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Abstract:

In this paper we consider the problem in causal inference of estimating the local com-

plier average causal effect (CACE) parameter in the setting of a randomized clinical trial

with a binary outcome, cross-over noncompliance, and unintentional missing data on the

responses. We focus on the development of a moment estimator that relaxes the as-

sumption of latent ignorability and incorporates sensitivity parameters that represent the

relationship between potential outcomes and associated potential response indicators. If

conclusions are insensitive over a range of logically possible values of the sensitivity pa-

rameters, then the number of interpretations of the data is reduced, and causal conclusions

are more defensible. We illustrate our methods using a randomized encouragement design

study on the effectiveness of an influenza vaccine.
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1. Introduction

Well-designed randomized clinical trials are a powerful tool for investigating causal relationships and

producing valid estimates of a causal effect of treatment. But in trials involving human subjects there are

oftentimes problems of noncompliance and missing data which standard analyses either ignore, which can

lead to biased estimators, or account for in such a way that the estimand can no longer be considered a causal

effect. Rubin developed an approach to causal inference using potential outcomes (Rubin (1974, 1978)) that

has been referred to as the Rubin Causal Model (Holland (1986)). This model provides a framework for

defining the parameters of interest and correctly attributing the data observed between different treatment

groups to causal effects of the treatments.

Method-of-moment estimators are useful in understanding where information comes from within the

observed data and what assumptions help to identify the estimands of interest. Frangakis and Rubin (1999)

developed a moment estimator for the complier average causal effect (CACE) in a setting where there was

unintentional missing data and only the intervention group could receive the new treatment. Zhou and Li

(2006) later extended these moment methods to a setting of cross-over noncompliance (i.e. intervention

and control subjects could receive the new treatment) and missing data. This paper extends the results

of Zhou and Li (2006) by developing the asymptotic theory for their moment estimator and examining

its performance in finite samples and under deviations from model assumptions in the setting of a binary

response, cross-over noncompliance, and unintentional missing data on the responses. This paper also focuses

on the development of a moment estimator that relaxes the assumption of latent ignorability and incorporates

sensitivity parameters that represent the relationship between potential outcomes and associated potential

nonresponse indicators. These parameters are assumed known, and are allowed to take on a plausible range of

values in order to assess the sensitivity of the conclusions to varying assumptions regarding this relationship.

Sections 2-4 introduce the setting, notation, and assumptions. In Section 5 we give the results of Zhou

and Li (2006) for a CACE estimator derived under the assumption of latent ignorability, and we extend

their results by deriving the asymptotic distribution of their estimator. Section 6 provides simulation results

that examine the finite sample properties of the estimator under conditions that follow the assumptions, and

then under certain deviations from these assumptions. In Section 7 we derive the CACE estimator and its

asymptotic distribution when the latent ignorability assumption is relaxed and sensitivity parameters are

introduced. In Section 8 we illustrate our methods using a randomized encouragement design study on the
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effectiveness of an influenza vaccine.

2. Setting and Notation

The setting consists of a clinical trial with N subjects assigned to treatment Z, where Z is an N -vector of

treatment assignments with ith element Zi. In this setting Zi = 1 if subject i is assigned the new treatment,

and Zi = 0 if assigned the control. Let Di be the treatment received under the observed treatment assignment,

where Di = 1 if subject i received the new treatment and Di = 0 if subject i received the control. Then

let D(Z) be the vector of potential treatment receipts given the vector of treatment assignments Z with ith

element Di(Z). Let Yi be the binary outcome for subject i under the observed treatment assignment and let

Yi(Z) be the binary potential outcome given the vector for treatment assigments Z.

Let Ri be the binary indicator for response under the assigned treatment, equal to 1 if response Yi was

observed for subject i and 0 otherwise. Then let Ri(Z) be the binary indicator for response equal to 1 if

response Yi(Z) was observed for subject i and 0 otherwise, for a given vector of treatment assignments Z.

Then a random subset of the N subjects are assigned to treatment arm Z. Table 1 provides a summary of

the notation used throughout the paper.

3. Definition of Causal Estimands

We make the stable unit treatment value assumption (SUTVA) which allows us to write the potential

outcomes as functions of Zi rather than of the entire vector Z. Formally the SUTVA states that Di(Z) equals

Di(Z
′

), Yi(Z) equals Yi(Z
′

), and Ri(Z) equals Ri(Z
′

) if Zi = Z
′

i which means that we can write Di(Z), Yi(Z),

and Ri(Z) as Di(Zi), Yi(Zi), and Ri(Zi), respectively. Under the SUTVA we can define the intention-to-treat

(ITT) causal effect of Z on D as E[Di(1)−Di(0)].

We assume that compliance is all-or-none, meaning that any switching of treatments was done soon after

randomization so that the subject is assumed to have completely taken the new treatment or the control. We

can stratify the population into four compliance principal strata (Frangakis and Rubin (1999)) as determined

4 http://biostats.bepress.com/uwbiostat/paper257



by the value of the vector [Di(0), Di(1)], where

Ci =





n (never-taker) if Di(0) = Di(1) = 0

a (always-taker) if Di(0) = Di(1) = 1

c (complier) if Di(0) = 0 and Di(1) = 1

d (defier) if Di(0) = 1 and Di(1) = 0

Note that unlike membership to the observed compliance strata, membership to these principal compliance

strata (referred to as compiance types for the remainder of the paper) is unaffected by assigned treatment

and therefore can be considered as a baseline covariate (Frangakis and Rubin (2002)). For our setting we

make the assumption of monotonicity (Imbens and Angrist (1994)), where Di(1) ≥ Di(0) for all subjects

(i.e. there are no defiers) where compliance type is observable when Zi 6= Di. Here subjects with observed

Zi = Di = 0 are a mixture of compliers and never-takers, and subjects with observed Zi = Di = 1 are a

mixture of compliers and always-takers.

