjusting for Z and a subset of U . The point estimate and confidence

interval for the parameter of interest is obtained after both the difference deviance

function for outcome models and parameter estimate have stabilized. Stabilization is

evidence that α∗ was reached.

In summary, the STEADy algorithm includes the following steps:
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1. Obtain the dominant model class DMCX = α0,X , . . . , αM,X of exposure models

2. Plot deviance differences for the exposure models α0,X , . . . , αM,X

3. Plot point estimates and confidence intervals for the exposure parameter in the

sequence of outcome models [Y |X, Z,Uα0,X
], . . . , [Y |X, Z,UαM,X

]

4. Identify UR,X such that D(αm,X)−D(αm+1,X) is small for every m ≥ R

5. Define Z = Z
⋃

UR,X , U = U \UR,X , L = M −R.

6. Obtain the dominant model class DMCY = α0,Y , . . . , αL,Y of outcome models

7. Plot deviance differences for the outcome models α0,Y , . . . , αL,Y

8. Plot point estimates and confidence intervals for the exposure parameter in the

sequence of models α0,Y , . . . , αL,Y

9. Identify the region where D(αl,Y )-D(αl+1,Y ) becomes small

10. Among models that provide similar exposure effect estimates identify the one

with smallest exposure effect variance

This algorithm is designed to assist scientists in exploring the model space in a

structured way while keeping the focus on exposure effect estimation. Automatic

use of the algorithm is possible, but may not always be successful, while active and

critical scientific analyses assisted by STEADy should be preferred. Practical issues

related to implementation of the STEADy algorithm are provided in Appendix A1.

3 Theoretical results for Adjustment Uncertainty
In this section we explore the theoretical properties of the STEADy estimator and

compare it with weighted estimators. A particular case of weighted estimator is the

Bayesian Model Averaging (BMA) estimator for which the weights are the posterior

model probabilities. Even though BMA has been proposed to incorporate model

uncertainty in prediction, its use for exposure effect estimation has been advocated

[5, 10, 15] as a procedure that incorporates the uncertainty about model selection.

We first introduce some notations. Let α be a general model, αE, α∗, αF be the

model with no additional covariates, the true model, and the full model respectively.

9
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Let R be the set of confounders for α∗ and I be the rest of the confounders. Let β̂α
n

be the MLE of βα, the exposure effect under model α and assume that, under α∗,

β̂α
n → βα. For a set of weights W n = {wn(α)}α with

∑
α wn(α) = 1 and wn(α) ≥ 0

denote the weighted estimator β̂Wn =
∑

α wn(α)β̂α
n . Because W n is in a compact set

it contains at least one convergent subsequence and all β̂α
n sequences are convergent.

To ensure convergence of the weighted estimator β̂Wn we will assume that W n itself

converges to a limit, say W = {w(α)}α. Let β̂STEADy
n = β̂n(α̂STEADy

n ) where

α̂STEADy
n = Argmin{v̂n(α) : |β̂α

n − β̂αF
n | < ε√

n
}, (3)

v̂n(α) = V̂arα(β̂α
n ) and ε > 0 is a constant.

Theorem 1 Under typical regularity assumptions

i. β̂STEADy
n is asymptotically unbiased

ii. The asymptotic bias of β̂Wn is Bias{β̂Wn} =
∑

α∈I w(α)βα− {∑
α∈I w(α)

}
β∗

iii. If v(α) = limn→∞{nv̂n(α)} then limn→∞{nv̂n(α̂STEADy
n )} ≤ v(αF ). If, in addi-

tion, there exists an α0 such that α∗ ⊂ α0 with v(α0) < v(αF ) then the above

inequality is strict.

The proof of the theorem is in Appendix A2. Note that if w(α) = 0 for every

α ∈ I the weighted estimator will be asymptotically unbiased. However, if this is

not true the asymptotic unbiasedness could only be the result of a lucky choice of

weights. Indeed, the asymptotic bias is zero iff

β∗ =
∑
α∈I

w(α)∑
α∈I w(α)

βα,

which can only happen by accident when β∗ and the set I are unknown. Moreover, if

βα > β∗ for every α ∈ I then all weighted estimators with positive weights (including

BMA) will be biased.

While the minimum variance of the STEADy estimator is ensured by definition

in finite samples, the previous result shows that any subsequence of STEADy estima-

tors for which the limit of nv̂n(α) exists is asymptotically unbiased with asymptotic

10

http://biostats.bepress.com/jhubiostat/paper89



variance smaller than the asymptotic variance of the full model. We also provide a

sufficient condition under which the dominance is strict.

A popular choice is to use the Bayesian Information Criterion (BIC) weights

wn(α) =
exp{−BICn(α)/2}∑
α′ exp{−BICn(α′)/2} ,

where BICn(α) = 2 log{ρn(α) + pα log(n)}, and ρn(α) and pα are the maximum

likelihood and the number of parameters of model α. The BIC is not only popular as

an approximation to Bayesian posterior probabilities, but also as a model selection

criterion in its own right. We examine now a property of BIC in this broader context.

Theorem 2 Assume the usual regularity conditions (e.g. Cramèr, 1999) for exis-

tence, consistency and asymptotic normality of the MLEs and wn(α) are the BIC

weights. If there exists a c > 0 such that |β∗ − βα| ≤ c/
√

n for every model α then

the asymptotic bias of β̂Wn is βαE − β∗, or the bias induced by the model without

confounders.

The proof is in Appendix A2. This result shows that if parameters are all within

c/
√

n distance of β∗ then the BIC based weighted estimator converges to the pa-

rameter of the model with no confounders rather than to the parameter of interest.

Note that if the model that does not contain exposure is considered as part of the

model then the BIC based weighted estimator converges to zero, or no exposure ef-

fect, regardless of the size of the signal. The condition on the parameters is the local

asymptotics assumption, which is widely used for confidence intervals inference.

The finite sample behavior of the BIC when the sample size is large and the signal

is small to moderate can be illustrated using a simple example. Suppose that only

two nested models are available α0 ⊂ α1, with α1 having just one extra parameter.

