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Abstract

We consider a class of semiparametric normal transformation models for right cen-
sored bivariate failure times. Specifically, nonparametric hazard rate models are trans-
formed to a standard normal model and a joint normal distribution is assumed for
the bivariate vector of transformed variates. A semiparametric maximum likelihood
estimation (SPMLE) procedure is developed for estimating the marginal survival distri-
bution and the pairwise correlation parameters. This model and its SPMLE estimation
procedure are advantageous. First, the proposed SPMLE produces an efficient estima-
tor of the correlation parameter of the semiparametric normal transformation model,
which characterizes the bivariate dependence of bivariate survival outcomes. Secondly,
a simple positive-mass-redistribution algorithm can be used to implement the SPMLE
procedures. On the theoretical aspect, since the likelihood function involves infinite-
dimensional parameters, this paper utilizes the empirical process theory to study the
asymptotic properties of the proposed estimator. The SPMLEs are shown to be con-
sistent, asymptotically normal and semiparametric efficient. A simple estimator for the
variance of the estimates is also derived. The finite sample performance is evaluated
via extensive simulations.
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1 Introduction

The development of methods for the analysis of censored bivariate failure times is an essential

component of multivariate survival analysis as it typically leads to representations that generalize

readily to higher dimensions. Bivariate data are often of substantive interest in their own right

with well-known examples including the Danish Twin Study (see, Wienke et al., 2002), the diabetic

retinopathy study (Hougaard, 2000), the dual infection kidney dialysis study (Van Keilegom and

Hettmansperger, 2002), and the reproductive health study of the association of age at a marker

event and age at menopause (Nan et al., 2006). In all these studies, the assessment of marginal

distribution as well as dependence among dependent individuals (e.g. twins) is of major interest,

the latter because it renders genetic information.

Few existing bivariate distributions for non-negative random variables accommodate semipara-

metric specifications of marginal distribution and unrestricted pairwise dependence. Consider Clay-

ton’s (1978) model for a pair of survival times (T̃1, T̃2)

S(t̃1, t̃2) = [max{S1(t̃1)−θ + S2(t̃2)−θ − 1, 0}]−θ−1
, (1)

where S(t̃1, t̃2) = P (T̃1 > t̃1, T̃2 > t̃2), S1(t̃1) = S(t̃1, 0−), S2(t̃2) = S(0−, t̃2) are bivariate survival

and marginal survival functions respectively, and θ has an interpretation as cross ratio (Oakes, 1989)

and also corresponds to other dependence measures such as Kendall’s tau. This model allows for

negative dependence when −1 < θ < 0. But for random variables T̃1 and T̃2 which are marginally

absolutely continuous (w.r.t say Lebesgue measure µ), the joint distribution of (T̃1, T̃2) is absolutely

continuous (w.r.t the product Lebesgue measure µ×µ) only when θ > −0.5. When θ ≤ −0.5, Oakes

(1989) noticed that the distribution is no longer absolutely continuous, but has a mass along the

curve given by {(t̃1, t̃2) : S1(t̃1)−θ + S2(t̃2)−θ − 1 = 0}. Hougaard (2000) further noted that frailty

models cannot yield unrestricted marginal distributions with unrestricted pairwise parameters.

Hence it will be of substantial interest to specify a semiparametric likelihood model that allows

for arbitrary modeling of the marginal survival functions, that allows for a flexible and interpretable

correlation structure, and that retains a likelihood so that an efficient and simple estimating pro-

cedure is possible. For this purpose, we study a class of semiparametric normal transformation
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models for right censored bivariate failure times. Specifically, nonparametric marginal hazard rate

models are transformed to a standard normal model and a joint normal distribution is imposed on

the bivariate vector of transformed variates. The induced joint distribution is closely related to the

normal copula model developed by, e.g., Klaassen and Wellner (1997) and Pitt, Chan, Kohn (2006).

However, all the previous efforts in normal copula focused only on non-censoring situations, and it

is unclear whether these existing results can be generalized to censoring situations.

This paper is motivated by a recent work of Li and Lin (2006) on spatial survival data. Li and

Lin (2006) only considered estimating equation approaches in spatial settings and their estimators

are not efficient under the bivariate normal transformation model. In contrast, we focus this paper

on semiparametric likelihood based inference for bivariate survival data. Our major contributions

are: (i) we propose a semiparametric efficient survivor function estimator under semiparametric

normal transformation model for censored survival data and study its asymptotic properties. This

work fills the gap of a lack of semiparametric efficient survivor function estimator for normal copula

models. For example, Klaassen and Wellner’s (1997) estimator only handles non-censored data and

is not efficient for estimating marginal survivals. (ii) Our work manifests the potential to improve

the efficiency of marginal survivor function estimators for one variable based on its dependent

pair member, which leads to an easily implementable algorithm. Currently, there is no practical

method for doing so. (iii) We perform extensive simulations to examine robustness to departures

from bivariate normal transformation models, and compare it with a double- robust estimator. (iv)

Our bivariate framework sets up a theoretical stage for general regression extensions, which will

come in a subsequent communication.

2 Semiparametric Normal Transformation Models

Consider a survival time pair (T̃1, T̃2), where each T̃j marginally has a cumulative hazard Λj(t).

Then Λj(T̃j) marginally follows a unit exponential distribution, and its probit transformation

Tj = Φ−1
{

1− e−Λj(T̃j)
}

(2)

has a standard normal distribution, where Φ(·) is the CDF for N(0, 1).
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To specify the correlation structure within the survival time pair (T̃1, T̃2), we assume that the

normally transformed survival time pair (T1, T2) is jointly normally distributed with correlation

coefficient ρ and with a joint tail probability function

Ψ(z1, z2; ρ) =
∫ ∞
z1

∫ ∞
z2

φ(x1, x2; ρ)dx1dx2 (3)

where φ(x1, x2; ρ) is the pdf for a bivariate normal vector with mean (0, 0) and covariance matrix(
1 ρ
ρ 1

)
. It follows that the bivariate survival function for the original survival time pair (T̃1, T̃2)

is

S(t̃1, t̃2; ρ) = P (T̃1 > t̃1, T̃2 > t̃2; ρ) = Ψ[Φ−1{F1(t̃1)},Φ−1{F2(t̃2)}; ρ] (4)

where Fj(·) are the marginal CDFs of T̃j(j = 1, 2) respectively. In addition, the density for the

original survival time pair (T̃1, T̃2) is

f(t̃1, t̃2; ρ) = f1(t̃1)f2(t̃2)eg(t1,t2;ρ) (5)

where ti = Φ−1
{

1− e−Λi(t̃i)
}

, fi(t̃) = λi(t̃) exp{−Λi(t̃)} is the marginal density for T̃i, i = 1, 2 and

g(t1, t2; ρ) = −0.5 log(1− ρ2)− 0.5(1− ρ2)−1(ρ2t21 + ρ2t22 − 2ρt1t2). (6)

It is obvious that ρ = 0 results in f(t̃1, t̃2; ρ = 0) = f1(t̃1)f2(t̃2), corresponding to the independent

case. One can easily show that the bivariate survival function approaches the upper Fréchet bound

min{S1(t̃1), S2(t̃2)} as ρ→ 1−, and the lower Fréchet bound max{S1(t̃1)+S2(t̃2)−1, 0} as ρ→ −1+.