Let ψtzd = P [Ci = t|Zi = z, Di = d] be the probability of compliance type t given the assigned treatment

z and received treatment d, and let ηzt = E[Yi(z)|Zi = z, Ci = t] be the conditional expectation of the

outcome given treatment assignment z and compliance type t. Then, under the monotonicity assumption,

we define the ITT effect as ITT =
∑

t∈{n,a,c}ωtITTt where ωt = P (Ci = t) and ITTt = E[Yi(1)−Yi(0)|C = t]

is the average ITT effect of Z on Y for the subpopulation of compliance type t. Noncompliers (never-takers

and always-takers), by definition, do not carry information about the comparison between treatments. Thus

we focus on the the subpopulation of compliers and define the complier average causal effect (CACE) to be

ITTc, or

CACE = E[Yi(1)− Yi(0)|Ci = c] = η1c − η0c,

which is the treatment effect among the subpopulation of compliers and the focus of the remainder of the

paper. Table 1 provides a summary of the notation used throughout the paper.

4. Additional Assumptions

In addition to the SUTVA and monotonicity, there are two assumptions that are sometimes plausible
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and that help facilitate inference: the compound exclusion restriction for never-takers and always-takers

(Frangakis and Rubin (1999)) which generalizes the standard exclusion restriction (Angrist, Imbens, and

Rubin (1996); Imbens and Rubin (1997)); and latent ignorability (Frangakis and Rubin, 1999). The com-

pound exclusion restriction states that among the subpopulation of never-takers or always-takers, treatment

assignment does not affect potential outcomes or missing data distributions, or P [Yi(1), Ri(1)|Ci = n] =

P [Yi(0), Ri(0)|Ci = n] and P [Yi(1), Ri(1)|Ci = a] = P [Yi(0), Ri(0)|Ci = a]. Next we invoke a latent ignora-

bility assumption which states that, within each latent compliance type, potential outcomes and associated

potential response indicators are independent, or P [Ri(1), Ri(0)|Yi(1), Yi(0), Ci] = P [Ri(1), Ri(0)|Ci]. We

make the assumption of latent ignorability here because it is more plausible than the assumption of standard

ignorability (Rubin (1978); Little and Rubin (1987)).

5. Asymptotic Theory of the CACE Moment Estimator

Under the SUTVA, monotonicity assumption, latent ignorability, and the compound exclusion restriction

for never-takers and always-takers, the CACE is identifiable and Zhou and Li (2006) derived the following

moment estimators

η̂1c =

∑
YiRiZiDi −

∑
YiRi(1− Zi)Di∑

RiZiDi −
∑
Ri(1 − Zi)Di

; η̂0c =

∑
YiRi(1 − Zi)(1−Di)−

∑
YiRiZi(1 −Di)∑

Ri(1 − Zi)(1−Di)−
∑
RiZi(1−Di)

.

Then the estimator for the CACE computed by Zhou and Li (2006) is ̂CACE
LI

= η̂1c − η̂0c. Note that

in the first summation for η̂1c, contributions come from subjects with Zi = Di = 1, which consist of a

mixture of compliers and always-takers. Since we are interested in the average among compliers, the averages

for the always-takers (in the second term) are subtracted. Note that Imbens, Angrist, and Rubin (1996)

develop an equivalent estimator for the case where there are no missing outcomes (i.e. Ri = 1 for all

subjects) under the assumptions of SUTVA, monotonicity, and an exclusion restriction on outcomes only.

Let πzd = P (Ri = 1, Zi = z, Di = d) denote the joint probability of observing the response with treatment

assignment z and treatment receipt d; and let vzd = P (Yi = 1, Ri = 1, Zi = z, Di = d) denote the joint

distribution of observing outcome Y = 1 with treatment assignment z and treatment reciept d. The following

theorem, proved in the online appendix (http://www.stat.sinica.edu.tw/statistica/submission) using the delta

method, forms a basis for inference about the estimator.
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Theorem 5.1. Under the assumptions of Section 3,

√
n( ̂CACE

LI −CACE) →d N (0, (V0 + V1)
1
2 )

as n → ∞, where

V0 =
A2(3π10 − π00) + A(π00 − π10 − 4v10) + 2v10

(π00 − π10)2
,

V1 =
B2(3π01 − π11) + B(π11 − π01 − 4v01) + 2v01

(π11 − π01)2
,

for A = (v00 − v10)/(π00 − π10) and B = (v11 − v01)/(π11 − π01).

Then for N subjects in the study, by defining 1
N

∑n
i=1 Ri1[Zi=z,Di=d] and 1

N

∑n
i=1 YiRi1[Zi=z,Di=d] to be the

usual sample estimates for πzd and vzd, respectively, and letting V̂0 and V̂1 be the corresponding estimators

for V0 and V1, respectively,

√
n( ̂CACE

LI − CACE)(V̂0 + V̂1)
− 1

2 →d N (0, 1)

6. Simulation Study

In this section we examine some finite sample properties of this estimator, first under hypothetical con-

ditions that follow the assumptions of latent ignorability and the compound exclusion restriction, and then

under certain deviations from latent ignorability.

