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Modeling Menstrual Cycle Length and
Variability at the Approach of Menopause

Using Bayesian Changepoint Models

Xiaobi Huang, Michael R. Elliott, and Sioban D. Harlow

Abstract

As women approach menopause, the patterns of their menstruation cycle lengths
change. To study these changes, we need to jointly model both the mean and vari-
ability of the cycle length. The model incorporates separate mean and variance
change points for each woman and a hierarchical model to link them together,
along with regression components to include predictors of menopausal onset such
as age at menarche and parity. Data are from TREMIN, an ongoing 70-year old
longitudinal study that has obtained menstrual calendar data of women throughout
their reproductive life course. An additional complexity arises from the fact that
these calendars have substantial missingness due to hormone use, surgery, fail-
ure to report, and loss of contact. We integrate multiple imputation and time-to
event modeling in our Bayesian estimation procedure to deal with different forms
of the missingness. Posterior predictive model checks are applied to evaluate the
model fit. Our method successfully modeled patterns of women’s menstrual cy-
cle trajectories throughout their late reproductive life and identified the change
points for mean and variability of segment length, which provides insight into the
menopausal process. More generally, our model points the way toward increasing
use of joint mean-variance models to predict health outcomes and better under-
stand disease processes.



1 Introduction

Menstrual cycles are the most easily observed markers of ovarian function throughout re-

productive life. Changes in menstrual bleeding patterns are important indicators of ovarian

aging, endocrine disruption and endocrine risk factors for chronic disease (Harlow 1995).

The menopausal transition is increasingly recognized to be a critical period in women’s lives

as physiologic changes and health practices adopted during this period frequently define

women’s long term chronic disease risk profile (Wildman et al. 2008, Sowers et al. 2006,

Avis et al. 2004). Given this recent interest in the interface between reproductive and so-

matic aging, several proposals for staging reproductive aging have emerged. The Stages of

Reproductive Aging Workshop (STRAW) recommendations (Soules et al. 2001), its mod-

ifications (Harlow et al. 2007) and several other proposals (Mitchell et al. 2000,Taffe and

Dennerstein 2002, Mansfield et al. 2004) define criteria primarily by menstrual bleeding char-

acteristics to determine onset of the transition, as well as the stages within the transition

period.

Information on the patterns of menstrual bleeding across the reproductive lifespan derives

mainly from four seminal menstrual calendar studies, including three studies from Caucasian

populations (Chiazze et al. 1968, Treloar et al. 1967, Vollman 1977) and one study from

a Japanese population (Matsumoto et al. 1962, Matsumoto et al. 1979). Treloar (1981)

was the first to estimate age at entry into the menopausal transition by visual inspection of

menstrual cycle lengths for the 12 year period prior to the final menstrual period (FMP). He

observed that during the menopausal transition longer intervals become mixed with shorter

than usual intervals, increasing the variability in cycle length. He defined onset of the

menopausal transition as the age at which variability in cycle length visually increased, and
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estimated median age of entry into the transition at 45.5 years with a median duration of

transition of 4.8 years. Brambilla et al. (1994) introduced the term “late perimenopause”

and defined women as being in the late stage of the transition by self-report of 3-9 months of

amenorrhea or menstrual irregularity. Subsequently, investigators from several longitudinal

studies (Melbourne Women’s Midlife Health Project [MWMHP] (Dennerstein et al. 1993),

Seattle Midlife Women’s Health Study [SWMHS] (Mitchell et al. 2000), TREMIN (Treloar

et al. 1967)) proposed various bleeding criteria to define the transition period (Taffe and

Dennestein 2002, Mitchell et al. 2000, Mansfield et al. 2004, Lisabeth et al. 2004a).

STRAW defined stages principally by changes in menstrual bleeding characteristics and,

to a lesser extent, by changes in serum follicle-stimulating hormone (FSH) levels (Soules

et al. 2001). STRAW divided reproductive life prior to menopause into the reproductive

years (3 stages) and the transition years (2 stages, early and late transition). Entry into

the early transition is characterized by increased variability in menstrual cycle length while

entry into the late transition is characterized by the occurrence of skipped cycles or amen-

orrhea. The STRAW recommendations by (Soules et al. 2001), although based on emerging

results of the large cohort studies of midlife women, were not data-driven. The multi-study

ReSTAGE Collaboration subsequently evaluated bleeding criteria that served as the basis

of the STRAW recommendations and documented the extent to which the various proposed

criteria identified a similar moment in women’s reproductive life (Harlow et al. 2006, Harlow

et al. 2007, Harlow et al. 2008). Essentially, all of these proposals attempt to define bleeding

criteria that identify a change-point in women’s menstrual cycle histories. Notably, however,

none of the papers attempted to model these changepoints longitudinally.

Harlow et al. (2000) longitudinally modeled change in mean cycle length, as well as

in between-woman and within-woman variance across the reproductive lifespan and found
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that within-woman heterogeneity in cycle length was an important source of variation in

menstrual patterns, especially after age 40. They fitted a bipartite cubic spline model that

modeled the risk of both very short and very long segments using changepoints fixed at ages

34 and 40. Lisabeth et al. (2004b) used generalized estimating equations to model changes

in mean cycle length and variance independent of the mean referenced to age at FMP and

demonstrated that variance in menstrual cycle lengths increase on average 2 to 6 years before

increases in the mean, depending on age at FMP.