BIC selects model M0 if and only if BIC(α0) < BIC(α1) which is equivalent to

2 log{ρ(α1)/ρ(α0)} > log(n). The left hand side of this equation is the likelihood ratio

statistic for testing α0 versus α1. In this case BIC is equivalent to using likelihood

ratio test with a critical value equal to log(n). This may be reasonable when n is

small or moderate. For example, log(n) varies between 3.9 and 6.2 when n varies
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between 50 and 500. These values are comparable to the 0.95 and 0.99 quantiles of

a χ2
1 distribution, which are 3.84 and 6.63 respectively. Even in this case when the

sample size, n, increases, BIC will change the level of the test from roughly α = 0.05

to α = 0.01. More dramatic effects occur when the sample size is large with the level

of the test dropping to α = 0.002 for n = 15, 000 and α = 0.0005 for n = 150, 000.

Thus, using BIC in large data sets might ignore even very strong signals and lead to

wrong conclusions. This discussion is of particular interest for studies of air pollution

effects on mortality, which routinely use over 10, 000 observations per city.

4 Simulation Study
In this section we describe a simulation study to compare adjustment uncertainty

implemented with STEADy versus model uncertainty implemented with BMA. We

consider a relatively simple data generating mechanism to allow a transparent com-

parison across methods, and yet capture important features of effect estimation in air

pollution research and other areas. We generate data from the following model:





Yi ∼ Poisson(µi)

log(µi) = β0 + β1X1i + β2U2i + β3U3i

(4)

where i = 1, . . . , 1000 and (X1i, U2i, U3i) are independent normal vectors with mean

zero, variance 1 and all covariances zero except for Cov(X1i, U2i) = ρ. Here X1 is the

exposure variable, U2 is a confounder that predicts both X1 and Y while U3 predicts

Y but is independent of the exposure. To define a correctly adjusted effect of X1, the

confounder U2 must be included into the model. The set U of potential confounders

includes U2, U3 as well as 50 additional independent N(0, 1) random variables. In this

example there are no Z variables. The model space M has 252 models if we include

the exposure variable by default, and 253 if we allow for it to be included or excluded.

We explore two simulation scenarios: the first draws a new set of Xs, Us and

Y s for each new data set while the second draws a new set of Y s only and keeps
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the same set of Xs and Us. We simulated 100 data sets from model (4) under each

scenario. We set the parameter ρ to 0, corresponding to no need for adjustment,

or to 0.7 corresponding to a moderate effect adjustment. The coefficients are set at

β1 = β2 = β3 = 0.1 and β0 = 0.

This example includes several important characteristics common in air pollution

effect estimation where Yi and X1i can be viewed as the daily mortality counts and

lagged pollution level and U2i can be viewed as an important confounder when ρ 6=
0. The additional 50 covariates represent noise that makes the estimation problem

difficult. Parameters values were chosen to mimic the significance levels of typical

effects in air pollution studies, given the simulation sample size.

4.1 Results when the exposure is always in the model
For each simulated data set, we estimated β1 using STEADy, and using BMA over

the dominant model class, with posterior model probabilities approximated using

three methods: BIC (BIC-DMC), “Likelihood Ratio Test” (LRT-DMC) and AIC

(AIC-DMC). These criteria correspond respectively to a penalty of log(1000) = 6.9,

4 and 2 for each additional variable. For BIC we also report results based on a full

stochastic exploration of the model space (BIC-SE). Because BMA approaches are

based on prediction and therefore on outcome models, we first implement STEADy

on the outcome’s dominant model class only (STEADy-ODMC), thus allowing for

a more direct comparison between the two approaches. The preferred application

of STEADy is two-stage and involves a preliminary search for confounders in the

exposure model.

When ρ = 0, that is in absence of confounding, all methods produced very similar

estimates of β1 (results not reported). Table 1 summarizes the average, M(β̂1), and

standard error, SE(β̂1), of the β1’s estimates over 100 data sets for ρ = 0.7 and for

the two simulation scenarios described above (X and U fixed and X and U random).

Under STEADy-ODMC we report estimates of β1 after they stabilize, which occurs by

the 40-th orbit. In both scenarios, STEADy-ODMC and BMA produce pronouncedly

13
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different results, and irrespective of the penalty used, STEADy-ODMC dominates

BMA both in terms of bias and variance of estimation. The bias of BMA with BIC-

DMC and BIC-SE is such that the (1-10−6)% approximate confidence interval based

on 100 simulations does not contain the true value of the parameter. When BMA

with AIC-DMC is used, although the penalty for including new variables is reduced,

the 95% confidence interval still does not contain the true value of the parameter.

Table 1: Mean and standard error of β1s estimates over 100 data sets for ρ = 0.7.
The true parameter is β1 = 0.1 STEADy here denotes the implementation of our
algorithm to the outcome’s dominant model class only (STEADy-ODMC). Results
for random Us correspond to the scenario where both covariates and outcomes were
simulated. Results for fixed Us correspond to the scenario where only the outcome
is simulated.

Scenario STEADy-ODMC BIC-DMC BIC-SE LRT-DMC AIC-DMC

Random M(β̂1) 0.1020 0.1330 0.1310 0.1230 0.1130

Random SE(β̂1) 0.0048 0.0057 0.0055 0.0059 0.0055

Fixed M(β̂1) 0.1020 0.1350 0.1240 0.1210 0.1110

Fixed SE(β̂1) 0.0040 0.0048 0.0054 0.0040 0.0045

Figure 1 illustrates the mechanism that determines such different performance in

the two approaches. The top right plot shows the estimates of β1 obtained under

STEADy-ODMC plotted against each of the 52 models considered, for each of 3 data

sets and for ρ = 0.7. The horizontal line is placed at the true value of β1 = 0.1.

The noticeable drop in point estimates occurs when U2 enters the model. STEADy

chooses the parameter estimate after stabilization of the deviance difference function

(see columns 1 and 2) and after stabilization of the β1 estimates (in column 3).