6.1. Numerical Results Under Latent Ignorability and the Compound Exclusion Restriction

The N = 300 subjects were randomized to the control or new treatment arm with P (Zi = 1) = 0.5 where

Ci was generated independently as a multinomial random variable. Subject outcomes Yi were generated from

a binomial distribution with a mean conditional upon treatment assignment Zi and compliance type Ci. We

fixed average outcomes E[Yi(1)|Zi = 1, Ci = a) = E[Yi(1)|Zi = 1, Ci = n] = 0.5 for simplicity, which implies

(by the compound exclusion restriction) that E[Yi(0)|Zi = 0, Ci = a) and E[Yi(0)|Zi = 0, Ci = n] equal 0.5

as well. We also fixed E[Yi(1)|Zi = 1, Ci = c] to be 0.5.

We varied the following parameters: proportions of compliance types, true CACE, and response probabil-

ities for subjects. For the response probabilites, we either let the response probability for all compliance types

equal 0.5, which gave us a missing at random (MAR) missing data mechanism, or we let the response prob-
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abilities depend on latent compliance type (where E(Ri(z)|Zi = z, Ci = c) = E(Ri(z)|Zi = z, Ci = a) = 0.5

but E(Ri(z)|Zi = z, Ci = n) = 0.8 for z ∈ (0, 1)), which gave us a not missing at random (NMAR) missing

data mechanism since response probabilities depend on compliance type which is not observed for all subjects.

Table 3 reports the coverage rates of nominal 95 percent confidence intervals and the bias for ̂CACE.LI Note

that when the response mechanism was MAR, ̂CACE
LI

performed well, giving good coverage and relatively

little bias (Table 3). When the response mechanism was NMAR, the estimator continued to perform well.

In both scenarios, true compliance type probabilities and true CACE values were not critically important in

terms of the behavior of the estimator.

6.2. Numerical Results with Deviations from Latent Ignorability

Next we tested the sensitivity of our estimator to potential outcomes that are no longer indepen-

dent of potential response indicators for subjects in the control arm. We defined the constant f0t =

P (Ri(0)=1|Zi=0,Ci=t,Yi=0)
P (Ri(0)=1|Zi=0,Ci=t,Yi=1) , where f0t represents the amount of dependence between potential outcomes and

associated response indicators for subjects in the control arm. Note that f0t ≡ 1 corresponds to having

latent ignorability, and distance from f0t to 1 corresponds to the degree of dependence between outcomes

and response indicators. We fixed the true CACE to zero and the response probabilities P (Ri(z) = 1|Zi =

z, Ci = n) = P (Ri(z) = 1|Zi = z, Ci = a) = 0.5 and P (Ri(z) = 1|Zi = z, Ci = c) = 0.7 for z ∈ (0, 1).

We then varied the compliance type proportions and allowed f0t to vary between 1
2 and 2 for all compliance

types in the control arm (where f0n = f0c = f0a). Table 4 reports the coverage rates of nominal 95 percent

confidence intervals and the bias for ̂CACE.LI When f0t was less than one, the estimator underestimated the

true CACE, whereas for values greater than one, the estimator overestimated the true CACE. The further

f0t was from one (meaning the more dependence between outcome and response), the worse the coverage

probabilities. Higher proportions of compliers (relative to always-takers and never-takers) improved the bias

somewhat but slightly worsened the coverage probabilities. Overall we see how sensitive our results can be

when latent ignorability does not hold.

7. Relaxing the Latent Ignorability Assumption

7.1. Defining the Causal Parameters

Once again, for binary outcome Y , we let ψtzd = P [Ci = t|Zi = z, Di = d] and ηzt = E[Yi(z)|Zi = z, Ci =
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t] as in Section 3, where we focus on the CACE (1). We invoke the SUTVA, monotonicity assumption, and

the compound exclusion restriction for never-takers and always-takers. Letting φzty = P (Ri(z) = 1|Zi =

z, Ci = t, Yi(z) = y), we relax the assumption of latent ignorability and incorporate sensitivity parameters

that represent the relationship between the potential outcomes and associated response indicators, where the

sensitivity parameters fzt are defined as

fzt =
φzt0

φzt1
, (1)

and represent the ratio of response probabilities between subjects with outcome Y = 0 versus those with

outcome Y = 1 (for a given assigned treatment z and compliance type t). These parameters are assumed

known and are allowed to take on a plausible range of values in order to assess the sensitivity of the conclusions

of a study to various assumptions regarding the relationship between outcomes and response indicators. If

conclusions are insensitive over a range of logically possible values for fzt, then the number of interpretations

of the data is reduced, and causal conclusions are more defensible.

Under monotonicity, there are no defiers, and under the compound exclusion restrictions, η1a = η0a for

always-takers and η1n = η0n for never-takers. Letting η1a = η0a ≡ ηa and η1n = η0n ≡ ηn, note that ηzt can

be specified in terms of η0c, η1c, ηa, and ηn. Next we note that ψa10 = ψa00 = 0 since one cannot be an

always-taker if one receives the control, and ψn11 = ψn01 = 0 since one cannot be a never-taker if one receives

the new treatment. Similarly ψc01 = ψc10 = 0 since, for compliers, Zi = Di. Since only always-takers have

Di = 1 with Zi = 0 and only never-takers have Di = 0 then Zi = 1, then ψa01 = ψn10 = 1. Also note that

ψc00+ψn00 = ψc11+ψa11 = 1. Then letting ψa ≡ ψa11 and ψn ≡ ψn00, note that ψtzd can be specified in terms

of ψa and ψn. And since the compound exclusion restriction implies that response probabilities for always-

takers (or never-takers) do not depend on treatment assignment, φ0n1(ηn+f0n(1−ηn)) = φ1n1(ηn+f1n(1−ηn))

and φ0a1(ηa + f1a(1− ηa)) = φ1a1(ηa + f0a(1− ηa)), so that φzty can be specified in terms of φ0n1, φ1a1, φ1c1,

and φ0c1. Then let θ = (ψa, ψn, ηa, ηn, φ1a1, φ0n1, φ0c1, φ1c1, η0c, η1c).