Prior descriptive analyses also suggest that there is some heterogeneity in women’s men-

strual trajectories. Menstrual characteristics in young adult women are associated with

fertility (Small et al. 2006) and the timing of menopause (Den Tonkelaar et al. 1998, Wal-

lace et al. 1979, Lisabeth et al. 2004b). A prior analysis of the TREMIN data by (Wallace

et al. 1979) reported that women with later menopause had longer mean cycle length and

greater variability two years before menopause than women with earlier menopause. Lisa-

beth and colleagues (Lisabeth et al. 2004b) in a longitudinal analysis of the same data also

reported that longer cycles were associated with a later age of menopause. Another study

(Den Tonkelaar et al. 1998) reported that women with a late age at menopause (55-59)

had a longer mean cycle length in the nine years prior to menopause than women with an

earlier menopause. Weinstein and colleagues (Weinstein et al. 2003) found that low serial

irregularity, a measure of the variability of the changes in cycle length, was associated with

younger age at FMP, after adjusting for age at menarche, number of births, and hormone

use.

Our goal is to model how menstrual cycle length and variability change when women

approach menopause. We assume that there are underlying unknown mean and variance

changepoints for each individual woman and build a Bayesian change point model to estimate
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distributions of these changepoints. Furthermore, we impute cycles that are missing due

to hormone use, gaps in the menstrual calendar and gynecological surgery, allowing more

subjects and information to be included. Most prior reports have censored women when

they began using hormonal contraceptives or hormone therapy (HT) (Weinstein et al. 2003,

Guo et al. 2006, Harlow et al. 2006, Harlow et al. 2008).

Statistically, the objective is to model both the mean and variance of a set of curves.

Several approaches have been proposed for correlated functional data of this type, includ-

ing the bipartite spline model proposed by (Harlow et al. 2000) which modelled mean and

between-subject variance by a linear random effect model and used a two-stage log-linear

regression to study within-subject variance vs. age. Crainiceanu et al. (2007) proposed

Bayesian penalized splines to model both mean and variance by using a set of fixed knots for

the splines with structural covariance matrix and random effects to depict the heterogeneity

of variance. Lisabeth et al. (2004b) modeled means and variances over time separately

using independent generalized estimating equations. Gunn and Dunson (2005) modeled hor-

mone patterns in the menstrual cycles using a Bayesian hierarchical model and mapped the

posterior draws to a constrained space which guarantees that each curve increases mono-

tonically to an unknown changepoint and decreases afterwards. To model student test

achievement, Thum and Bhattacharya (2001) proposed a hierarchical Bayesian regression

model which included two-phase composite of yi ∼ N(β01 + β11xi, σ
2
1), i = 1, 2, . . . , k and

yi ∼ N(β02 + β12xi, σ
2
2), i = k + 1, k + 2, . . . , n where k was the unknown change point.

Hall et al. (2003) used unknown change points for the splines to capture individual cognitive

function over time. These approaches estimated unknown changepoints for the mean but did

not model the variance function over time. Davidian and Carroll (1987) proposed another

approach for variance function estimation, which models the variance as proportional to a
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power of the mean response. This approach builds a separate function to model variance but

did not include changepoints. Here we consider a Bayesian hierarchical model that estimates

individual-level mean and variance profiles with unknown changepoints. These changepoints

represent measures of menopausal transition, and, together with intercepts and pre- and

post-changepoint slopes, provide detailed summaries of the menstrual cycle data that can

be related to individual level covariates such as age at menarche, parity, and secular cohort

membership.

Our article is organized as follows. In section 2 we describe the TREMIN study data. In

section 3 we describe a Bayesian model to study the trajectories of women’s menstrual cycle

length that estimates unknown changepoints for both means and variances and allows these

changepoints to be functions of subject-level covariates. In addition, we impute different

forms of missingness in the data set and incorporate the imputation in the Markov Chain

Monte Carlo sampling used to estimate the algorithm. In section 4 we give the results from

fitted the model to menstrual data, along with Bayesian posterior predictive model checks.

In section 5 we discuss how our results compare to and extend previous menstrual cycle

staging research, along with possible extensions of our model.

2 The TREMIN Dataset

Our models are designed for the TREMIN data, one of the only two data sets available

providing individual women’s menstrual calendar data across their reproductive life span.

The study, initiated by Dr. Alan Treloar (Treloar et al. 1967), recruited the first cohort

of TREMIN: 2350 college-aged women attending the University of Minnesota between 1934

and 1939.
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Definitions recommended by WHO (Belsey and Farley 1987) were used to summarize the

calendar data. A bleeding segment, analogous to the term menstrual cycle, is a period of

consecutive bleeding days and the subsequent bleeding-free days. Bleed-free intervals had to

consist of at least 3 days; 1-2 bleed-free days between 2 bleeding days were considered part of

the bleeding episode. Bleeding segment length is the dependent variable in our study. Age at

menopause is determined by the date of final menstrual period (FMP), which is attributed

retrospectively after 12 months of amenorrhea on the calendar cards (WHO 1996).