Indeed, the correlation parameter ρ provides a summary measure for the pairwise dependence,

whose connection with the other commonly used dependence measures, including Kendall’s tau,

Spearman’s rho and the cross ratio, can be found in Li and Lin (2006). Also of interest is to note

that (5) can be rewritten as
f(t̃1|t̃2)
f(t̃1|O)

=
f(t̃2|t̃1)
f(t̃2|O)

= eg(t1,t2;ρ),

where f(·|·) denotes a conditional density function and O is the empty set. Hence, function g or ρ

also has interpretations of a Bayes factor for a dependence model against an independence model.

We are now in a position to consider estimation based on a censored sample of m pairs. That

is, we estimate the marginal hazard rate and the correlation parameter on the basis of observed
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pairs (X̃i1, δi1, X̃i2, δi2), where X̃ij = T̃ij ∧ Ũij
def
= min(T̃ij , Ũij), δij = I(T̃ij ≤ Ũij), for j = 1, 2.

For simplicity, we assume that the censoring mechanism satisfies the usual random censorship,

i.e. the censoring pair (Ũi1, Ũi2) is independent of the survival pair (T̃i1, T̃i2). Under this random

censorship, the likelihood function can be factored into the product of contributions from the

survival and censoring times, facilitating likelihood-based inferential procedures.

In some applications involving bivariate survival data, including studies of disease occurrence

patterns of twins or siblings, it is natural to restrict the marginal cumulative hazard to be common

for members of the same pair. Hence, we first consider drawing inference with Λ1 ≡ Λ2(= Λ) in §3,

followed by the case of distinct marginal cumulative hazards Λ1 6≡ Λ2 in §4.

3 Semiparametric Maximum Likelihood Estimation With A Com-
mon Marginal Cumulative Hazard

3.1 The Likelihood Function

This section proposes a semiparametric maximum likelihood estimation (SPMLE) procedure for

the semiparametric normal transformation model with a common marginal cumulative hazard, say,

Λ. We define the normally transformed observed time Xij = Φ−1{1−exp(−Λ(X̃ij)} for j = 1, 2. As

this transformation is monotone, it can easily accommodate right censored data as the transformed

outcome (Xij , δij) contains the same information as the original (X̃ij , δij), facilitating the derivation

of a likelihood function that can be factored into the product of contributions from the survival

and censoring times. It follows that the likelihood function for the unknown parameters (Λ, ρ) can

be written, up to a constant, as the product of factors (i = 1, . . . ,m)

L̃i(ρ,Λ) = {eg(Xi1,Xi2;ρ)Λ′(X̃i1)Λ′(X̃i2)e−Λ(X̃i1)−Λ(X̃i2)}δi1δi2{Ψ1(Xi1, Xi2; ρ)Λ′(X̃i1)e−Λ(X̃i1)}δi1(1−δi2)

×{Ψ2(Xi1, Xi2; ρ)Λ′(X̃i2)e−Λ(X̃i2)}(1−δi1)δi2 × {Ψ(Xi1, Xi2; ρ)}(1−δi1)(1−δi2), (7)

where Ψj(x1, x2; ρ) = − ∂
∂xj

Ψ(x1, x2; ρ)/φ(xj) for j = 1, 2. Indeed, Ψj(x1, x2; ρ) = P (T3−j ≥

x3−j |Tj = xj) for j = 1, 2.

Directly maximizing the above likelihood in a space containing continuous hazard Λ(·) is

not feasible, as one can always let the likelihood go to ∞ by choosing some continuous func-

tion Λ(·) with fixed values at each X̃ij while letting Λ′(·) go to ∞ at an observed failure time
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(i.e. at some X̃ij with δij = 1). Thus we need consider the following parameter space for Λ,

{Λ : Λ is cadlag and piecewise constant}, where by cadlag we mean right continuous with left hand

limit. It follows that the MLE of Λ(·) will be the one which jumps only at distinct observed failure

times. We denote the jump size of Λ(·) at t by ∆Λ(t) = Λ(t)−Λ(t−). The SPMLE is the maximizer

of the empirical likelihood function L(ρ,Λ), which is the product of terms (7) with Λ′(·) replaced

by ∆Λ(·). We denote the log empirical likelihood function by `(ρ,Λ) = logL(ρ,Λ).

3.2 Theoretical Properties of the SPMLE

The main results of the paper are proved under the following set of regularity conditions. Namely,

(c.1) (Boundedness) ρ lies in an open interval within [−1, 1]; (c.2) (Finite Interval) There exist a

τ > 0 and a constant c0 > 0 such that P (Ũij ≥ τ) = P (Ũij = τ) > c0. In practice, τ is usually

the duration of the study; (c.3) (Differentiability) Assume the marginal cumulative hazard Λ(t) is

differentiable and Λ′(t) > 0 over [0, τ ]. Moreover, Λ(τ) <∞.

Condition (c.1) is assumed to ensure the existence and consistency of the estimators. A similar

boundedness condition on the frailty parameter was assumed by Murphy (1994) in the context of

frailty models for the same purpose. Condition (c.2) ensures that the failures for both pair members

can be observed over a finite interval [0, τ ], entailing an estimate of the hazard over [0, τ ]. Condition

(c.3) implies absolute continuity of the cumulative hazard, which is useful in the consistency proof,

and that we can work with the supremum norm on the space of cumulative hazard functions. Also,

condition (c.3) guarantees the identifiability of the semiparametric normal transformation model

specified in (2) and (3).