7.2. Estimation

Let ξzd = P (Zi = z, Di = d), πzd = P (Ri = 1, Zi = z, Di = d), and vzd = P (Yi = 1, Ri = 1, Zi =

z, Di = d). Then with N subjects in the study, let ξ̂zd = 1
N

∑n
i=1 1[Zi=z,Di=d], π̂zd = 1

N

∑n
i=1 Ri1[Zi=z,Di=d],

and v̂zd = 1
N

∑n
i=1 YiRi1[Zi=z,Di=d] be unbiased estimators for ξzd, πzd, and vzd , respectively. The following
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result, proved in the online appendix (http://www.stat.sinica.edu.tw/statistica/submission), defines the mo-

ment estimators when latent ignorability is relaxed.

Result 7.1. Under the assumptions of Section 3, the estimators for the parameters in the always-taker and

never-taker subpopulations are:

ψ̂a = ξ̂01

ξ̂11
; ψ̂n = ξ̂10

ξ̂00

η̂a = f0av̂01
π̂01+(f0a−1)v̂01

; η̂n = f1nv̂10
π̂10+(f1n−1)v̂10

φ̂0a1 = v̂01

ξ̂01η̂a

; φ̂1n1 = v̂10

ξ̂10η̂n

φ̂1a1 = φ̂0a1(η̂a+f0a(1−η̂a))
η̂a+f1a(1−η̂a) ; φ̂0n1 = φ̂1n1(η̂n+f1n(1−η̂n))

η̂n+f0n(1−η̂n)

The estimators for the parameters in the complier subpopulation are:

φ̂0c1 =
φ̂0n1ψ̂nξ̂00(f0cη̂n + f0n(1− η̂n)) + (1 − f0c)v̂00 − π̂00

f0cξ̂00(ψ̂n − 1)

φ̂1c1 =
φ̂1a1ψ̂aξ̂11(f1aη̂a + f1a(1 − η̂a)) + (1− f1c)v̂11 − π̂11

f1cξ̂11(ψ̂a − 1)

η̂1c =
f1c(f1aâ01 + f0aâ11)

(f1c − 1)(f1aâ01 + f0aâ11) + f1ab̂01 + f0aĉ01

η̂0c =
f0c(f1nâ10 + f0nâ00)

(f0c − 1)(f1nâ10 + f0nâ00) + f1nb̂10 + f0nĉ10

âzd = v̂zd(v̂(1−z)d − π̂zd)

b̂zd = v̂zd(π̂(1−z)d − π̂zd)

ĉzd = (π̂zd − v̂zd)(π̂(1−z)d − π̂zd).

The estimator for the CACE derived without the LI assumption, but under known (fixed) sensitivity param-

eters, is ̂CACE
LI

= η̂1c − η̂0c.

Note that the parameter estimates from the never-taker and always-taker subpopulations generally in-

volve summations over subjects with observed Zi 6= Di; the parameter estimate from the complier subpop-

ulation, η̂1c, incorporates a mixture of summations across subjects with observed Zi = Di = 1 (which

consist of a mixture of compliers and always-takers) and subjects with Zi = 0 and Di = 1 (the ob-
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served always-takers); similarly η̂0c incorporates a mixture of summations across subjects with observed

Zi = Di = 0 (which consist of a mixture of compliers and never-takers) and subjects with observed Zi = 1

and Di = 0 (the observed never-takers). Note that if f1a = f0a (or f1n = f0n), then neither contribute

to the estimator ̂CACE.LI . Since moment estimators are non-parametric, they can unfortunately be out-

side the (-1,1) range of the estimand of interest. The following theorem, proved in the online appendix

(http://www.stat.sinica.edu.tw/statistica/submission) using the delta method, forms a basis for inference

about ̂CACE.LI

Theorem 7.1 Under the assumptions of Section 3

√
n( ̂CACE

LI −CACE) →d N (0, δ
′

V0δ + β
′

V1β)

as n → ∞, for

V0 =




π00(1 − π00) −π00π10 (1 − π00)v00 −π00v10

−π10π00 π10(1 − π10) −π10v00 (1 − π10)v10

v00(1 − π00) −v00π10 v00(1 − v00) −v00v10

−v10π00 v10(1 − π10) −v10v00 v10(1 − v10)




,

V1 =




π11(1 − π11) −π11π01 (1 − π11)v11 −π11v01

−π01π11 π01(1 − π01) −π01v11 (1 − π01)v01

v11(1 − π11) −v11π01 v11(1 − v11) −v11v01

−v01π11 v01(1 − π01) −v01v11 v01(1 − v01)




.