The left column of Figure 1 shows deviance differences plotted against models

under STEADy-ODMC. The horizontal lines are placed at the BIC and AIC penalties

which are equal to log(1000) = 6.91 and 2, respectively. Results are shown for 3 data

sets simulated from model (4) with ρ = 0.7 (top row) and ρ = 0 (bottom row).

These plots highlight the severity of the BIC penalty. Except for very few ini-

tial models, deviance differences are always smaller than the penalty and there-

fore they favor the more parsimonious models. To see this, it is useful to write
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down the following: P (αk+1)/P (αk) = exp [{D(αk)−D(αk+1)− 6.91} /2], where

αk and αk+1 are two nested models in adjacent orbits of the dominant class, P (αk+1)

and P (αk) are the corresponding posterior model probabilities, and D(αk+1) and

D(αk) are the corresponding deviances. Therefore if D(αk) −D(αk+1) < 6.91 then

P (αk) > P (αk+1). For example, if the deviance difference D(αk)−D(αk+1) = 4 then

P (αk) = 4.28P (αk+1). In this case the likelihood ratio test would reject the model

αk in favor of αk+1 at the α = 0.05 level when, at the same time, the BIC based

model probabilities would assign more than 4 times as much probability mass to the

model αk than to the model αk+1.

By inspecting the list of variables that enter in every model we noted that when

ρ = 0.7, the first model includes only U3 in addition to X1 but does not include U2.

This is because the deviance gain of including U2 is typically in the range [3, 8] and

therefore BIC assigns higher probability mass to the model including only U3. In this

model, the estimate of β1 is artificially inflated because U2 is correlated with X1 and

not included into the model.

A limitation of BMA with BIC based posterior model probabilities is that this

procedure averages β1 estimates that have different interpretation across models: one

is appropriately adjusted because U2 is included in the model, while the other is a

biased estimate of β1 because U2 is excluded. BMA with posterior model probabil-

ities based on information criteria with smaller penalties also suffer from the same

limitation, though in this example they tend to do slightly better, as the penalty is

small irrespective of the sample size.

Next we consider the complete, two-stage, STEADy procedure which first explores

the exposure model’s dominant class and then the outcome model’s dominant class

(see Section 2.2). The second column of Figure 1 shows deviance differences plot-

ted against models obtained by applying STEADy to the exposure’s dominant class

(STEADy-EDMC). The horizontal lines are placed at the BIC and AIC penalties

which are equal to log(1000) = 6.91 and 2, respectively. Results are shown for 3 data

sets simulated from model (4) with ρ = 0.7 (top row) and ρ = 0 (bottom row). When
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ρ = 0.7, we found that STEADy-EDMC identifies U2 as an important predictor of

X1. We then force U2 into the outcome model and apply STEADy-ODMC: here we

found that the β1s estimates stabilize at the 5th orbit roughly, much earlier than

STEADy-ODMC. The two step STEADy procedure, STEADY-EDMC followed by

STEADy-ODMC, produced slightly better results than STEADy-ODMC alone for

ρ = 0.7 and similar results for ρ = 0.

Figure 2 compares the standard errors of the estimates of β1 for 100 independent

data sets obtained using STEADy-ODMC (X–axis) versus BMA with BIC-DMC (Y–

axis), when ρ = 0.7 (top) and ρ = 0 (bottom). When ρ = 0.7, BMA can produce

up to 35% wider or narrower confidence intervals than STEADy-ODMC. Very small

standard errors for BMA correspond to models that do not include the key confounder

U2. In these models, part of the signal generated by U2 is captured by the parameter

estimate of X1 and since X1 and U2 are positively correlated, β̂1 is biased upwards

and its statistical uncertainty is understated.

A different mechanism operates when BMA provides larger standard errors than

STEADy. Because of the large BIC penalty, BMA assigns sizeable probability both

to models that contain and do not contain U2. In these cases, the β̂1s standard

error obtained from BMA is artificially inflated because β1 is estimated by averaging

model-specific estimates that include and do not include U2. STEADy avoids these

problems because it relies on stabilization of point estimates and confidence intervals

to ensure that all potential confounders are included into the model.

Finally, when ρ = 0, BMA and STEADy produce almost identical β̂1s standard

errors. The standard errors produced by STEADy are potentially sensitive to the

final orbit chosen, but are highly stable within a wide range of plausible choices.

In this example, we conclude that in the presence of confounding, BMA produces

a biased estimate of the parameter of scientific interest (the effect of X1 on Y ), and

that the 95% confidence interval of the parameter’s estimate may be as much as 35%

wider or narrower than the interval produced by STEADy, which has approximately

correct coverage.

16

http://biostats.bepress.com/jhubiostat/paper89



4.2 Results when the exposure is not always in the model
An important difference between STEADy and BMA is that STEADy requires that

the covariate of interest, say X, is always included in the model whereas BMA does

not. Therefore under BMA we could average estimates of the regression coefficient

of X when X is included into the model with 0 when X is not. Therefore, in this

approach, it is useful to estimate and monitor the posterior probability that X is

included into the model.

As in Section 4.1, we simulated 100 independent data sets from model (4) with

ρ = 0.7 and applied BMA implemented by BIC-DMC without requiring that X1 be

included in the model. Figure 3 (top panel) shows the sorted posterior probability

that X1 is included into the model against the 100 simulated data sets. The bottom

panel shows the histogram of the averages of the β1 estimates across the 100 data

sets M(β̂1) under the different models. The true parameter is β1 = 0.1 and the t–test

for β1 = 0 has p–values ranging from 0.1 to 0.01. For 25 out of the 100 data sets,

the posterior probability that X1 is included into the model is less than 0.1 and for

roughly 40 out of 100 data sets such posterior probability is less than 0.2. Moreover

M(β̂1) decreases by more than 30%, from 0.133 when X1 is forced into the model,

to 0.089 when X1 is not. The standard error SE(β̂1) increases 46% from 0.0057 to

0.0083. The bottom plot in Figure 3 demonstrates that while the central value of the

histogram is equal to 0.089 and is close to the true effect β1 = 0.1, the shape of the

distribution of the M(β̂1) is multimodal with little probability mass around 0.1. Note

that there is roughly a 50% chance of underestimating the true effect by more than

50% and a 32% chance of overestimating the true effect by more than 50%.