Under conditions (c.1)-(c.3), we show in our technical report that the SPMLEs do exist and

are finite. Furthermore, the next two Propositions indicate that the SPMLEs of Λ̂ stay bounded,

and that the SPMLEs of {ρ,Λ(·)} are consistent and asymptotically normal estimators of the true

parameters. The proofs can be found in our technical report (Li, Prentice and Lin, 2006).

Proposition 1 (Consistency) Denote by (ρ0,Λ0) the true parameters. Then |ρ̂ − ρ0| → 0 and

supt∈[0,τ ] |Λ̂(t)− Λ0(t)| → 0 almost surely.

Proposition 2 (Asymptotic Normality) The scaled process
√
m(ρ̂ − ρ0, Λ̂ − Λ0) converges weakly
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to a zero-mean Gaussian process in the metric space R× l∞[0, τ ], where l∞[0, τ ] is the linear space

containing all the bounded functions in [0, τ ] equipped with the supremum norm. Furthermore, ρ̂

and
∫ τ

0 η(s)dΛ̂(s) are asymptotically efficient, where η(s) is any function of bounded variation over

[0, τ ].

Proposition 2 is of significance as it implies that both ρ̂ and Λ̂(t) (and, hence, the estimator of

the marginal survival) are asymptotically efficient by taking η(s) = I(s ≤ t) for any t ∈ [0, τ ]. It

further implies that the infinite dimensional parameter, Λ(·), can be treated in the same fashion

as the finite dimensional correlation parameter ρ. Hence the asymptotic covariance matrix can be

estimated by inverting the observed information matrix. Specifically, for any constant h1 and any

function h2 of bounded variation, the asymptotic covariance of

h1ρ̂+
∫ τ

0
h2(s)dΛ̂(s) = h1ρ̂+

∑
{(i,j):δij=1}

h2(X̃ij)∆Λ̂(X̃ij) (8)

can be estimated by ĥ′Ĵ−1ĥ, where ĥ is a column vector comprising of h1 and h2(X̃ij) for which

δij = 1, and Ĵ is the negative Hessian matrix of `(ρ,Λ) with respect to ρ and the jump size of Λ at

X̃ij when δij = 1. More formally, it can be shown that mĥ′Ĵ−1ĥ
p→ V (h1, h2) as m → ∞, where

V (h1, h2) is the asymptotic variance of
√
m{h1ρ̂ +

∫ τ
0 h2(s)dΛ̂(s)}. The justification follows the

proof of Theorem 3 in Parner (1998), who argued that the empirical information operator based

on Ĵ approximates the true invertible information operator. We will evaluate the finite sample

performance of this variance estimator in the simulation section.

3.3 A Positive-Mass-Redistribution Algorithm

Consider the following computationally efficient procedure for obtaining the SPMLEs and their

variance. Since T̃1 and T̃2 have the same distribution function, whose estimator has masses at

the distinct failure times of T̃1 and T̃2, we denote by t1 < . . . < tK the K distinct, ordered and

pooled T̃1 and T̃2 failure times. Define r(t1, t2) = #{l|X̃1l ≥ t1, X̃2l ≥ t2} as the size of the risk

set at (t1, t2) and let R̃ = {(t1, t2)|r(t1, t2) > 0} denote the risk region. We focus on the square

grids {(t1, t2)|t1 = ti, t2 = tj , 1 ≤ i ≤ K, 1 ≤ j ≤ K} formed by the observed T̃1 and T̃2 pooled

failure times. This is due to the fact that the censored values in T̃1 (or T̃2) in the sample can

6
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be replaced by censored values at the immediately smaller T̃1 and T̃2 pooled uncensored failure

time, or by zero if there are no corresponding smaller uncensored times, without affecting the log

empirical likelihood `(ρ,Λ). We term such replacement as positive mass redistribution. Then let

nδ1δ2ij = #{l|X̃1l = ti, X̃2l = tj , δ1l = δ1, δ2l = δ2} for δ1, δ2 ∈ {0, 1} and for 0 ≤ i ≤ K and

0 ≤ j ≤ K, with t0 = 0. Also denote fij = f(ti, tj), Fi =
∏i
l=1(1− λl), F−i = Fi−1 for i = 1, . . . ,K,

where λl = ∆Λ(tl). The log empirical likelihood `(ρ,Λ) defined in §3.1 can now be written

` =
K∑
i=1

K∑
j=1

n11
ij log flm + n10

ij log{λiF−i −
j∑

v=1

fiv}+ n01
ij log{λjF−j −

i∑
u=1

fuj}

+ n00
ij log{Fi + Fj +

i∑
u=1

j∑
v=1

fuv − 1}, (9)

which involves only the marginal hazard rates at uncensored T̃1 and T̃2 times, and the joint density

at grid points in the risk region. The latter can be rewritten as

fij = λiF
−
i λjF

−
j e

g(si,sj ;ρ)

with g(·, ·) defined in (6) and si = Φ−1(1−Fi). To ensure numerical stability and avoid arguments

of 0 for Φ−1 in computation in finite samples, we use an asymptotically equivalent transformation

si = Φ−1{1 − (1 − 1
m)Fi}. A simple Newton-Raphson procedure, starting with ρ = 0 and the

Kaplan-Meier marginal hazard rates derived by treating (X̃ij , δij), j = 1, 2, i = 1, . . . ,m, as 2m

independent observations, can be used to compute the SPMLEs λ̂i, ρ̂. These calculations are less

computationally demanding as they do not require the evaluation of bivariate incomplete normal

integrals, only the evaluation of the univariate Φ−1.

Following the arguments in §3.2, the variability of λ̂i, ρ̂ can be assessed by inverting the negative

Hessian matrix of (9), denoted by Ĵ [a (K + 1)× (K + 1) matrix]. Furthermore, the functional (8)

can be rewritten as a linear combination of λ̂i, ρ̂, namely,

h1ρ̂+
K∑
i=1

h2(ti)λ̂i,

whose variance function can be easily computed by ĥ′Ĵ−1ĥ, where ĥ = {h1, h2(t1), . . . , h2(tK)}′.