In this result, δ = (δ1, . . . , δ4)
′

is defined as follows:

δ1 = D−2
0 f0c[f1nv10(v00 − π10 + f0nv00(π10 − v10)](f0n(v10 − π10) − f1nv10),

δ2 = D−2
0 f0c[f1nv10(v00 − π10) + f0nv00(π10 − v10)](f0n(v10 − π10) − f1nv10) + D−2

0 f0cf1nv2
10(f1n−

f0n)(π00 − π10),

δ3 = D−2
0 f0c[f0n(π10 − v10) + f1nv10]

2(π00 − π10),

δ4 = D−2
0 f0cf1nf0nπ2

10(π10 − π00)

for D0 = (f0c − 1)[f1nv10(v00 − π10) + f0nv00(π10 − v10)] + (π00 − π10)[f1nv10 + f0n(π10 − v10)] ;

β = (β1, . . . , β4)
′

is defined as follows:

β1 = D−2
1 f1c[f1av01(v11 − π01 + f0av11(π01 − v01)](f0a(v01 − π01) − f1av01),

β2 = D−2
1 f1c[f1av01(v11 − π01) + f0av11(π01 − v01)](f0a(v01 − π01) − f1av01) + D−2

1 f1cf1av2
01(f1a−

f0a)(π11 − π01),

β3 = D−2
1 f1c[f0a(π01 − v01) + f1av01]2(π11 − π01),

β4 = D−2
1 f1cf1af0aπ2

01(π01 − π11)

for D1 = (f1c − 1)[f1av01(v11 − π01) + f0av11(π01 − v01)] + (π11 − π01)[f1av01 + f0a(π01 − v01)].
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7.3. Simulation Study Results

In Table 4, data was generated under the model described in section 6 and therefore ̂CACE
LI

was es-

timated under the assumed known sensitivity parameters. As expected, ̂CACE
LI

performed well in this

scenario with decent coverage and relatively little bias.

8. Influenza Vaccination Study

Among patients who are older or have a high risk of pulmonary disease, observational studies and exper-

imental evidence suggest that those vaccinated with an influenza vaccine have better outcomes (McDonald,

Hui, and Tierney (1992)). A controlled clinical trial to confirm these results has never been performed because

of the ethical problems that arise from withholding the vaccine from patients in the control arm. A solution

to this problem involves performing a controlled clinical trial where the intervention arm increases the use

of the influenza vaccine without changing its use in the control arm. McDonald, Hui, and Tierney (1992)

used this method to study the effects of computer-generated reminders of the influenza vaccine on flu-related

hospitalizations in patients having a high risk for pulmonary disease. For doctors in the intervention arm,

computer reminders were sent out when a patient with a scheduled visit was eligible for a flu shot. Since

the study did not maintain records on the clustering of patients by doctor, we ignore this for the purposes

of illustrating our methods. In this analysis we want to estimate the effect of the flu vaccine on flu-related

hospitalizations (where Yi = 1 if subject i had a flu-related hospitalization and Yi = 0 otherwise). There

were missing outcomes, but no information was given on how the data came to be missing. The data are

provided in Table 2.

Under latent ignorability, (where the sensitivity parameters equal 1 for all compliance types and treat-

ment groups), the estimate of the CACE is 0.01 with 95% confidence interval (-0.25, 0.26) indicating that

there was no significant decrease in hospitalizations as a result of receiving the flu vaccine. We illustrate the

application of the proposed methods by presenting a sensitivity analysis where the CACE is estimated under

differing assumptions regarding the dependence between outcomes and response indicators. Since no infor-

mation was given on how the data came to be missing, we considered four scenarios for testing the sensitivity

of our estimator to deviations in latent ignorability across assigned treatment group and compliance type.

Results from the following scenarios are found in Figure 1 (a-d) where point estimates and 95% confidence

intervals for the CACE are displayed, assuming specified values of the sensitivity parameters. Note that,
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although we use 2-dimensional plots to illustrate the sensitivity analysis, 3-dimensional plots would allow the

user to vary two sensitivity parameters simultaneously.

8.1. Scenario I

To see how sensitive the estimator is to deviations in latent ignorability among compliers in the control

arm, we let f0n = f1n and f0a = f1a, fixed f1c = 1, and allowed f0c to vary between 1/2 and 2. Results are

displayed in Figure 1a. Note that when the sensitivity parameter equals 1 for compliers in the control arm,

latent ignorability is assumed. The estimate of the CACE did not change much as the sensitivity parameters

for control compliers were varied.

8.2. Scenario II

To see how sensitive the estimator is to deviations in latent ignorability among never-takers in the con-

trol arm, we let f0c = f1c = f0a = f1a = f1n = 1, and allowed f0n to vary between 1/2 and 2. Results

are displayed in Figure 1b. The estimate of the CACE changed as the sensitivity parameters were varied,

although there remained no significant decrease in hospitalizations as the confidence intervals all contain zero.

8.3. Scenario III

To see how sensitive the estimator is to deviations in latent ignorability among always-takers in the control

arm, we let f0c = f1c = f0n = f1n = f1a = 1, and allowed f0a to vary between 1/2 and 2. Results are dis-

played in Figure 1c. The estimate of the CACE did not change much as the sensitivity parameters were varied.

8.4. Scenario IV

To see how sensitive the estimator is to deviations in latent ignorability among all subjects in the control

arm, we fixed the sensitivity parameters to 1 for those in the treatment arm (f1n = f1c = f1a ≡ 1) and varied

the sensitivity parameters between 1/2 and 2 for those in the control arm (1/2 < f0n = f0c = f0a < 2).

Results are displayed in Figure 1d. For patients in the control arm, when the probability of observing an

outcome given a flu-related hospitalization differed from the probability of observing the outcome given no

flu-related hospitalization (i.e. f0n = f0c = f0a 6= 1), the estimate of the CACE varied considerably, although

standard errors increased as the dependence increased between the outcome and reponse indicators. In fact,
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it was only when the probability of observing an outcome given a flu-related hospitalization was two times

the probability of observing the outcome given no flu-related hospitalization, that the interval estimate of the

CACE excluded zero: -0.56 (95% CI: -0.92 to -0.20). Thus we find that the CACE point estimate is somewhat

sensitive to reasonable deviations in latent ignorability across treatment group, although the CACE was not

significantly different from zero.