We used data from 617 women in the 1935-1939 cohort who were a) age 25 or less at en-

rollment, b) used hormones for less than four years continuously, c) had at least one observed

segment before age 40, and d) were not censored before age 40 (Data tape TRUST998.FINAL,

March 1993). We consider segment lengths beginning at age 35. After this left truncation,

the data set has a total of 95,246 observed menstrual segment records. Each record consists

of woman’s age, bleeding segment length, and status indicators for pregnancy, hormone use

and surgery. Related subject-level information including age at menarche and parity are also

available.

Pregnancy intervals as well as the first two segments after a birth and the first seg-

ment after a spontaneous abortion are coded as non-menstrual intervals. Many women used

exogenous hormones at some point during their reproductive lives, mainly as hormonal re-

placement therapy. When hormones are used, the bleeding segment is coded as a treated

interval, during which ovarian function is masked. Thus, the segment data are considered

to be missing when women use hormones. A one-segment washout period after hormone use

ended was also treated as missing. Many studies of menstrual characteristics censor women

when they begin hormone use or ignore the time period during which women are using hor-

mones. However, Wegienka and Baird (2003) suggested that these strategies may introduce
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bias since hormone users are not a random sample of menstruating women. Omitting these

women or portions of their data will provide an incomplete description of experiences in

the overall population. In our analysis, we consider these data as missing and impute their

values for hormone use gaps of up to four years. Studies have not found that hormonal use

influences menstrual segment length after stopping use and allowing for a washout period

(Taylor et al. 1977, Treloar and Behn 1971).

The 617 women included in our analysis each contributed between 15 and 321 non-

missing segments to the analysis. The observed segment lengths vary from 4 to 366 days

with a median of 27 days. Final menstruation periods (FMPs) were observed for 313 subjects

(50.7%). Only 105 (17.0%) have complete data.

Figure 1 displays log segment lengths for four typical women in the TREMIN data set.

Subject A has complete data. She has a pregnancy gap which is not included in the analysis,

no gynecological surgery or periods of hormone use, and has an observed final menstruation

period (FMP). Subject B was coded as using hormones from age 36.07 to age 37.24, and her

information for this period is treated as missing. Her FMP is observed, however. Subject

C has intermittent missingness at age 36.95. She had a hysterectomy at age 45.78, thus her

menstrual history was truncated at this point and no FMP was observed. Subject D has

intermittent missing at age 39.59 and from age 41.56 to 43.64. She began hormone therapy

after age 50.21, with no untreated bleeds recorded afterwards; thus no FMP was observed.

3 Modeling Menstrual Cycle Data

We construct a Bayesian change point model for the mean and variance of the segment

length.
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3.1 Change Point Model for Mean and Variance

Let yit denote the tth menstrual segment length of subject i. Let ait denote the age at

the beginning of the tth menstrual segment of subject i, where i = 1, . . . , N , t = 1, . . . , Ti,

N = 617.

We consider a log-normal model with a linear change point for both the mean and variance

for each subject:

log(yit)|µit, σ
2
it ∼ N(µit, σ

2
it)

µit = αµ
i + βµ

i (ait − 35) + γµ
i (ait − θµ

i )+

log(σ2
it) = ασ

i + βσ
i (ait − 35) + γσ

i (ait − θσ
i )+

The function (x)+ = x if x ≥ 0, (x)+ = 0 if x < 0; θµ
i and θσ

i are the unknown change

points of mean and variance for subject i. The change points create a linear spline for each

mean and variance model. We denote these eight subject-level parameters for each woman

as Φi = (αµ
i , βµ

i , γµ
i , θµ

i , ασ
i , βσ

i , γσ
i , θσ

i )′.

To link the subject-level models, we postulate a multivariate normal prior for the subject-

level parameters:

Φi
ind∼ N(x′

iΛ, Ω)

where xi are covariates associated with subject i. Thus Λ and Ω can also be considered as

population level parameters, with Λ as the regression coefficients and Ω⊗IN as the covariance

matrix for the regression of Φi on xi.

We complete the model specification by postulating an Inverse-Wishart hyperprior for Λ

and Ω:

p(Λ, Ω) = Inv −Wishart(Ω; 1, I)

which is completely flat for Λ and weakly informative for Ω.
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3.2 Posterior Inference

Let zit = log(yit). The goal of our analysis is to obtain inference on the joint posterior

distribution of Φ, Λ, and Ω conditional on the observed data zobs. The posterior based on

the complete data z is given by

p(Φ, Λ, Ω|z) ∝
N∏

i=1

[

Ti∏
t=1

p(zit|Φi)p(Φi|Λ, Ω)]p(Λ, Ω) ∝

[
N∏

i=1

[

Ti∏
t=1

1

σit

exp(−(zit − µit)
2

2σ2
it

)]|Ω|−
1
2 exp(−1

2
(Φi−x′

iΛ)′Ω−1(Φi−x′
iΛ))]|Ω|−

k+2
2 exp(−1

2
tr(Ω−1)) =

[
N∏

i=1

Ti∏
t=1

σ−1
it

]
| Ω |−

N+k+2
2 exp

{
N∑

i=1

[
Ti∑

t=1

(zit − µit)
2

σ2
it

+ (Φi − x′
i)

′Ω−1(Φi − x′
i)

]
+ tr(Ω−1)

}

where µit = αµ
i + βµ

i (ait − 35) + γµ
i (ait − θµ

i )+, σ2
it = exp(ασ

i + βσ
i (ait − 35) + γσ

i (ait − θσ
i )+),

k = dim(Ω) = 8. We sample the parameters via a MCMC algorithm that uses Metropolis-

within-Gibbs sampling. Details of the procedure is in Appendix A.