We can easily apply this result to estimate the variance of the estimate of a survival probability.
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For example, the common marginal survival S(u0) = P (T̃1 > u0) at any given time u0 ∈ [0, τ ] can

be estimated by Ŝ(u0) = e−Λ̂(u0). With a first order Taylor expansion,

Ŝ(u0)− S(u0) .= −S(u0){Λ̂(u0)− Λ(u0)} =
∫ τ

0
−S(u0)I(s ≤ u0)dΛ̂(s) + const

Hence, Ŝ(u0) can be approximated by the functional form (8) with h1 = 0 and h2(s) = −S(u0)I(s ≤

u0) and applying the above results will render a consistent estimator of the variance of Ŝ(u0) as

Ŝ2(u0)ê′Ĵ−1ê, where ê = {0, I(t1 ≤ u0), . . . , I(tK ≤ u0)}′.

4 SPMLE for the Stratified Hazard Model

So far we have considered the cases where the pair members are identically distributed. But in

many applications, it would be unnatural to assume a common distribution or hazard for each

member of the pair, for example, when considering husband-wife pairs or proband-control pairs.

In this section, we relax the condition of a common marginal hazard and allow each member of

the pair to have a distinct hazard. That is, each T̃ij has a separate cumulative hazard function

Λj(·), j = 1, 2.

4.1 The SPMLE and Its Theoretical Properties

We consider joint maximum likelihood estimation for inference. The ensuing development is parallel

to that in the common hazard model. Specifically, our inference stems from the log likelihood

function of unknown parameters (Λ1,Λ2, ρ) based on the observed data (X̃ij , δij), j = 1, 2, i =

1, . . . ,m, which can be written, up to a constant, as the product over i = 1, . . . ,m of terms

L̃i(ρ,Λ1,Λ2)

= {eg(Xi1,Xi2;ρ)Λ′1(X̃i1)Λ′2(X̃i2)e−Λ1(X̃i1)−Λ2(X̃i2)}δi1δi2{Ψ1(Xi1, Xi2; ρ)Λ′1(X̃i1)e−Λ1(X̃i1)}δi1(1−δi2)

×{Ψ2(Xi1, Xi2; ρ)Λ′2(X̃i2)e−Λ2(X̃i2)}(1−δi1)δi2 × {Ψ(Xi1, Xi2; ρ)}(1−δi1)(1−δi2). (10)

Here Xij = Φ−1{1−exp(−Λj(X̃ij)} for j = 1, 2. Again, directly maximizing the likelihood function

(10) in a space containing continuous hazards Λ1(·) or Λ2(·) is infeasible, as one can always make

the likelihood be arbitrarily large by constructing some continuous functions Λ1(·) and Λ2(·) with

fixed values at each X̃ij while letting Λ′1(·) or Λ′2(·) go to ∞ at an observed failure time. Hence,
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when performing the maximum likelihood estimation, we need to consider the following parameter

space for (Λ1,Λ2):{(Λ1,Λ2) : Λ1,Λ2 are cadlag and piecewise constant}. It follows that the SPMLE,

(ρ̂, Λ̂1, Λ̂2), is the maximizer of the empirical likelihood function `(ρ,Λ1,Λ2), which is obtained

from (10) with the derivatives Λ′1(·) and Λ′2(·) at the observed failure times replaced by their jumps

∆Λ1(·) and ∆Λ2(·) at the corresponding time points, respectively. We can show that (ρ̂, Λ̂1, Λ̂2) do

exist and are finite. Furthermore, under conditions (c.1)-(c.3) [we let both Λ1 and Λ2 satisfy (c.3)],

the asymptotic properties of the SPMLEs are summarized in the following two theorems, namely,

the consistency theorem, followed by the asymptotic normality theorem, the proofs of which can

be found in the technical report (Li, Prentice and Lin, 2007).

Proposition 3 (Consistency) Denote by (ρ0,Λ01,Λ02) the true parameters. Then |ρ̂ − ρ0| → 0,

supt∈[0,τ ] |Λ̂1(t)− Λ01(t)| → 0 and supt∈[0,τ ] |Λ̂2(t)− Λ02(t)| → 0 almost surely.

Proposition 4 (Asymptotic Normality) The empirical process
√
m(ρ̂−ρ0, Λ̂1−Λ01, Λ̂2−Λ02) con-

verges weakly to a zero-mean Gaussian process in the metric space R × l∞[0, τ ] × l∞[0, τ ], where

l∞[0, τ ] is the linear space containing all the bounded functions in [0, τ ] equipped with the supre-

mum norm. Furthermore, ρ̂,
∫ τ

0 η1(s)dΛ̂1(s) and
∫ τ

0 η2(s)dΛ̂2(s) are asymptotically efficient, where

η1(s), η2(s) are any functions of bounded variation over [0, τ ].

As in the case of a common hazard model, the asymptotic covariance matrix of the estimators of the

unknown (finite dimensional and infinite dimensional) parameters can be estimated by inverting

the observed information matrix. Specifically, for any constant h1 and any function h2 and h3 of

bounded variation, the asymptotic covariance of

h1ρ̂+
∫ τ

0
h2(s)dΛ̂1(s)+

∫ τ

0
h3(s)dΛ̂2(s) = h1ρ̂+

∑
{i:δi1=1}

h2(X̃i1)∆Λ̂(X̃i1)+
∑

{i:δi2=1}

h2(X̃i2)∆Λ̂2(X̃i2)

(11)

can be estimated by ĥ′Ĵ−1ĥ, where ĥ is a column vector comprising of h1, the h2(X̃i1) for which

δi1 = 1 and the h2(X̃i2) for which δi2 = 1, and Ĵ is the negative Hessian matrix of `(ρ,Λ1,Λ2) with

respect to ρ and the jump sizes of Λj at X̃ij when δij = 1. Indeed, following the proof of Theorem

3 in Parner (1998), one can show mĥ′Ĵ−1ĥ
p→ V (h1, h2, h3) as m → ∞, where V (h1, h2, h3) is the

asymptotic variance of
√
m{h1ρ̂+

∫ τ
0 h2(s)dΛ̂1(s) +

∫ τ
0 h3(s)dΛ̂2(s)}.
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4.2 Practical Implementation of the SPMLE Procedure

We develop in this section a simple procedure to implement the SPMLE procedure for the stratified

hazard model. Denote by t11 < . . . < t1I the I distinct ordered T̃1-failure times and by t21 < . . . <

t2J the J distinct T̃2-failure times in the observed sample. As defined in §3.2, let r(t1, t2) be the

size of the risk set at (t1, t2) and let R̃ be the risk region. We only consider the rectangular grids