8.5. Summarizing Results

Another way in which a sensitivity analysis can be summarized is a 95% sensitivity interval (Rosenbaum

(1999)) defined here to be the union of all 95% confidence intervals for the CACE for varying values of fzt

that we are confident contain the true fzt. It has a similar property to the confidence interval in that if the

assumption about the range in which the sensitivity parameter lies is correct, then it will contain the true

parameter of interest at least 95% of the time (Rosenbaum, 1999). In the flu vaccine example, there is no

information on how the data came to be missing, but typically this information could help determine an

accurate range for the sensitivity parameters.

9. Discussion

There were some limitations in applying these methods to the flu vaccination study. One may question the

validity of the compound exclusion restriction used to identify the causal parameter of interest, particularly

for the always-takers. While it may make sense to assume that treatment assignment had no direct effect

on outcome (given treatment received) for never-takers, it may not make sense to assume that treatment

assignment had no direct effect on outcome for always-takers. Never-takers may be the healthier patients since

their doctors might not encourage the vaccination under either treatment assignment. For these patients, the

assignment to treatment should not lead doctors to take other measures that could directly affect outcome.

On the other hand, always-takers may be the sicker patients because their doctor might encourage them to get

the flu vaccination regardless of assigned treatment. For these patients, the added impact of being assigned

to the encouragement arm may lead the doctor to encourage other precautionary measures beyond the flu

vaccination which could directly affect the patient’s outcome. The setting or application will determine

which values of the sensitivity parameters are considered plausible. In the case of the flu vaccine study,

no information was given on how the data came to be missing, so we used a wide range of values for the
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sensitivity parameters.

Future research topics could include methods that incorporate baseline covariates which are often col-

lected in a randomized clinical trial, referencing work by Levy, O’Malley, and Normand (2004), as well as

methods that incorporate clustering effects commonly found in encouragement design studies.
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Figure 1: Sensitivity analysis for the influenza vaccination study (point estimates and 95% confidence intervals for
the CACE are displayed): (a) Scenario I: no LI for control compliers; (b) Scenario II: no LI for control never-takers;
(c) Scenario III: no LI for control always-takers; (d) Scenario IV: no LI for all control subjects.
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Table 1: Notation
Notation Specifics General Description
Zi 1 if i assigned treatment Treatment assignment indicator

0 if i assigned control
Di(Zi) 1 if i received treatment under assignment Zi Potential outcome formulation

0 if i received control under assignment Zi of treatment receipt
Di Treatment receipt indicator under

observed assignment
Ci n if Di(0) = 0 and Di(1) = 0 Compliance type principal stratum:

c if Di(0) = 0 and Di(1) = 1 n=never-taker; c=complier;
a if Di(0) = 1 and Di(1) = 1 a=always-taker; d=defier
d if Di(0) = 1 and Di(1) = 0

Yi(Zi) Binary outcome of interest under Potential outcome formulation
assignment Zi of the outcome of interest

Yi Binary outcome of interest under
observed assignment

Ri(Zi) 1 if Yi(Zi) would be observed Response indicator for Yi(Zi)
0 if Yi(Zi) would not be observed

Ri Response indicator for Yi under
observed assignment

ηzt E[Yi(z)|Zi = z, Ci = t]
ψtzd P (Ci = t|Zi = z, Di = d)
ωt P (Ci = t)
φzty E[Ri(z)|Zi = z, Ci = t, Yi(z) = y]
fzt φzt0/φzt1

πzd P (Ri = 1, Zi = z, Di = d)
ξzd P (Zi = z, Di = d)
vzd P (Yi = 1, Ri = 1, Zi = z, Di = d)

Table 2: Influenza Vaccine Data

R=1,Z=0 Y=0 Y=1 Total

D=0 573 49 622
D=1 143 16 159

Total 716 65 781

R=1,Z=1 Y=0 Y=1 Total
D=0 499 47 546

D=1 256 20 276
Total 755 67 822

R=0, Y=· D=0 D=1 Total
Z=0 492 17 509

Z=1 497 9 506
Total 989 26 1015
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Table 3: Simulation results: N=300 with 5,000 replications of the data

compliance Types MAR NMAR

CACE (n, c, a) Coverage Bias Coverage Bias
0 (0.15,0.7,0.15) 94.8 0.002 95.3 0.000

(0.2,0.6,0.2) 95.6 0.002 95.3 -0.001
(0.25,0.5,0.25) 96.5 0.003 95.4 0.003

0.2 (0.15,0.7,0.15) 94.9 0.002 95.3 -0.001
(0.2,0.6,0.2) 95.5 0.005 95.2 0.003
(0.25,0.5,0.25) 96.3 0.006 95.9 0.000

0.4 (0.15,0.7,0.15) 95.4 0.002 95.3 0.001
(0.2,0.6,0.2) 95.8 0.007 95.6 0.003
(0.25,0.5,0.25) 96.6 0.012 95.6 0.006

Table 4: Simulation Results: N=300 with 5,000 replications of the data (CACE = 0; ̂CACELI
=estimator assuming

latent ignorability; ̂CACELI
=estimator assuming no latent ignorability)

compliance Types ̂CACELI ̂CACELI

f0t (n, c, a) Coverage Bias Coverage Bias
1

2
(0.15,0.7,0.15) 35.4 -0.220 95.8 -0.008
(0.2,0.6,0.2) 38.4 -0.249 95.6 -0.012
(0.25,0.5,0.25) 39.7 -0.292 95.6 -0.012