Missing data are imputed under a missing at random (MAR) assumption (Little and

Rubin 2002) using a standard selection model. Imputation is embedded within the MCMC

algorithm. Details are provided in the next section.

3.3 Imputation of Missing Data

The majority (512 of the 617 women) have some form of missing data. For 313 women, their

segment lengths are censored due to dropout while still menstruating, surgical termination

of menstruation due to hysterectomy or bilateral oophorectomy, or hormone use that began

before FMP and continued past FMP. For the remaining 207 women, missingness was only

intermittent. Intermittent missingness occurred due to sporadic non-reporting (women fail-

ing to report an individual segment or series of segments), or to periodic hormone use that

stopped before one of the censoring events.
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There is concern that missingness, particularly missingness due to hormone use, is not

missing completely at random. In order to deal with the different types of missingness, we

impute the missing data under a missing at random (MAR) assumption. To ensure that the

imputation is proper (i.e., fully conditions on the observed data), we need to ensure that

the imputed segment lengths sum to the length of the gap between observed segments. In

addition, when censoring is present, we need to estimate the age of the FMP in order to

terminate the imputation process.

When missingness is intermittent, we ensure that the imputed missing segment lengths

sum to the length of the gap using an importance sampling algorithm. For notational

simplicity, we assume that we have a single missing gap of length Li for subject i, starting

after segment yik. Conditional on Φi, the unobserved segment lengths (yi,k+1, ..., yi,k+S)′ = ỹi

in the gap are independent, subject to the constraint that
∑S

s=1 yi,k+s = T . We obtain a

draw log(yrep
i,k+1) ∼ N(µi,k+1, σ

2
i,k+1) where µi,k+1 = αµ

i + βµ
i (ai,k+1 − 35)+ + γµ

i (ai,k+1 − θµ
i )+

and σ2
i,k+1 = exp(ασ

i +βσ
i (ai,k+1− 35)+ + γσ

i (ai,k+1− θσ
i )+) and ai,k+1 = aik + yik is the age of

the start of segment yrep
i,k+1. A draw of yrep

i,k+2 is then obtained as for yrep
i,k+1, where now ai,k+2 =

ai,k+1 +yrep
i,k+1. This process is repeated until we obtain yrep

i,k+S such that
∑S

s=1 yrep
i,k+s > Li. We

then replace yrep
i,k+S with ỹrep

i,k+S = Li−
∑S−1

s=1 yrep
i,k+s. Let (y

(t)
i,k+1, ..., y

(t)
i,k+S−1, ỹ

(t)
i,k+S) = ỹ

(t)
i be the

tth vector of imputations, t = 1, ..., 50. Finally, we draw one of the 50 sets with probability

pt =
f(ỹ

(t)
i |Φi)P

t f(ỹ
(t)
i |Φi)

, where f(ỹ
(t)
i |Φi) =

∏S−1
s=1 φ

(
log(yi,k+s)−µi,k+s

σi,k+s

)
× φ

(
log(ỹi,k+S)−µi,k+S

σi,k+S

)
, where

φ(·) is the pdf of the standard normal distribution. On rare occasions where yrep
i,k+s < 4, the

imputed values were truncated to be 4; similarly yrep
i,k+s > 365 was truncated to 365.

When subjects’ segment lengths are censored, we need to impute an FMP since it is

unobserved. We model the age at FMP Qi as a piecewise exponential distribution with

hazard hi(t) = ηk for Ak−1 ≤ t < Ak for knots k = 1, ..., K. Knots are set at age 40, 42, 43, 44,
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45, 46, 46.5, 47, 47.5, 48, 48.5, 49, 49.5, 50, 50.5, 51, 51.5, 52, 52.5, 53, 53.5, 54, 55, 56, 57, and

60. We first obtain a draw from p(ηk | Q) ∼ GAMMA(
∑

i I(Ak−1 ≤ Qi ≤ Ak),
∑

i I(Qi ≥

Ak−1)) for k = 1, . . . , K, where Q includes both the observed FMP and those imputed at the

previous iteration of Gibbs sampler. As in the intermittent missing setting, we then obtain a

draw log(yrep
i,T rep

i +1
) ∼ N(µi,T rep

i
, σ2

i,T rep
i

) where µi,T rep
i

= αµ
i +βµ

i (ai,T rep
i
−35)++γµ

i (ai,T rep
i
−θµ

i )+

and σ2
i,T rep

i
= exp(ασ

i +βσ
i (ai,T rep

i
−35)+ +γσ

i (ai,T rep
i
− θσ

i )+), ai,T rep
i

= aiT rep
i

+yiT rep
i

is the age

of the start of segment yrep
i,T rep

i
, and T rep

i is the number of observed segments plus the number

of imputed segements in any intermittent missing gaps. We then obtain a draw Wi,1 from a