{(t1, t2)|t1 = t1i, t2 = t2j , 1 ≤ i ≤ I, 1 ≤ j ≤ J} formed by the observed T̃1 and T̃2 failure times. This

is because the censored values in T̃1 (or T̃2) in the sample can be replaced by censored values at the

immediately smaller T̃1 (or T̃2) uncensored failure time, or by zero if there no corresponding smaller

uncensored times, without affecting the empirical likelihood `(ρ,Λ1,Λ2). With these replacements

(or so-called positive-mass-redistributions), let nδ1δ2ij = #{l|X̃1l = t1i, X̃2l = t2j , δ1l = δ1, δ2l = δ2}

for δ1, δ2 ∈ {0, 1} and for 0 ≤ i ≤ I and 0 ≤ j ≤ J , with t10 = t20 = 0. Also denote fij = f(t1i, t2j),

F1i =
∏i
l=1(1− λ1l), F−1i = F1,i−1, F2j =

∏j
k=1(1− λ2k), F−2j = F2,j−1, where λ1l = ∆Λ1(t1l), λ2k =

∆Λ2(t2k). The log- empirical likelihood function can now be written

` =
I∑
i=1

J∑
j=1

n11
ij log flm + n10

ij log{λ1iF
−
1i −

j∑
v=1

fij}+ n01
ij log{λ2jF

−
2j −

i∑
u=1

fuj}

+ n00
ij log{F1i + F2j +

i∑
u=1

j∑
v=1

fuv − 1}, (12)

which involves only the marginal hazard rates at uncensored T1 and T2 times, and the joint density

at grid points in the risk region, namely,

fij = λ1iF
−
1iλ2jF

−
2je

g(s1i,s2j ;ρ)

with s1i = Φ−1(1 − F1i) and s2j = Φ−1(1 − F2j). In practice, to avoid arguments of 0 for Φ−1

in computation for a finite sample size, we use an asymptotically equivalent transformation s1i =

Φ−1{1 − (1 − 1
m)F1i} and s2j = Φ−1{1 − (1 − 1

m)F2j}. A simple Newton-Raphson procedure,

starting with ρ = 0, and Kaplan-Meier marginal hazard rates λ1i =
∑J

j=1(n11
ij +n10

ij )/r(t1i, 0), λ2j =∑I
i=1(n11

ij +n01
ij )/r(0, t2j), can be used to compute the SPMLEs λ̂1i, λ̂2j , ρ̂. We again note that the

likelihood evaluations are less computationally demanding, requiring only the computation of the

univariate Φ−1.
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Similarly, the variability of λ̂1i, λ̂2j , ρ̂ can be assessed by inverting the negative Hessian matrix

of (12), denoted by Ĵ [a (I + J + 1) × (I + J + 1) matrix]. Moreover, the functional (11) can be

rewritten as a linear combination of λ̂1i, λ̂2j ρ̂, namely,

h1ρ̂+
I∑
i=1

h2(t1i)λ̂1i +
J∑
j=1

h3(t2j)λ̂2j

whose variance can be easily computed by ĥ′Ĵ−1ĥ, where ĥ = {h1, h2(t11), . . . , h2(t1I), h3(t21), . . . , h3(t2J}′.

We now illustrate a practical usage of this variance formula. For example, consider the bivariate

survival estimates of S(u0, v0) at any given time (u0, v0) ∈ [0, τ ]2, which can be obtained, based on

the semiparametric normal transformation model, by

Ŝ(u0, v0) = Ψ
[
Φ−1

{
1− e−Λ̂1(u0)

}
,Φ−1

{
1− e−Λ̂2(v0)

}
; ρ̂
]
.

To evaluate the variability of Ŝ(u0, v0), we perform a first order Taylor expansion yielding

Ŝ(u0, v0)− S(u0, v0)

.= γ1(u0, v0){ρ̂− ρ0}+ γ2(u0, v0){Λ̂1(u0)− Λ1(u0)}+ γ3(u0, v0){Λ̂2(v0)− Λ2(v0)}

= γ1(u0, v0)ρ̂+
∫ τ

0
γ2(u0, v0)I(s ≤ u0)dΛ̂1(s) +

∫ τ

0
γ3(u0, v0)I(s ≤ v0)dΛ̂2(s) + const

where γ1(t1, t2) = ∂Ψ(x1, x2; ρ)/∂ρ, γ2(t1, t2) = −Φ1(x1, x2; ρ0) exp(−Λ1(t1)),

γ3(t1, t2) = −Φ2(x1, x2; ρ0) exp(−Λ2(t2)) and xj = Φ−1
{

1− e−Λj(tj)
}

. Hence, Ŝ(u0, v0) can be

approximated by the functional form (11) with h1 = γ1(u0, v0), h2(s) = γ2(u0, v0)I(s ≤ u0),

h3(s) = γ3(u0, v0)I(s ≤ v0), and applying the above variance formula will render a consistent

estimate of the variance for Ŝ(u0, v0), namely, ĥ′Ĵ−1ĥ, where ĥ = {γ̂1(u0, v0), γ̂2(u0, v0)I(t11 ≤

u0), . . . , γ̂2(u0, v0)I(t1I ≤ u0), γ̂3(u0, v0)I(t21 ≤ u0), . . . , γ̂3(u0, v0)I(t2J ≤ u0)}′ and γ̂j(·, ·) is ob-

tained from γj(·, ·), for j = 1, 2, 3, with all the unknown parameters replaced by their estimators.

We will evaluate the finite sample performance of this variance estimator in the next simulation

section.

5 Numerical Studies

A series of simulation studies were performed to examine the properties of the proposed estima-

tor and to compare it with the existing bivariate survivor estimators, including the Prentice-Cai
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(Prentice and Cai, 1992), Dabrowska (1988) and repaired Nonparametric MLE (van der Laan,

1996; Moodie et al, 2005) estimators. The simulation setup mimics those in Prentice et al. (2004).

Specifically, the marginal distributions of T̃1 and T̃2 were specified as unit exponential. The cen-

soring time Ũ1 was taken to be an exponential variate with mean 0.5 whereas three special cases

for Ũ2 were considered: (i) Ũ2 =∞, corresponding to no T̃2 censoring; (ii) Ũ2 = Ũ1, corresponding

to univariate censoring; (iii) Ũ2 is independent of Ũ1 and is an exponential variate with mean 0.5.

A sample size of 120 (pairs) was considered with 1000 repetitions at a given configuration.