3

4
(0.15,0.7,0.15) 82.7 -0.093 95.3 -0.001
(0.2,0.6,0.2) 84.8 -0.105 95.5 -0.004
(0.25,0.5,0.25) 85.8 -0.125 95.7 -0.005

1 (0.15,0.7,0.15) 94.8 -0.001 95.2 -0.001
(0.2,0.6,0.2) 95.4 -0.002 95.5 -0.001
(0.25,0.5,0.25) 95.9 -0.001 95.9 -0.004

4

3
(0.15,0.7,0.15) 83.4 0.095 94.9 0.004
(0.2,0.6,0.2) 84.0 0.109 95.5 0.007
(0.25,0.5,0.25) 83.9 0.127 95.7 0.002

2 (0.15,0.7,0.15) 35.6 0.218 95.3 0.009
(0.2,0.6,0.2) 36.4 0.250 95.0 0.009
(0.25,0.5,0.25) 40.0 0.292 95.8 0.016

17 Hosted by The Berkeley Electronic Press



Appendix

1. Proof of Theorems 5.1 and 7.1

In order to derive the asymptotic distributions for ̂CACE
LI

and ̂CACE,LI let Xi ≡ (YiRi(1 − Zi)(1 −

Di), YiRi(1 − Zi)Di, YiRiZi(1 −Di), YiRiZiDi, Ri(1 − Zi)(1−Di), Ri(1− Zi)Di, RiZi(1 −Di), RiZiDi) and

let p ≡ (v00, v01, v10, v11, π00, π01, π10, π11) where Xi is a vector of bernoulli random variables with mean p. If

X1, . . . , Xn are i.i.d. random vectors in R8 with mean p and covariance matrix Σ = E(X− p)(X− p) (where

E(XTX) <∞), then from the multivariate central limit theorem,
√
n(X̄ − p) →d Nd(0,Σ) where Σ =



v00(1 − v00) −v00v01 −v00v10 −v00v11 v00(1 − π00) −v00π01 −v00π10 −v00π11

−v01v00 v01(1 − v01) −v01v10 −v01v11 −v01π00 −v01(1 − π01) −v01π10 −v01π11

−v10v00 −v10v01 v10(1 − v10) −v10v11 −v10π00 −v10π01 v10(1 − π10) −v10π11

−v11v00 −v11v01 −v11v10 v11(1 − v11) −v11π00 −v11π01 −v11π10 v11(1 − π11)

(1 − π00)v00 −π00v01 −π00v10 −π00v11 π00(1 − π00) −π00π01 −π00π10 −π00π11)

−π01v00 (1 − π01)v01 −π01v10 −π01v11 −π01π00 π01(1 − π01) −π01π10 −π01π11)

−π10v00 −π10v01 (1 − π10)v10 −π10v11 −π10π00 −π10π01 π10(1 − π10) −π10π11)

−π11v00 −π11v01 −π11v10 (1 − π11)v11 −π11π00 −π11π01 −π11π10 π11(1 − π11)




1.1 Proof of Theorem 5.1

Using the multivariate delta method, the asymptotic distributions for η̂0c and η̂0c are:

√
n(η̂1c − η1c) →d N (0, δ

′

Σδ) where δ
′

= (0, −1
π11−π01

, 0, 1
π11−π01

, 0, v11−v01
(π11−π01)2

, 0, v01−v11
(π11−π01)2

) and

√
n(η̂0c − η0c) →d N (0, β

′

Σβ) where β
′

= ( −1
π10−π00

, 0, 1
π10−π00

, 0, v10−v00
(π10−π00)2 , 0,

v00−v10
(π10−π00)2 , 0)

where V1 = δ
′

Σδ and V0 = β
′

Σβ are defined in section 4. Then noting that
√
n(η̂1c − η1c) and

√
n(η̂0c − η0c)

are asymptotically independent since δ
′

Σβ = 0, we can use Slutsky’s theorem to derive the asymptotic dis-

tribution for ̂CACE
LI

as in Theorem 5.1.

1.2 Proof of Theorem 7.1

Using the multivariate delta method, the asymptotic distributions for η̂1c and η̂0c are
√
n(η̂1c − η1c) →d

N (0, δ
′

Σδ), where δ
′

= (0, δ1, 0, δ2, 0, δ3, 0, δ4) for δ defined in Theorem 7.1, and
√
n(η̂0c−η0c) →d N (0, β

′

Σβ)

where β
′

= (0, β1, 0, β2, 0, β3, 0, β4) for β defined in Theorem 7.1. Again noting that
√
n(η̂1c − η1c) and

√
n(η̂0c − η0c) are asymptotically independent, we can use Slutsky’s theorem to derive the asymptotic distri-

bution for ̂CACE
LI

as in Theorem 7.1.
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2. Proof of Result 7.1

For ψn = P (C = n|Z = 0, D = 0) note that under randomization P (C = n, Z = 0) = P (C = n, Z = 1)

and since never-takers by definition have D = 0, then we expect P (C = n, Z = 0, D = 0) = P (C = n, Z =

1, D = 0). Similarly for always-takers, P (C = a, Z = 1, D = 1) = P (C = a, Z = 0, D = 1).