5 Estimating Health Effects of Air Pollution
Studies of health effect of air pollution pose several methodological challenges related

to detecting and quantifying weak signals in large data sets. Commonly used Poisson

regression models for time series analyses of air pollution and health ([4, 7, 8, 14, 26,

28]) can easily include hundreds of covariates and are generally applied to very large
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data sets with several thousands of observations.

In this section we illustrate two applications of STEADy to time series data on

air pollution and health. In the first application, we use time series data for De-

troit for the period 1987 to 2000 to estimate the % increase in mortality associated

with a 10 µg/m
3 increase in PM10 (relative rate) accounting for adjustment uncer-

tainty. This data set is part of the ongoing National Morbidity Mortality Air Pol-

lution Study (NMMAPS) which includes time series data for the period 1987-2000

for the 100 largest cities [6, 22]. R-software and the NMMAPS data are available at

www.ihapss.jhsph.edu.

In the second application, we apply and compare STEADy and BIC-based BMA

to time series data for five large US counties (population larger than 200,000) to

estimate the % increase in hospital admission rates associated with 10 µg/m
3 in

PM2.5. This second data set is part of a recently started multi-site time series study,

called the National Medicare Study. This study is aimed at estimating national,

regional, and county-specific relative rates for hospital admissions for several diseases

associated with exposure to PM2.5 for 205 US counties and for the period 1999-2002

([2]). Hospital admission rates from the Medicare cannot be made publicly available.

5.1 PM10 and all-cause mortality: Detroit 1987-2000
In this section we apply STEADy to daily time series data in Detroit for the period

1987-2000. We consider the following model specification:





Yt ∼ Poisson(µt, vt), vt = φµt

log(µt) = PM10t−1 + Dow + Age2 + Age3 + O3t−1

+ns(Tempt, dfTemp) + ns(Tempt1−3, dfTemp) + ns(Dewt, dfDew) + ns(Dewt1−3, dfDew)+

+ns(t, dft) + ns(t, 4)× Age2 + ns(t, 4)× Age3

log(µt) = PM10t−1 + confounders

(5)
where µt = E[Yt|µt, φ] is the expected number of deaths, φ is the overdispersion pa-

rameter, PM10t−1 denotes particulate matter of a diameter smaller than 10 microns

on day t− 1, DOW is a categorical variable indicating the day of the week, Age2 and

18

http://biostats.bepress.com/jhubiostat/paper89



Age3 are indicator variables of the age groups (65 − 74) and (≥ 75), and O3t−1 is

the ambient ozone level on day t − 1. In addition Temp1−3 = (Tempt + Tempt−1 +

Tempt−2)/3 and Dew1−3 = (Dewt + Dewt−1 + Dewt−2)/3 denote three-day averages

of past temperature and dew point temperature levels, respectively. We include

ns(Tempt, dfTemp), ns(Tempt1−3, dfTemp), ns(Dewt, dfDew) and ns(Dewt1−3, dfDew) to

adjust for the potential non linear confounding effects of temperature and dew point

temperature, where ns(·, df) denotes a natural cubic spline with df degrees of free-

dom. We also include ns(t, dft) to adjust for seasonal variations in mortality rates

due to unmeasured confounders such as influenza epidemics. Finally, we add the in-

teraction terms ns(t, 4)×Age2 and ns(t, 4)×Age3 to allow these seasonal variations

to be different across age groups.

This model specification has been extensively used and discussed in previous

NMMAPS analyses [8, 14]. Specifically, the NMMAPS basic model can be defined

by the Equation (5) with dfTemp = dfDew = 6, dft = 8 per year for a total of 112 over

14 years. Model choice and sensitivity analyses with respect to the selection of the

number of degrees of freedom in the smooth function of time are discussed in [7, 22]

and with respect to the selection of the number of degrees of freedom in the smooth

functions of temperature and dewpoint are discussed in Welty and Zeger 2005, [29].

To apply both STEADy and BMA we need to specify a list which is likely to

include all the potential confounders. Specifically, we assume that the full model

(that is the model that includes all potential confounders) has twice the number of

degrees of freedom in the smooth functions of time and temperature than the basic

NMMAPS model (dfTemp = dfDew = 12, dft = 16 per year).

The first step is to identify good predictors of PM10t−1 in the model space:

PM10t−1 = confounders + εt . (6)

The total number of confounders in this model is 289. Due to singularities in

the design matrix we eliminated 55 spline basis. Thus, we use STEADy to explore

the model space generated by the remaining 234 confounders. We then obtain the

exposure’s dominant model class DMCX = U0,X , . . . , U234,X for the exposure (6)

19

Hosted by The Berkeley Electronic Press



using the stochastic search described in Appendix A1. We used 500 iterations per

orbit for a total of 500× 234 = 117, 000 iterations with an average computation time

1.62 seconds/iteration on a PC (3.4GHz CPU, 3.4 Gb RAM). Note that fitting the

full model with n = 7, 464 observations takes approximately 7 seconds. In STEADy,

the information for every model visited is recorded and computation time is saved

each time a model is revisited by using the previously recorded information.

Figure 4 shows the deviance differences D(X|Z,Um,X)−D(X|Z,Um+1,X) (top

panel) and the point estimates and 95% confidence intervals of β in [Y |X, Z,Um,X ]

(bottom panel) for m = 0, . . . , 234. The horizontal red lines are placed at the BIC

and AIC penalties log(7464) = 8.92 and at 2. The deviance differences between

neighboring orbits become negligible starting from orbit 130, which closely agrees

with the stabilization of the exposure effect point estimate around orbit 132. The

STEADy software also provides the full list of confounders in the dominant model

corresponding to each orbit. For example, orbit 132 includes O3 and DOW, but does

not include the indicators for age categories. It also includes some, but not all bases

of the natural cubic splines used in the model. Interestingly, O3 had a p–value of

0.62 in the full outcome model and would be discarded by any model selection or

averaging procedure focusing only on the outcome models.