Finite Sample Performance Under the Correct Model: We began by evaluating the fi-

nite sample performance of the SPMLE when the true model follows the semiparametric normal

transformation model (4) with ρ = 0.5. When calculating the SPMLE, we considered both the

common hazard model and the stratified hazard model. As both models yield similar results, we

only reported in Table 1 the summary simulation results for the common hazard model. As effi-

ciently estimating the common hazard function or the common marginal distribution function is

of major interest under the common hazard model, we reported only the estimates of the marginal

survival function at various time points in Table 1. Our results showed that the sample averages of

the estimates were very close to the true values, and the model-based standard errors, which were

computed by applying the results of §3.3, matched very well with the empirical SEs.

Finite Sample Performance Under the Misspecified Model: We next considered the ro-

bustness of the SPMLE when the semiparametric normal transformation model was misspecified,

and the failure times were generated under the following bivariate Clayton model

S(t̃1, t̃2) = {S1(t̃1)−θ + S2(t̃2)−θ − 1}−θ−1
, (13)

with θ = 4, implying a strong positive dependence between T̃1 and T̃2. We compared the per-

formance of the SPMLE based on the semiparametric normal transformation model (ŜNT ) with

the other existing nonparametric estimators, including the Prentice-Cai estimator (ŜPC), empirical

hazard rate estimator(ŜE), redistributed empirical estimator(ŜRE), which were taken from Tables

1 and 2 of Prentice et al. (2004). As Prentice et al. (2004) only considered stratified hazard models,

we focused on the stratified hazard model to make the resulting estimates comparable.

The sample averages of the relative biases of the bivariate survival estimates and marginal
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survival estimates at selected time points and the average model-based standard errors (calculated

by applying the results of §4.2) for the point estimates, along with the empirical standard errors

are displayed in Tables 2 and 3. For the comparison purpose, we also list the summary statistics

for the empirical hazard rate (ŜE), Prentice-Cai (ŜPC), redistributed empirical (ŜRE) estimators

(see, Prentice et al., 2004). Finally, we computed the mean squared errors (MSEs), which are the

sum of the square of the bias and the empirical variance, for all the estimators.

Our results show that, even when the underlying model is misspecified, the SPMLE based

on the semiparametric normal transformation model incurred only small biases. Among all the

scenarios examined, the relative biases, i.e. (point estimate -true value)/true value, of the semi-

parametric normal transformation model based SPMLE ranged from -5.7% to 4%. Compared to

the competing non-parametric estimators, the semiparametric normal transformation model based

estimator also achieved high efficiency and had the smallest standard errors in all most all the sce-

narios examined. Using the MSE as a measure of overall performance, the semiparametric normal

transformation model based SPMLE had a smaller MSE than the other estimators in most cases

considered. In addition, the model based standard errors were in a good agreement with their

empirical counterparts.

Further Comparison with IPCW in Efficiency and Robustness: To further explore the

efficiency and the robustness of the SPMLE, we also compared it with a double-robust IPCW

(inverse-probability-of-censoring-weighted) estimator, derived under univariate censoring, which

stipulates that the censoring time is common for both pair members (Lin and Ying, 1993; Tsai

and Crowley, 1998; Wang and Wells, 1998; Nan et al., 2006). The detailed derivation can be

found in our technical report (Li, Prentice and Lin, 2007). We first compared the efficiency of the

IPCW estimator with the semiparametric normal transformation model based SPMLE when the

true underlying model indeed followed the semiparametric normal transformation model (4) with

ρ = 0.5. The results are documented in Table 4, which demonstrate that the normal transformation

SPMLE has noticeably smaller variances than its IPCW counterparts. We next considered the ro-

bustness of the IPCW one-step estimator when the underlying model model was misspecified as the

semiparametric normal transformation model, while the true model followed the bivariate Clayton
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model (13) with θ = 4. The results are also reported in Table 4. Our results indicate that the

IPCW estimator has eliminated the bias caused by the misspecification of the semiparametric nor-

mal transformation model, while the SPMLE estimator incurs negligible biases and retains smaller

variances. Using the mean squared error (MSE) reported in Table 4 as the criterion, it appeared

that the SPMLE estimator outperformed its IPCW counterpart in the scenarios considered.

Estimation of ρ: Finally, we discuss the interpretation and the estimation of ρ. We note that

ρ has a one-one correspondence between the common dependence measure for bivariate survival,

for example, Kendall’s coefficient of concordance (Kendall’s tau). We exemplify Kendall’s tau as

it is the most commonly used global measure for bivariate survival. As indicated in Li and Lin

(2006), Kendall’s tau can be evaluated by

tau = 4
∫ ∞

0

∫ ∞
0

f(t̃1, t̃2; ρ)S(t̃1, t̃2; ρ)dt̃1dt̃2 − 1

where S(t̃1, t̃2; ρ) and f(t̃1, t̃2; ρ) are the joint bivariate survival and density functions defined in (4)

and (5), respectively. By changing the variables, the notion above can be simplified to

tau(ρ) = 4
∫ ∞

0

∫ ∞
0

Ψ(t1, t2; ρ)eg(t1,t2;ρ)φ(t1)φ(t2)dt1dt2 − 1,

where Ψ(·) is the joint tail function for the bivariate normal distribution defined in (3), g(t1, t2; ρ)

is the ‘cross’ term defined in (6), and φ is the standard normal density function, none of which

depends on any specific forms of hazard functions. As shown in Li and Lin (2006), ρ uniquely

determines τ , and thus provides a standardized dependence measure for bivariate survival. Indeed,

tau(ρ̂) yields the model-based estimate of Kendall’s tau, whose model-based standard error can be

conveniently obtained using the delta method.

We considered the estimation and the interpretation of the estimate of ρ when the semipara-

metric normal transformation model was misspecified, and the failure times were generated under

the following bivariate Clayton model (13). We varied θ to be 0.5, 1, 2 and 4, which correspond to

Kendal’s tau of 0.199, 0.333, 0.5 and 0.613, respectively, using formula (4.4) of Hougaard (2000).

The sample averages of the estimates of ρ and the model-based Kendall’s tau, along with

the empirical as well as model-based standard errors are displayed in Table 5. It appeared that

when the underlying model is misspecified, the estimate of ρ itself might not be of interest, as it
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would not recover the specific dependence structure of the true model. However, the model-based

Kendall’s tau using the estimates ρ were indeed very comparable to the true Kendall’s tau, as they

incurred very small biases when compared to the true Kendall’s tau (based on the correct Clayton’s

model). We envision that, at least for the scenarios we considered, the estimate of ρ would lead to

a reasonable approximation for Kendall’s tau even when the model is misspecified.