Bernoulli distribution with probability

P (ai,T rep
i

≤ Qi ≤ ai,T rep
i +1 | Qi > max(ai,T rep

i
, θµ

i , θσ
i ))

=



0 if ai,T rep
i

≤ max(θµ
i , θσ

i )

1− e
−ηk(a

i,T
rep
i

+1
−a

i,T
rep
i

)
if ai,T rep

i
> max(θµ

i , θσ
i ),

ai,T rep
i

, ai,T rep
i +1 ∈ [Ak−1, Ak]

1− e
−

»
ηk(a

i,T
rep
i

+1
−Ak−1)−ηk−1(a

i,T
rep
i

−Ak−1)

–
if ai,T rep

i
> max(θµ

i , θσ
i ), ai,T rep

i
∈ [Ak−2, Ak−1],

ai,T rep
i +1 ∈ [Ak−1, Ak]

1− e
−

»
ηk+1(a

i,T
rep
i

+1
−Ak)+ηk(Ak−Ak−1)−ηk−1(a

i,T
rep
i

−Ak−1)

–
if ai,T rep

i
> max(θµ

i , θσ
i ), ai,T rep

i
∈ [Ak−2, Ak−1],

ai,T rep
i +1 ∈ [Ak, Ak+1]

Note that the FMP must occur after both the last observed segment and the latent mean

and variance changepoints; also, since none of our knots are less than six months apart, a

segment can cover a maximum of 3 intervals. If Wi,1 = 1, yrep
i,T rep

i +1
is the length of the final

FMP. If Wi,1 = 0, we draw log(yrep
i,T rep

i +2
) ∼ N(µi,T rep

i +1, σ
2
i,T rep

i +1
) and repeat the process s

times until one of the following occurs: Wi,T rep
i +s = 1, yrep

i,T rep
i +1

> 365 or arep
i,T rep

i +s
≥ 60. For

the vast majority of subjects, the FMP variable trigged the end of the imputation. For more

details, see Appendix B.
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4 Results

We use the methodology described in section 3 to analyze TREMIN data using MATLAB

software. We ran two MCMC chains for 10,000 iterations each after discarding the first

10,000 draws as “burn-in”. We assessed convergence using the Gelman and Rubin statistic

(Gelman et al. 2004), with a thinning interval of 5 segments. All of the population and

98% of the individual-level parameters had a value of less than 1.2, indicating reasonable

convergence.

4.1 Individual Level Parameters

To visually assess model fit at the individual level, Figure 2 plots the observed segment

lengths and predicted means and variances for the same four sampled women described in

Figure 1. The model appears to capture the trajectories well, with approximately 5% of

cycle lengths excluded from the 95% predictive intervals. The uncertainty in the position of

the variance changepoint is highlighted in (b) and (c).

Figure 3 plots the posterior means and 90% credible intervals of the mean and vari-

ance changepoints for 50 randomly selected women. As noted by Treloar et al. (1981) and

Lisabeth et al. (2004b), variability generally begin to increase before mean length. Sub-

jects with earlier changepoints averaged 4-5 years between mean and variance changepoints,

whereas subjects with later changepoints averaged only 1-2 years between mean and vari-

ance changepoints, consistent with the findings of Harlow et al. (2008). Uncertainty in the

variance changepoints is generally greater than in the mean changepoints.

Figure 4 plots the posterior medians of the mean and variance changepoints against the

final menstural periods (FMPs) for the 304 women with observed FMPs. FMPs occured on
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average 3.6 years after the mean changepoint, with a standard deviation of 1.4 years. FMPs

occured on average 6.5 years after the variance changepoint, with a standard deviation of

2.5 years. The mean time to FMP after the mean changepoint was fairly constant with

respect to age at mean changepoint; mean time to FMP after the variance changepoint was

considerably shorter in women with later variance changepoints than in younger women.

4.2 Population Level Parameters

Table 1 summarizes the posterior means and associated 95% credible intervals for the popu-

lation level segment length mean and variance regression parameters. The population mean

age at the changepoint for segment length means is 46.20 years (95% CI 45.87-46.54 years),

older than the population mean age at changepoints for segment length variability, which

is 42.21 years (95% CI 41.84-42.58 years); thus variability in segment length is predicted

to begin increasing 3.24 years earlier (95% CI 2.97-3.51 years) in the population than the

mean segment length itself. Mean segment length declined about 1% per year before the

changepoint and increased about 15% per year afterwards. Variability of log-segment length

was stable before the changepoint and increased by 79% per year after the changepoint.

Table 2 presents the posterior mean and associated 95% posterior predictive interval for

the correlation matrix corresponding to the covariance matrix Ω. The 95% credible intervals

of correlations that exclude zeros are denoted in bold.

• Later changepoints for variance are highly associated with later changepoints for mean.

• Later changepoints for both mean and variance are also correlated with longer and

more variable segment lengths, and more rapid increases in mean and variance after the

changepoint; consequently mean and variance slopes after changepoints are positively
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correlated.

• Greater mean length is associated with greater declines in variability before the variance

changepoint and greater increases in variability after.

• Larger segment variability is associated with longer mean segment length.

• Larger segment variability is highly associated with more rapid declines in variability

before but larger increases in variability after the variance changepoint: thus change

in variability before and after the variance changepoint is negatively correlated.