At the second stage of STEADy, we first include in the outcome model the 132

covariates identified above and then we use STEADy to explore the model space gen-

erated by the remaining 234− 132 = 102 potential confounders. We apply STEADy

to the outcome models using 500 iterations per orbit for a total of 500× 102 = 51000

iterations with an average computation time of 4.5 seconds/iteration.

Figure 5 (top panel) considers the outcome model dominant class and shows the

deviance differences for neighboring orbits. The horizontal red lines are placed at

at the BIC and AIC penalties log(7464) = 8.92 and 2. Figure 5 (bottom panel)

shows the point estimates and 95% confidence intervals of β. The top plot shows that

among the first 15 models, approximately, the deviance differences are large. This

suggests that, in addition to the 132 variables forced in the model, there are 15 to
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20 more variables that may be predictive of mortality. However, the bottom panel

shows remarkable stability of point estimates across all models in the dominant model

class suggesting that none of the 102 additional variables are necessary to obtain an

unbiased parameter estimate. This indicates that selecting good predictors of the

PM10 provides almost complete confounding adjustment.

Another interesting feature of these results is that the standard errors of the

exposure effect estimates increase only 2% from orbit 0 to orbit 102. These models

show that 10 µg/m3 increases in PM10 at lag 1 is associated with a 0.64 percent

increase in all cause mortality with 95% confidence interval equal to (0.30, 0.98). The

confidence intervals are based on the dominant model for orbit 40 in the outcome

dominant model class. Under the NMMAPS basic model and the full model, the

point estimates and 95% confidence interval of the PM10t−1 coefficient multiplied

by 1000 (β) are equal to 0.66 (95% CI 0.30, 1.02)) and 0.64 (95% CI 0.28, 1.00),

respectively. These estimates denote the percent increase in all cause mortality for

10µ/m3 increase in previous day PM10t−1.

5.2 PM2.5 and hospital admissions for COPD
In this section we carry out a data analysis where we apply and compare STEADy and

BIC-based BMA to time series data on PM2.5 levels and hospital admissions rates for

Chronic Obstructive Pulmonary Disease (COPD) among Medicare enrollees. Data

are for the period 1999-2002 and for five US counties with more than 200,000 people

that are older than 65 and are part of the National Medicare Study.

We consider the following model:





log(µt) = PM2.5t + DOW + Age2 + ns(Temp, dfTemp) + ns(Temp1−3, dfTemp)+

+ns(Dew, dfDew) + ns(Dew1−3, dfDew) + ns(t, dft) + ns(t, 4)× Age2+

+offset{log(Nt)}
(7)

where Age2 is an indicator for people older than 75, Nt is the number of people at risk

on day t. In our ongoing Medicare study we are using the model defined in Equation

(7) with dfTemp = 6, dfDew = 3 and dft = 8 per year for a total of 32. We refer to this
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as the Medicare basic model.

We define the full model as in Equation (7) with number of degrees of freedom

in the smooth functions of temperature, dew point temperature and time equal to

twice the number of degrees of freedom specified in the Medicare basic model (e.g.

dfTemp = 12, dfDew = 6 and dft = 16 per year). In the full model we include O3t−1

and year indicators as additional covariates with respect to the basic Medicare model.

We then estimate the short-term effects of PM2.5 on hospital admission rates using

the following 5 approaches: 1) the Medicare basic model (Basic); 2) the Medicare

basic model with O3t−1 included in the model (Basic + O3); 3) STEADy; 4) BIC-

based BMA with PM2.5 not forced in the model (BMA & PM2.5 not-f); 5) BIC-

based BMA with PM2.5 forced in the model (BMA & PM2.5f). In each case, the

predictors DOW, Age2 and the year indicators were forced in all models while the

rest of the variables where included or not according to the specific algorithm. Table

2 summarizes estimates of the PM2.5 effects and their standard errors.

The two baseline models (Basic and Basic + O3) yield positive and statistically

significant estimates of the PM2.5 effect in Fresno and Sacramento, and positive,

though not significant, estimates in the other three counties.

STEADy reaches an early effect stabilization in all cases: figures are not included,

but are similar to those for the Detroit data set. STEADy estimates are roughly

consistent with those of the full model. Compared to the baseline models, STEADy

estimate are generally consistent in sign but smaller in magnitude. In data sets of

such size, the inclusion of additional variables required to reach effect stabilization

does not generally result in a large increase in the standard error of the estimates,

though a slight increase is observed in Fresno and Sacramento.

In contrast, differences between BMA and the baseline models are less predictable.

In Fresno both BMA approaches produce statistically significant effects that are

slightly larger than the ones produced by the basic models. For Sacramento the

two BMA approaches disagree though both give smaller coefficients than the baseline

models and STEADy. This variability is the result of the fact that BIC-based BMA
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penalizes the inclusion of confounders that are correlated with the exposure which

leads to averaging over effects that have different biological meanings. In all counties

except Fresno, BMA with PM2.5 not forced in the model estimates the exposure effect

to be zero. This is because when the exposure effect estimate is close or below the

threshold of statistical significance, then BIC assigns a small weight to PM2.5.

Table 2: Estimates of the percent increase in COPD admissions (multiplied by 10)
associated with a 10µg/m3 increase in PM2.5 for 5 US counties under five methods.
1) the Medicare basic model (Basic); 2) the Medicare basic model +O3t−1 (Basic O3) ;
3) STEADy; 4) BIC-based BMA with PM2.5 forced in the model; 4) BIC-based BMA
with PM2.5 not forced in the model. Standard deviations are reported as index of the
point estimate and 95% confidence intervals are reported below the point estimate
and standard deviation.