6 Discussion

In this paper, we have proposed a class of semiparametric normal transformation models for bi-

variate failure time data. The theoretical properties of the semiparametric maximum likelihood

estimation procedure in this model have been explored. We note that unlike the conventional bi-

variate survival models, e.g. the Clayton family, the correlation parameter in our proposed model

can be unrestricted. Secondly, as opposed to the existing nonparametric estimating approaches for

bivariate survival data, the proposed semiparametric MLE also produces an efficient estimate for

the correlation parameter, which characterizes the bivariate dependence of survival pairs. Finally,

as the likelihood function involves infinite-dimensional parameters, we resort to modern asymptotic

techniques to establish the asymptotic results. Specifically, we have shown that the SPMLEs are

consistent, asymptotically normal and semiparametric efficient, under the semiparametric normal

transformation model. Computationally efficient algorithms have been developed to implement the

inference procedures. Our simulation studies have shown that the SPMLEs are more efficient than

the existing nonparametric bivariate survival estimator under the semiparametric normal trans-

formation model, and have good robustness to departure from these modeling assumptions and

generally better efficiency in MSEs compared to their nonparametric competitors. Also as com-

mented by a reviewer, when ρ = 0, the likelihoods in (7) (for the unstratified model) and in (10)

(for the stratified model) reduce to the nonparametric likelihood for independent survival data. As

a result, the MLE that maximizes (7) or (10) indeed reduces to the Kaplan-Meier estimator.

With the analytical framework established in this article, our future work lies in extending the

results to multivariate data, where clusters are allowed to have varying cluster sizes and where each

pair of failure times may have a distinct correlation parameter. A key feature of this transformation
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model is that it can easily accommodate covariates in such a way that survival outcomes marginally

follow a common Cox proportional hazard model, and their joint distribution is specified by a joint

normal distribution. Hence, the regression coefficients have population level interpretations, a

feature not shared by conditional frailty models.
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Table 1: Averages and model based and empirical SEs of the SPMLEs under the semiparametric

normal transformation model (4) with a common hazard function. The true values are:

ρ = 0.5, S(0.1625) = 0.85, S(0.3566) = 0.70, S(0.5978) = 0.55. SEe and SEm are empirical and

model based standard errors, respectively.

t=0.1625 t=0.3566
Censoring ρ SEe SEm Ŝ(t) SEe SEm Ŝ(t) SEe SEm

Censoring on T1 only 0.502 0.109 0.104 0.842 0.023 0.023 0.692 0.035 0.036
Univariate censoring 0.503 0.122 0.114 0.842 0.025 0.026 0.694 0.035 0.035
Bivariate censoring 0.493 0.141 0.138 0.846 0.027 0.028 0.697 0.042 0.040

t=0.5978
Failure Model Ŝ(t) SEe SEm

censoring on T1 only 0.546 0.044 0.046
univariate censoring 0.546 0.051 0.053
bivariate censoring 0.555 0.055 0.049
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Table 2: Averages, SEs and mean squared errors (MSE) for various bivariate survival function esti-
mators at various time pairs (t1, t2) when the correct model (13) with θ = 4 is misspecified to
the semiparametric normal model (4). ŜE , ŜPC , ŜRE and ŜNT are the empirical hazard rate,
Prentice-Cai, redistributed empirical, and semiparametric normal transformation based SPMLE es-
timator respectively. SE are empirical standard errors, while for ŜNT the model based standard
errors are displayed inside the brackets. The true bivariate survival probabilities at these pairs are
0.771, 0.666, 0.608, 0.516 and 0.468, respectively.

(t1, t2) =(0.1625, 0.1625) (t1, t2) =(0.1625, 0.3566) (t1, t2) =(0.3566, 0.3566)
Censoring bias SE MSE bias SE MSE bias SE MSE

(×10−3) (×10−3) (×10−3)

Censoring on ŜE 0.0% 0.046 2.1 0.3% 0.055 3.0 0.0% 0.057 3.2

T1 only ŜPC 0.1% 0.040 1.6 0.1% 0.043 1.9 -0.1% 0.047 2.2

ŜRE 0.1% 0.043 1.8 0.3% 0.046 2.1 0.0% 0.049 2.4

ŜNT 3.2% 0.035 1.7 4.4% 0.035 2.0 3.3% 0.043 2.2
(0.033) (0.030) (0.038)

Univariate ŜE 0.0% 0.051 2.6 0.3% 0.059 3.5 0.1% 0.063 4.0

censoring ŜPC 0.1% 0.041 1.7 0.3% 0.049 2.4 0.0% 0.051 2.6

ŜRE 0.1% 0.048 2.3 0.3% 0.057 3.2 0.0% 0.058 3.4

ŜNT 2.6% 0.032 1.4 3.3% 0.039 2.0 2.1% 0.042 1.9
(0.028) (0.037) (0.042)

Bivariate ŜE 0.0% 0.058 3.4 0.3% 0.073 5.3 -0.1% 0.077 5.9

censoring ŜPC -0.1% 0.041 1.7 -0.1% 0.049 2.4 -0.3% 0.053 2.8

ŜRE -0.2% 0.056 3.1 0.3% 0.066 4.4 -0.3% 0.068 4.6

ŜNT 2.2% 0.035 1.5 1.9% 0.042 1.9 0.1% 0.047 2.2
(0.033) (0.046) (0.048)

(t1, t2) =(0.3566 0.5978) (t1, t2) =(0.5978, 0.5978)
Censoring bias SE MSE bias SE MSE

(×10−3) (×10−3)

Censoring on T1 only ŜE 1.0% 0.065 4.2 0.6% 0.067 4.5

ŜPC 0.6% 0.046 2.1 0.2% 0.053 2.8

ŜRE 0.8% 0.048 2.3 0.4% 0.054 2.9

ŜNT 2.9% 0.042 2.0 0.1% 0.055 3.0
(0.044) (0.051)

Univariate censoring ŜE 1.0% 0.070 4.9 0.9% 0.073 5.3

ŜPC 0.8% 0.062 3.8 0.4% 0.064 4.1

ŜRE 0.8% 0.066 4.4 0.6% 0.068 4.6

ŜNT 0.8% 0.049 2.4 -3.6% 0.064 4.3
(0.049) (0.061)