We conducted a principal components analysis of Ω to determine if the relationships

among the eight parameters governing perimenopause segment lengths could be summarized

in a smaller number of dimensions. Table 3 shows that four components explained 82% of the

variance of the individual level parameters governing menstrual segment length. The first

component loads heavily on the inverse relationship between the slope of the variances before

and after the variance changepoint, and on late mean and variance changepoints. The second

component also loads on the inverse relationship between the slope of the variances before

and after the variance changepoint, but picks up a relationship between early changepoints in

means and variances and smaller increases in means after the mean changepoint. The third

and fourth components load on the relationship between the mean intercepts and slopes:

the third component relates longer mean segment lengths at age 35 with more rapid declines

in mean length before the mean changepoint and less rapid increases thereafter, while the

fourth component relates shorter mean segment lengths at age 35 with more rapid declines

in mean length before the mean changepoint and more rapid increases thereafter.

We also fit a two-covariate model, including parity and age at menarche. As covariates

showed no significant relationships with the eight parameters describing the menopausal

14 http://biostats.bepress.com/umichbiostat/paper87



transition, we do not show the results here.

4.3 Posterior Predictive Model Check

We used posterior predictive distribution checks (Gelman et al. 1996) to assess model fit. We

calculated the χ2 discrepancy statistic for observed segment lengths of each individual woman

given by
∑

t
(yit−µrep

it )2

(σrep
it )2

, which will have a χ2
T obs

i
distribution if the model is correct, where

T obs
i is the total number of observed segments for the ith woman. We assessed corresponding

predictive p-values for these χ2 test statistics based on 250 replications. Figure 5 shows the

predictive p-values for all subjects. No subjects had a posterior predictive p-values greater

than 0.95 and only one subject has a posterior predictive p-value smaller than 0.05. Review

of subjects with low posterior predictive p-values show that they contain one or two sporadic

very short or very long segments well before the onset of the increase in variability, suggesting

that these subjects contain outlying segment lengths rather than indicating more general

model failure. Subjects with high posterior predictive p-values generally had relatively few

observations with little variability – the variance estimates were smoothed back toward larger

values, yielding small χ2 discrepancy statistics.

To consider the appropriateness of the final menstrual period modeling, we plot the

observed and predicted FMPs together with the censoring ages for 100 randomly selected

women in Figure 6. The method for estimating FMP when not observed appears to have

worked well, with the distribution for the predicted FMPs corresponding closely to the

observed FMPs when the censoring age is relatively early and little information is usually

available to predict FMP.
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5 Discussion

In this article we have provided a Bayesian changepoint model for describing the patterns of

means and variances of women’s menstrual segment lengths as they approach menopause.

Our model detects individual changepoints of mean and variance of segment lengths for

each individual woman. The model is applied to the TREMIN data. Multiple imputations

integrated with an MCMC chain are carried out to impute the different kinds of missingness

in the data set. Instead of setting splines at a certain fixed point for all women and using

traditional random effect models to study menstrual patterns (Harlow et al. 2000), our

model allows the changepoints to be unknown parameters that vary for different subjects.

This setting provides a flexible way of capturing both the mean and variability of each

individual’s segment length trajectory.

Our work develops a data-driven definition of early and late transition defined by subject-

level variance and mean changepoints respectively. We observed a 3.2 year difference in age

between mean and variance changepoints at the population level, somewhat shorter than that

of Lisabeth et al. (2004b), who reported a 3.9 year difference between cycle lengths with

standard deviations of 6 days and the first cycle of 60 days or more. In addition, our results

were consistent with those of Wallace et al. (1979), Den Tonkelaar et al. (1998), and Lisabeth

et al. (2004b), who found that longer mean segment lengths were associated with later FMPs.

Our results were also consistent with those of Weinstein et al. (2003), who found that lower

variability was associated with early FMPs. We further found relationships between rates

of change in length and variability before and after changepoints themselves, in particular

that greater baseline variability was associated with more rapid declines in variability before

variance changepoints and greater increases thereafter; and later mean changepoints were
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associated with greater increases in mean length and more mean variability after mean

changepoints. These data contribute to efforts to define a staging system for reproductive

aging as they further our understanding of the timing and duration of the menopausal

transition and describe the nature of heterogeneity in women’s experience.

Our next step is to add the second TREMIN cohort data to assess changes of women’s

menstrual pattern in different generations by adding secular cohort (1935-1970 vs. 1960-

1995) as a population-level covariate to the model. Also, while model checking showed

that the model provides an adequate fit to the data, the model might still be improved.

Distributions of individual level variance parameters (not shown) are somewhat skewed or

heavy-tailed, suggesting a mixture distribution might be more suitable than one normal

distribution for all subjects. Thus, a latent class model with subjects belonging to one of

several underlying categories might fit the data even better. Estimation in the presence of

left censoring is also of interest as many recent and ongoing studies enrolled prevalent cohorts

including women who had already begun the menopausal transition.