Basic Basic+O3 STEADy BMA & PM2.5 not-f BMA & PM2.5 f

Fresno
7.281.96

(3.44, 11.12)
7.212.02

(3.25, 11.16)
5.392.16

(1.16, 9.62)
8.042.37

(3.39, 12.69)
8.142.14

(3.94, 12.34)

Sacramento
7.072.74

(1.71, 12.44)
7.352.82

(1.81, 12.88)
4.323.05

(−1.67, 10.30)
0.030.40

(−0.76, 0.82)
3.682.27

(−0.76, 8.12)

Miami
4.012.73

(−1.34, 9.36)
3.702.78

(−1.75, 9.14)
3.202.78

(−2.26, 8.65)
0.0050.18

(−0.35, 0.36)
1.182.52

(−3.76, 6.12)

Los Angeles
0.590.82

(−1.01, 2.20)
0.670.83

(−0.96, 2.30)
0.290.85

(−1.38, 1.95)
0.0020.057

(−0.11, 0.12)
0.620.72

(−.78, 2.02)

Cook
−1.991.36

(−4.65, 0.67)
−2.031.36

(−4.69, 0.64)
−1.281.37

(−3.97, 1.41)
0.0010.059

(−0.11, 0.12)
0.671.06

(−1.41, 2.76)

6 Discussion
Motivated by time series studies of air pollution and health, we introduced a new

conceptual framework and practical approach (STEADy) for estimating an exposure

effect while accounting for uncertainty in the selection of confounders used for adjust-

ment. We consider the case in which the important confounders are available in the

candidate set for analysis, so that the true model belongs to the model space. Then in

the set of all models that includes the true model’s variables the exposure parameter

represents the same, correctly adjusted, exposure effect. Our approach to adjustment
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uncertainty aims to identify such a set and to borrow strength across models within

it for exposure effect estimation. We thus handle adjustment uncertainty by finding

a set of models that agree on the effect estimate in both magnitude and interpreta-

tion. Because of the size and complexity of model spaces, we build this consensus by

seeking stabilization of the estimated effect as the model dimensionality increases.

Accounting for uncertainty in the selection of the variables that are needed to

properly adjust for confounders in an observational study is a fundamentally differ-

ent problem from accounting for uncertainty in the selection of variables for predicting

a response. We developed this idea both theoretically and via simulations, and re-

examined the adequacy of using BMA for accounting for model uncertainty in risk

estimation. We found that failing to recognize this difference leads to the several

limitations of the standard BMA approach in this context, and also that it is possi-

ble to devise alternatives (such as STEADy) that provide unbiased estimates while

accounting for uncertainty. These findings are supported by theoretical results and

simulations and illustrated in real data analyses. An open question, and work in

progress, is how to generalize the BMA approach to handle the pitfalls described

within a Bayesian framework.

In this section we review strengths and limitations of the STEADy algorithm, and

then discuss the implications of our findings on the comparison between uncertainty

adjustment in effect estimation and prediction.

STEADy is a practical approach to explore both the exposure’s and outcome’s

model spaces, find important covariates that need to be included in the regression

model, and identify a set of models that provide a consensus estimate of the effect.

STEADy is intuitive and directly designed to answer the question “What is the effect

of X on Y ?”, by dividing it into M + 1 simpler questions of the type “What is the

effect of X on Y when we control for the m ∈ {0, . . . , M} covariates, U , that are

most predictive of X?”. By identifying important predictors of the exposure and

forcing them in the outcome models instead of exploring the outcome space directly,

STEADy leads to a fast stabilization of the estimate, and therefore to an efficient
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estimation of the exposure effect.

STEADy introduces a transparent and efficient algorithm for sequentially explor-

ing the exposure and the outcome spaces. STEADy partitions the model spaces into

orbits that correspond to models with the same number of covariates. This improves

efficiency in the search of the exposure’s and outcome’s model spaces. In every orbit

the algorithm explores a relevant and manageable subset of models, currently 500 to

1000 models per orbit, and provides estimates of the likelihood and of the exposure

effect under each model. Importantly, this method frees the search from the need to

specify arbitrary penalties to compare models of different dimensionality, or priors

on the number of necessary confounders. An important component of STEADy is

the visual presentation of exposure effect estimators corresponding to the maximum

likelihood models within each orbit. The plot of point estimators and confidence in-

tervals for exposure effects combined with the plots of deviance differences between

orbits provides a sensible sensitivity analysis for adjustment uncertainty. In addition,

the R software that we have developed to implement STEADy can be used for all

distribution families of the R function glm including, but not limited to, normal,

binomial and poisson.

Scientific knowledge can be incorporated in the STEADy algorithm easily. For

example, known confounders can be forced in all models or be re-validated during

the exploration of the exposure model space. In many applications, confounders are

partitioned into scientifically relevant groups, such as biological, environmental, or

socio–economic factors. STEADy can be used in this context by focusing first on

the biological risk factors, identifying and forcing the important confounders in all

models and iterate the procedure with the other groups of risk factors.

STEADy relies upon the specification of a candidate set of confounders and on the

assumption that all necessary confounders are included in the set. In some circum-

stances, such specification might be challenging. However, the choice of a set of poten-

tial predictors is a problem that STEADy shares with many methods that account for

model uncertainty, including BMA. Scientific knowledge and data availability usually
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guide this choice while external studies and additional data may validate this choice

and suggest alternative sets. Alternative Bayesian approaces to model uncertainty

that do not require the true model to be in the model space have been proposed

using the so-called M-open approach [3]. This may provide a fruitful direction for

uncertainty adjustment in effect estimation as well.

A potential limitation of the STEADY algorithm is that stabilization may be

reached at a model that may not be convincing from a scientific point of view and

the corresponding effect exposure estimate might not have an easy interpretation.

However in this circumstance, because the STEADy estimate is a consensus over a

set of models, we can report our results under any scientifically meaningful model in

the set.