Therefore:

ψn =
P (C = n, Z = 0, D = 0)

P (Z = 0, D = 0)
=
P (C = n, Z = 1, D = 0)

P (Z = 0, D = 0)
=
P (Z = 1, D = 0)

P (Z = 0, D = 0)

ψa =
P (C = a, Z = 1, D = 1)

P (Z = 1, D = 1)
=
P (C = a, Z = 0, D = 1)

P (Z = 1, D = 1)
=
P (Z = 0, D = 1)

P (Z = 1, D = 1)

Thus we can obtain the following estimators for ψn and ψa:

ψ̂n = ξ̂10

ξ̂00
; ψ̂a = ξ̂01

ξ̂11

Then note the following relationship:

vzd = P (Y = 1, R = 1, Z = z, D = d)

=
∑

t∈(n,c,a)

P (R = 1, Z = z, D = d, C = t, Y = 1)

=
∑

t∈(n,c,a)

P (R = 1|Z = z, D = d, C = t, Y = 1)P (Y = 1|Z = z, D = d, C = t)

P (C = t|Z = z, D = d)P (Z = z, D = d)

⇔ vzd

ξzd
=

∑

t∈(n,c,a)

P (R = 1|Z = z, D = d, C = t, Y = 1)

P (Y = 1|Z = z, D = d, C = t)P (C = t|Z = z, D = d)

=
∑

t∈(n,c,a)

φzt1ηztψtzd (2)

Also note the following relationship:

πzd

ξzd
= P (R = 1|Z = z, D = d)

=
∑

t∈(n,c,a)

P (R = 1|Z = z, D = d, C = t)P (C = t|Z = z, D = d)
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=
∑

t∈(n,c,a)

(
∑

y∈(0,1)

P (R = 1|Z = z, D = d, C = t, Y = y)P (Y = y|Z = z, D = d, C = t))

P (C = t|Z = z, D = d)

=
∑

t∈(n,c,a)

P (R = 1|Z = z, D = d, C = t, Y = 1)P (Y = 1|Z = z, D = d, C = t)

P (C = t|Z = z, D = d) + P (R = 1|Z = z, D = d, C = t, Y = 0)

P (Y = 0|Z = z, D = d, C = t)P (C = t|Z = z, D = d)

=
∑

t∈(n,c,a)

φzt1ηztψtzd + φzt0(1 − ηzt)ψtzd

=
∑

t∈(n,c,a)

φzt1ηztψtzd + fztφzt1(1 − ηzt)ψtzd

=
∑

t∈(n,c,a)

φzt1ψtzd(ηzt + fzt(1− ηzt)) (3)

Letting (z, d) equal (0, 1) and (1, 0) in expression (3) above and solving for φ0a1 and φ1n1 we get:

φ0a1 =
v01

ξ01ηa
; φ1n1 =

v10

ξ10ηn
(4)

Letting (z, d) equal (0, 1) and (1, 0) in expression (4) above and substituting the expressions from (5):

π01

ξ01
=

v01

ξ01ηa
(ηa + f0a(1 − ηa));

π10

ξ10
=

v10

ξ10ηn
(ηn + f1n(1− ηn))

Then solving for ηa and ηn above, we obtain the following estimators:

η̂a =
f0av̂01

π̂01 + (f0a − 1)v̂01
; η̂n =

f1nv̂10

π̂10 + (f1n − 1)v̂10

We can then obtain estimators for φ0a1 and φ1n1:

φ̂0a1 =
v̂01

ξ̂01η̂a

; φ̂1n1 =
v̂10

ξ̂10η̂n

Using the exclusion criteria for never-takers and always-takers and (2), note that:

φ0n1(ηn + f0n(1− ηn)) = φ1n1(ηn + f1n(1 − ηn))
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φ1a1(ηa + f1a(1 − ηa)) = φ0a1(ηa + f0a(1 − ηa))

Then solving for φ0n1 and φ1a1 above we obtain the following estimators:

φ̂1a1 =
φ̂0a1(η̂a + f0a(1− η̂a))

η̂a + f1a(1 − η̂a)
; φ̂0n1 =

φ̂1n1(η̂n + f1n(1− η̂n))

η̂n + f0n(1− η̂n)

Letting (z, d) = (0, 0) in expressions (3) and (4) and solving for η0c and φ0c1 we obtain:

φ0c1 =
φ0n1ψnξ00(f0cηn + f0n(1− ηn)) + (1 − f0c)v00 − π00

ξ00f0c(ψn − 1)

η0c =
f0c(φ0n1ψnξ00ηn − v00)

φ0n1ψnξ00(f0cηn + f0n(1 − ηn)) + (1 − f0c)v00 − π00

Letting (z, d) = (1, 1) in expression (3) and (4) and solving for η1c and φ1c1 we obtain:

φ1c1 =
φ1a1ψaξ11(f1aηa + f1a(1 − ηa)) + (1− f1c)v11 − π11

ξ11f1c(ψa − 1)

η1c =
f1c(φ1a1ψaξ11ηa − v11)

φ1a1ψaξ11(f1aηa + f1a(1 − ηa)) + (1 − f1c)v11 − π11

Substituting in the expressions for φ̂0n1, ψ̂n, η̂n, φ̂1a1, ψ̂a, and η̂a we obtain the following expressions for η̂0c

and η̂1c (which reduce to the expressions found in Result 7.1):

η̂0c =
f0c[f1nv̂10(v̂00 − π̂10) + f0nv̂00(π̂10 − v̂10)]

(f0c − 1)[f1nv̂10(v̂00 − π̂10) + f0nv̂00(π̂10 − v̂10)] + f1nv̂10(π̂00 − π10) + f0n(π̂10π̂00 − π̂2
10 − v̂10π̂00 + v̂10π̂10)

η̂1c =
f1c[f1av̂01(v̂11 − π̂01) + f0av̂11(π̂01 − v̂01)]

(f1c − 1)[f1av̂01(v̂11 − π̂01) + f0av̂11(π̂01 − v̂01)] + f1av̂01(π̂11 − π01) + f0a(π̂01π̂11 − π̂2
01 − v̂01π̂11 + v̂01π̂01)
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