Carroll (2003), in a paper entitled “Variances are not Always Nuisance Parameters,”

called for increased focus on developing methods for “variance structures” in order to better

understand how “systematic dependence of variability on known factors” could yield both

better prediction and improved inference. We agree with Carroll that incorporating infor-

mation from subject-level variability in longitudinal data settings is underutilized in clinical

and epidemiological research settings, at least in part because of the lack of methods for such

analyses. In our application, it would be of interest to identify sub-groups of women who

experience distinct patterns of variability during the menopausal transition and evaluate

whether these subgroups also differ in their risk for developing chronic disease. We believe

the analysis provided here begins to fill in some of the gaps in this area.
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APPENDIX

A Gibbs Sampling Algorithm

Gibbs sampling is used to draw from the posterior distribution p(Φ, Λ, Ω|z), where Φi =

(αµ
i , βµ

i , γµ
i , θµ

i , ασ
i , βσ

i , γσ
i , θσ

i )′. The algorithm outline is as follows:

1. Initialize Φ, Λ, Ω. Perform an initial imputation of missing data.

2. For i = 1, ..., n and zi consisting of both observed and imputed data:

2a.

(αµ
i , βµ

i , γµ
i |rest) ∼ N((Aµ′

i W−1
i Aµ

i + Ω−1
µ )−1(Aµ′

i W−1
i zi + Ω−1

µ x′
iΛµ), (Aµ′

i W−1
i Aµ

i + Ω−1
µ )−1)

where Wi = Diag(σ2
it), Aµ

i =


1 (ai1 − 35) (ai1 − θµ

i )+

...
...

...

1 (aiTi
− 35) (aiTi

− θµ
i )+

, and Λµ and Ωµ are the

corresponding part of prior multivariate normal mean Λ and covariance matrix Ω conditional

on other parameters.

2b.

p(ασ
i |rest) ∝ exp(−ασ

i Ti

2
)× exp(−1

2
(

Ti∑
t=1

zit − (αµ
i + βµ

i (ait − 35) + γµ
i (ait − θµ

i )+)2

exp(ασ
i + βσ

i (ait − 35) + γσ
i (ait − θσ

i )+)

+
(ασ

i − µασ)2

Ωασ

))

where µασ = x′
iΛασ and Ωασ are the corresponding part of prior multivariate normal mean

and variance conditional on other parameters. The inverse CDF method is used to obtain

the conditional draws.
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2c.

p(βσ
i |rest) ∝ exp(−1

2
βσ

i

Ti∑
t=1

(ait − 35))× exp(−1

2
(

Ti∑
t=1

zit − (αµ
i + βµ

i (ait − 35) + γµ
i (ait − θµ

i )+)2

exp(ασ
i + βσ

i (ait − 35) + γσ
i (ait − θσ

i )+)

+
(βσ

i − µβσ)2

Ωβσ

))

where µβσ = x′
iΛβσ and Ωβσ are the corresponding part of prior multivariate normal mean

and variance conditional on other parameters. The inverse CDF method is used to obtain

the conditional draws.

2d.

p(γσ
i |rest) ∝ exp(−1

2
γσ

i

Ti∑
t=1

(ait − θσ
i )+)× exp(−1

2
(

Ti∑
t=1

zit − (αµ
i + βµ

i (ait − 35) + γµ
i (ait − θµ

i )+)2

exp(ασ
i + βσ

i (ait − 35) + γσ
i (ait − θσ

i )+)

+
(γσ

i − µγσ)2

Ωγσ

))

where µγσ = x′
iΛγσ and Ωγσ are the corresponding part of prior multivariate normal mean

and variance conditional on other parameters. The inverse CDF method is used to obtain

the conditional draws.

2e.

p(θµ
i |rest) ∝ exp(−1

2
(

Ti∑
t=1

zit − (αµ
i + βµ

i (ait − 35) + γµ
i (ait − θµ

i )+)2

exp(ασ
i + βσ

i (ait − 35) + γσ
i (ait − θσ

i )+)
+

(θµ
i − µθµ)2

Ωθµ

))

where µθµ = x′
iΛθµ and Ωθµ are the corresponding part of prior multivariate normal mean

and variance conditional on other parameters. The inverse CDF method is used to obtain

the conditional draws.

2f.

p(θσ
i |rest) ∝ exp(−1

2
γσ

i

Ti∑
t=1

(ait − θσ
i )+)× exp(−1

2
(

Ti∑
t=1

zit − (αµ
i + βµ

i (ait − 35) + γµ
i (ait − θµ

i )+)2

exp(ασ
i + βσ

i (ait − 35) + γσ
i (ait − θσ

i )+)

+
(θσ

i − µθσ)2

Ωθσ

))
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where µθσ = x′
iΛθσ and Ωθσ are the corresponding part of prior multivariate normal mean

and variance conditional on other parameters. The inverse CDF method is used to obtain

the conditional draws.

3.

Λ|rest ∼ N((X ′(Ω⊗ IN)−1X)−1X ′(Ω⊗ IN)−1Φ, (X ′(Ω⊗ IN)−1X)−1)

where X is the covariate matrix of all subjects, which consists of stacked rows of x′
i, and Φ

consists of the stacked rows of Φ′
i.

4.