BMA approaches are designed to account for model uncertainty in model selec-

tion and prediction and are also sometime used for adjustment uncertainty. From

a theoretical standpoint and by carrying out simulation studies, we compared our

approach with the application of BMA. In our simulations, we found that STEADy

outperforms standard implementations of BMA for exposure effect estimation while

involving similar computational demands. We also applied STEADy and BMA to

daily time series studies of air pollution and mortality and morbidity outcomes. We

found that STEADy and BMA can produce results with markedly different policy

implications.

Our results highlight serious limitations of BMA for exposure effect estimation,

especially in large data sets. Specifically, BMA for parameter estimation can assign

a considerable probability mass to models that include only a subset of the neces-

sary confounders, thus biasing the exposure effect estimation. In addition, BMA for

parameter estimation can either over or underestimate the statistical variance of the

exposure effect estimate. Overestimation of the uncertainty can occur when very

different exposure effect estimates are averaged across models that perform differ-

ent confounder adjustments. Underestimation of the uncertainty can occur when a

considerable mass of posterior probability is assigned to models that do not include
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important confounders and thus produce biased estimates of the exposure effect with

small standard errors.

Finally, the implementation of BMA depends on the calculation of posterior model

probabilities which in turn depend on the prior distribution. This dependence is

marked in large model spaces with correlated variables. We found that diffuse priors

favor the most parsimonious model and therefore informative priors need to be spec-

ified. However, in time series studies of air pollution and health, because of the large

number of correlated covariates that needs to be included into the model, specifying

informative and biologically meaningful prior model probabilities is very challenging.

Currently, accounting for model and adjustment uncertainty when estimating

health risk associated with exposure to air pollution is at the center of a heated

policy debate [15, 18, 25]. Recently, BMA has been applied in time series analysis of

air pollution and health to account for model uncertainty. Koop and Tole (2004), [15]

applied BMA to daily time series data for the period 1992–1997 using daily number

of deaths as outcome and daily levels of particulate matter, ozone, and other gaseous

pollutants as exposures for Toronto, Canada. They used a linear model and prior

model probabilities calibrated so that the posterior model probabilities are similar to

the ones obtained by use of the BIC approximation. They concluded that “standard

deviations for air pollution–mortality impacts become very large when model uncer-

tainty is incorporated into the analysis”. The authors argue that BMA should be

used instead of expert-based model selection.

Results of our paper indicate several reasons for strong skepticism about the Koop

and Tole (2004) analyses. First, our simulation demonstrate that their approach

produces biased estimates of the exposure effect. One source of bias is that exposure

variables were not forced into the outcome models and therefore estimated exposure

effects where averaged with zero. A second source of bias is that estimated exposure

effects were averaged across models that did not include all the relevant confounders.

Moreover, their priors on coefficients are so diffuse that even variables with strong

effects are likely to be excluded with high probability (see definitions B4 and B5 in
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Appendix B of Koop and Tole (2004)). Specifically, the authors used g–priors, with

the degree of diffusion controlled by the constant C = max(M2, n) ≥ n. It is easy to

show that when C = n this is essentially equivalent to using a BIC approximation

of the posterior model probabilities. However, Koop and Tole (2004) used M2 >> n

which can lead to ignoring even stronger signals in the data. Finally, the authors

used linear models to describe the distribution of low count time series data, a choice

that is likely to be inappropriate for describing the sampling variability.

6.1 Conclusion
Despite the evident need for uncertainty adjustment in effect estimation across many

research areas, little attention has been given to this issue from the standpoint of sta-

tistical methodology. In practice, uncertainty adjustment is either ignored or handled

with methods, such as BMA, that have been developed to solve problems that are

methodologically different, and may fail to recognize critical aspects of the problem.

We hope to have demonstrated that this a unique, important, and difficult problem,

to have provided practitioners with an efficient solution to begin exploring adjust-

ment uncertainty in effect estimation, and to have stimulated further much needed

methodological discussion.

Acknowledgments: Funding for Ciprian Crainiceanu was provided by the Johns

Hopkins Faculty Innovation Award. Funding for Francesca Dominici was provided by

a grant from the National Institute for Environmental Health Sciences (ES012054-01)

and by the by NIEHS Center in Urban Environmental Health (P30 ES 03819).

Appendix A1
Likelihood maximization for models in M is usually fast and robust for large data sets and the

dominant model in the orbit m, αm, can be obtained using the following stochastic search algorithm.

Start with a model, say α0, in the mth orbit Om and select at random one covariate in U that is

already in the model, say Ui, and one that is not, say Uj . Construct a new model, say α1, by replacing

Ui by Uj . The new model becomes the current model with probability p0→1 = min (1, L1/L0) where

L0 and L1 are the maximum likelihoods of the models α0 and α1 respectively. Otherwise a new

28

http://biostats.bepress.com/jhubiostat/paper89



pair of covariates is simulated and the procedure is iterated. This algorithm is fast because at every

step it requires at most one likelihood calculation for each model proposed to be visited. By keeping

records of the maximum likelihood for each model previously proposed, the likelihood of a new model

is often known and the model does not need to be refit.

A technical detail that proved very useful was to use the information from one orbit to the

next. More precisely, if Dm is the maximum likelihood model on orbit m among visited models, the

starting point for the optimization algorithm in the m+1th orbit is obtained by adding one covariate

to Dm. This uses accumulated information from all previous orbit explorations and ensures that the

likelihood function is increasing from one orbit to the next.

Appendix A2

Proof of Theorem 1.

i. |β̂STEADy
n − β∗| ≤ |β̂STEADy

n − β̂αF
n | + |β̂αF

n − β∗| < ε/hn + |β̂αF
n − β∗|. This shows that

β̂STEADy
n is consistent.

ii. By construction v̂n(α̂STEADy
n ) ≤ v̂n(αF ) which implies limn→∞{nv̂n(α̂STEADy

n )} ≤ limn→∞{nv̂n(α̂F )} =

v(αF ). Under standard regularity assumptions hn(β̂α0
n − β∗) → 0 almost surely. Let Ah be the con-

vergence set and denote by Aα0 and AαF the convergence sets for nv̂n(α0) and nv̂n(αF ) respectively.