Ω|rest ∼ Inv −Wishart(Ω|(
N∑

i=1

(Φi − x′
iΛ)(Φi − x′

iΛ)′ + I))

5. Use the updated parameters to create a new imputation data set. Then go to step 2.

B Piecewise Exponential Distribution

Assume that Qi, the age at FMP, follows a piecewise exponential distribution. The baseline

hazard is constant within each interval, so that

λ0(t) = ηk, t ∈ [Ak−1, Ak]

f(Qi = t : t ∈ [Ak−1, Ak]) = ηke
−ηkt

Here, A0, ...AK are a set of age knots, which are set at age 40, 42, 43, 44, 45, 46, 46.5, 47,

47.5, 48, 48.5, 49, 49.5, 50, 51.5, 52, 52.5, 53, 53.5, 54, 55, 56, and 57; we define A−1 = 0

and AK+1 = ∞ and assume η0 = 0 (no risk of FMP before age 40).

We postulate a very weakly informative prior for ηk : ηk ∼ Gamma(0.001, 0.001). The

posterior distribution for ηk is:

p(ηk|q̃) ∝ p(q̃|ηk)p(ηk) ∝ Gamma(mk + 0.001, rk + 0.001)
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where mk =
∑

i I(Ak−1 ≤ Qi ≤ Ak) is the number of women with FMPs that occur between

time Ak−1 and Ak and rk =
∑

i I(Qi ≥ Ak−1) is the number of women without an FMP at

time Ak−1.

Since we have no covariates, the hazard function for each interval is

λ(t) = ηkI(Ak−1 ≤ t ≤ Ak)

The cumulative hazard and survival functions are then given by

Λ(t) =

∫ t

0

λ(t)dt =
k−1∑
j=1

ηj(Aj − Aj−1) + ηk(t− Ak−1), t ∈ [Ak−1, Ak]

S(t) = exp(−Λ(t))

The probability that the event occurs in the interval [t1, t2] given that the event has not

occured by t1 is

P (Qi ∈ [t1, t2]|Qi > t1) =
S(t1)− S(t2)

S(t1)
= 1− S(t2)

S(t1)
=


1− e−ηk(t2−t1) if Ak−1 ≤ t1 < t2 ≤ Ak

1− e−[ηk(t2−Ak−1)−ηk−1(t1−Ak−1)] if Ak−2 ≤ t1 < Ak−1 ≤ t2 ≤ Ak

1− e−[ηk+1(t2−Ak)+ηk(Ak−Ak−1)−ηk−1(t1−Ak−1)] if Ak−2 ≤ t1 < Ak−1 < Ak ≤ t2
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Parameter Λ (95%CI)

Mean intercept 3.313(3.306,3.321)

Mean slope before changepoint -0.007(-0.010,-0.003)

Mean slope after changepoint 0.139(0.124,0.155)

Segment length mean changepoint 45.95(45.66,46.24)

Log-variance intercept -4.814(-4.927,-4.704)

Log-variance slope before changepoint 0.016(-0.015,0.047)

Log-variance slope after changepoint 0.583(0.528,0.636)

Segment length variance changepoint 42.71(42.38,43.03)

Table 1: Posterior mean of population level regression coefficients (Λ) estimates and associ-

ated 95% posterior predictive intervals.
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Loadings

PC1 PC2 PC3 PC4

Mean intercept 0.22 -0.14 0.63 -0.32

Mean slope before changepoint -0.03 0.00 -0.61 -0.75

Mean slope after changepoint 0.24 -0.19 -0.44 0.55

Mean changepoint 0.45 -0.40 -0.01 -0.10

Log-variance intercept 0.36 0.45 0.09 -0.06

Log-variance slope before changepoint -0.42 -0.50 0.02 0.03

Log-variance slope after changepoint 0.51 0.16 -0.15 0.06

Log-variance changepoint 0.36 -0.55 0.00 -0.10

Cumulative percent variance explained 35.3 56.1 69.9 81.9

Table 3: Principal components analysis of menstrual segment length parameters.
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Figure 1: Four sampled women’s log-segment-length trajectory after age 35: subject (a) has

no missing data, the green gap is due to pregnancy and no imputation is needed. The black

dot at the end means that FMP was observed for this subject. Subject (b) used hormones

for a period of time, the red gap is due to hormone use. FMP is observed for this subject.

Subject (c) has two pregnancy gaps (green gaps) and intermittent missingness at around

age 36 (black circle). The red dot at the end represent that the subject’s menstruation

was truncated by surgery. Subject (d) has a pregnancy gap (green gap), an intermittent

missingness (black circle) and a loss of contact gap (black gap). Her menstruation was

censored due to hormone use (red line) and missing afterwards.
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Figure 2: Data from four women: Red lines represent posterior mean of the mean segment

length and associated 95% credible intervals; green lines represent posterior mean for the

upper and lower 2.5 percentiles for the segment distribution and their associated 95% credible

intervals. Black dots represent log of observed segment lengths.
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Figure 3: Posterior means and 90% posterior predictive intervals for mean changepoints and

variance changepoints (100 randomly selected women).
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Figure 4: Posterior means of mean and variance changepoints versus final menstrual period

for 304 women with observed final menstrual periods.
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Figure 5: Histogram of p-values of subject level posterior predictive χ2 tests.
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Figure 6: Observed FMP (circle) and posterior medians (squares) and 95% predictive interval

for unobserved FMPs. X indicates age at censoring. (100 randomly selected women.)
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