For every ω ∈ Ah ∃Nω,ε so that for every n ≥ Nω,ε we have hn|β̂α0
n − β∗| < ε. Thus for every

n ≥ Nω,ε α0 is one of the models in the set over which the minimum is taken in equation (3). Thus

nv̂n(α̂STEADy
n ) ≤ nv̂n(α0) and for every ω ∈ Ah ∩Aα0 ∩AαF

limn→∞{nv̂n(α̂STEADy
n )} ≤ v(α0) < v(αF )

iii. From definition β̂Wn → ∑
α w(α)βα =

∑
α∈I w(α)βα +

∑
α∈IC w(α)βα almost surely

under model α∗. Writing β∗ =
∑

α∈I w(α)β∗ +
∑

α∈IC w(α)β∗ the asymptotic bias of β̂Wn is
∑

α∈I w(α)βα + {∑α∈I w(α)}β∗.

Proof of Theorem 2. It is sufficient to show that for any pair of nested models the BIC based

weighting scheme will favor asymptotically the smallest of the two models. Without loss of generality,

assume that y1, . . . , yn are i.i.d. with probability density function ρ(y|θ), with θ ∈ Θ ⊂ R. Let

θ0 ∈ int(Θ) and assume that the regularity conditions for the existence, consistency and asymptotic

normality of the MLE are satisfied. Consider the following testing framework H0 : θ = θ0 versus

HA : θ 6= θ0. Denote by α0, α1 the models corresponding to H0 and HA respectively and by θ̂n the

MLE of θ under α1. Define the likelihood ratio statistic Λ0
n(Y ) = ρ(Y |θ0)/ρ(Y |θ̂n). It is known that
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if θ = θ0 then −2 log Λn(Y ) ⇒ χ2
1, where “⇒” denotes weak convergence. Since BIC(α0) ≤ BIC(α1)

is equivalent to −2 log Λn(Y ) ≤ log(n). It follows that limn→∞[P{BIC(α0) ≤ BIC(α1)}] = 1 under

the null α0.

Assume now that α1 is the true model and θ1 is the true value of the parameter. Also assume

that θ0 = θ1 + c/
√

n. Note that {BIC(α0) ≥ BIC(α1)} is equivalent to

[
−2 log Λ1

n(Y ) + 2n

{
1
n

n∑

i=1

log ρ(yi|θ1)− 1
n

n∑

i=1

log ρ(yi|θ1 + c/
√

n)

}
≤ log(n)

]

It is sufficient to prove that, almost surely,

vn =
1
n

n∑

i=1

log ρ(yi|θ1)− 1
n

n∑

i=1

log ρ(yi|θ1 + c/
√

n)

converges in distribution to a random variable. Using a second order Taylor expansion around the

MLE θ̂n one obtains

log ρ(Y |θ) = log ρ(Y |θ̂n)−

(
θ − θ̂n

)2

2
× ∂2

∂θ2
log ρ(Y |θ̂n) + R(θ, θ̂n) ,

where there exists a constant M such that |R(θ, θ̂n)| ≤ M(θ − θ̂n)3. It follows immediately that

vn =
{

2c
√

n(θ1 − θ̂n)− c2
} ∂2

∂θ2
ρ(Y |θ̂n) + 2nR(θ1, θ̂n) + 2nR(θ1 + c/

√
n, θ̂n) .

It is easy to show that, in probability, 2nR(θ1, θ̂n) + 2nR(θ1 + c/
√

n, θ̂n) → 0 and

{
2c
√

n(θ1 − θ̂n)− c2
} ∂2

∂θ2
ρ(Y |θ̂n) ⇒ [−2cX + c2]Iθ1 ,

where Iθ is the Fisher information at θ and X denotes a random variable with N(0, I−1
θ1

) distribution,

which shows that limn→∞ P [{BIC(α0) ≥ BIC(α1)}] = 0 and ends the proof.
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Figure 1: Results for 3 data sets simulated from model (4) with ρ = 0.7 (first row)
and ρ = 0 (second row) with random X and U ’s. The first column shows the deviance
differences between the outcome dominant models on orbit k and on orbit k + 1, the
second column shows the deviance differences (in log scale) between the exposure
dominant model on orbit k and on orbit k + 1, and the third column shows the
estimates of β1 for each of the 3 simulated data sets all plotted against model’s
number 1, . . . , 53. The horizontal red lines in the first two columns are placed at the
BIC and AIC penalties log(1000) = 6.91 and 2, respectively. The horizontal red line
in the third column is placed at the true value of the parameter, β = 0.1.
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Figure 2: Estimated standard errors of β̂1 for 100 simulated data sets using STEADy
(X–axis) and BMA (Y-axis). Data was simulated from model (4) with ρ = 0.7 (top)
and ρ = 0 (bottom) using random X and U ’s.
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Figure 3: Top: sorted posterior probability that X1 is included into the model for
each of the 100 data sets. Posterior probabilities are calculated by use of the BIC
approximation. Bottom: histogram of the averages of the β1s estimates across the
100 datasets M(β̂1) under the different models. Data were simulated for ρ = 0.7 with
random X and U ’s and with X1 was not forced into the model. True value of the
parameter is β = 0.1.
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Figure 4: Results for Detroit 1987–2000. Top panel: deviance differences between
the exposure dominant models on orbit k and on orbit k + 1 plotted against model
numbers with complexity increasing from left to right. The horizontal red lines are
placed at the BIC and AIC penalties log(7464) = 8.92 and 2, respectively. Bottom
graph: Estimated percent increase in all cause mortality associated with a 10µg/m3

of PM10t−1 with 95% confidence intervals corresponding to each exposure dominant
model.
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Figure 5: Detroit 1987–2000. Top: deviance differences between the outcome domi-
nant models on orbit k and orbit k +1 vs. model numbers with complexity increasing
from left to right. Horizontal red lines are placed at the BIC and AIC penalties
log(7464) = 8.92 and 2, respectively. Bottom: Estimated percent increase in all
cause mortality associated with a 10µg/m3 of PM10t−1 with 95% confidence intervals.
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