Bivariate censoring ŜE 0.2% 0.096 9.2 -0.2% 0.102 10.4

ŜPC -0.8% 0.062 3.8 -0.8% 0.065 4.2

ŜRE -0.4% 0.068 4.6 -2.7% 0.071 5.0

ŜNT 0.1% 0.056 3.1 -5.7% 0.058 4.0
(0.059) (0.059)
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Table 3: Averages and SEs for various estimators of the marginal survival functions S1 and S2 when
the correct model (13) with θ = 4 is misspecified to the semiparametric normal model
(4). ŜE , ŜKM , ŜRE and ŜNT are empirical hazard rate, Kaplan-Meier, redistributed empirical, and
semiparametric normal transformation based SPMLE estimators, respectively. SE are empirical
standard errors, while for ŜNT the model based standard errors are displayed inside the brackets.
The true marginal survival probabilities for both T1 and T2 are 0.850, 0.700 and 0.55, respectively.

t1 = 0.1625 t1 = 0.3566 t1 = 0.5978
Censoring bias SE MSE bias SE MSE bias SE MSE

(×10−3) (×10−3) (×10−3)
Censoring on ŜE 0.0% 0.036 1.3 0.0% 0.049 2.4 0.2% 0.063 3.9
T1 only ŜKM 0.0% 0.036 1.3 0.1% 0.049 2.4 0.4% 0.064 4.1

ŜRE 0.1% 0.036 1.3 0.2% 0.048 2.3 1.6% 0.060 3.7
ŜNT 0.8% 0.031 1.0 2.7% 0.047 2.5 3.4% 0.065 4.6

(0.036) (0.050) (0.062)
Univariate ŜE 0.1% 0.043 1.8 0.1% 0.057 3.2 0.4% 0.071 5.0
censoring ŜKM 0.0% 0.036 1.3 0.1% 0.049 2.4 0.4% 0.064 4.1

ŜRE 0.1% 0.041 1.7 0.3% 0.054 2.9 1.1% 0.069 4.8
ŜNT 0.6% 0.030 0.9 2.4% 0.046 2.4 3.4% 0.061 4.1

(0.035) (0.050) (0.067)
Bivariate ŜE -0.1% 0.048 2.3 0.1% 0.072 5.1 -0.4% 0.100 10.0
censoring ŜKM 0.0% 0.035 1.2 0.3% 0.051 2.6 0.4% 0.064 4.1

ŜRE 0.0% 0.047 2.2 0.6% 0.065 4.2 2.3% 0.069 4.9
ŜNT 0.9% 0.031 1.0 1.9% 0.047 2.4 1.0% 0.063 4.0

(0.035) (0.051) (0.065)

t2 = 0.1625 t2 = 0.3566 t3 = 0.5978
Censoring bias SE MSE bias SE MSE bias SE MSE

(×10−3) (×10−3) (×10−3)
Censoring on ŜE 0.0% 0.042 1.8 0.3% 0.055 3.0 1.0% 0.066 4.4
T1 only ŜKM 0.1% 0.033 1.1 0.1% 0.041 1.7 0.6% 0.044 1.9

ŜRE 0.1% 0.037 1.4 0.1% 0.045 2.0 0.6% 0.046 2.1
ŜNT 0.6% 0.030 0.9 3.0% 0.040 2.0 4.0% 0.044 2.4

(0.034) (0.045) (0.048)
Univariate ŜE 0.0% 0.042 1.8 0.1% 0.056 3.1 1.0% 0.069 4.9
censoring ŜKM 0.1% 0.036 1.3 0.3% 0.049 2.4 1.0% 0.064 4.1

ŜRE 0.0% 0.041 1.7 0.3% 0.055 3.0 1.0% 0.067 4.5
ŜNT 0.3% 0.034 1.1 2.2% 0.045 2.2 2.7% 0.061 3.9

(0.037) (0.052) (0.064)
Bivariate ŜE 0.1% 0.046 2.1 0.4% 0.071 5.0 0.4% 0.097 9.4
censoring ŜKM 0.0% 0.034 1.1 0.0% 0.050 2.5 -0.4% 0.063 4.0

ŜRE -0.1% 0.047 2.2 0.6% 0.063 4.0 2.0% 0.068 4.7
ŜNT 0.2% 0.030 0.9 1.1% 0.046 2.2 2.0% 0.063 4.1

(0.036) (0.048) (0.066)
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Table 4: Comparison of the semiparametric normal transformation model (4) based SPMLE estimator and
the IPCW estimator at various time pairs (t1, t2) under univariate censoring. The true underlying models
are the semiparametric normal transformation model (4) with ρ = 0.5 (i.e. the working model is
correctly specified) and Clayton’s model (13) with θ = 4 (i.e. the working model is misspecified). ŜNT ,
ŜIP are semiparametric normal transformation based SPMLE estimators, and IPCW estimator respectively.
SEe are the empirical standard errors, while MSE are the mean squared errors. The true bivariate survival
probabilities at the specified points are 0.7577, 0.6415, 0.5568, 0.4574, and 0.3847, respectively and the
averages of the relative biases (based on 1000 runs) are listed in the table.

(t1, t2) = (t1, t2) = (t1, t2) =
True Underlying Model (0.1625, 0.1625) (0.1625, 0.3566) (0.3566, 0.3566)

bias SEe MSE bias SEe MSE bias SEe MSE
(×10−3) (×10−3) (×10−3)

Semiparametric Normal ŜNT 0.1% 0.040 1.60 0.0% 0.049 2.40 0.1% 0.050 2.50
Tranformation Model ŜIP -0.1% 0.043 1.85 -0.1% 0.052 2.70 0.0% 0.055 3.03
Clayton Model ŜNT 2.6% 0.031 1.41 3.3% 0.039 1.98 2.1% 0.042 1.90

ŜIP 0% 0.041 1.68 0.3% 0.051 2.61 0% 0.053 2.81

(t1, t2) = (t1, t2) =
True Underlying Model (0.3566 0.5978) (0.5978, 0.5978)

bias SEe MSE bias SEe MSE
(×10−3) (×10−3)

Semiparametric Normal ŜNT 0.5% 0.059 3.48 0.5% 0.056 3.13
Transformation Model ŜIP 0.1% 0.061 3.72 0.1% 0.062 3.84
Clayton Model ŜNT 0.8% 0.049 2.41 -3.6% 0.064 4.28

ŜIP -0.4% 0.062 3.84 -0.1% 0.066 4.36
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Table 5: Averages and SEs of ρ and the model-based Kendall’s tau when the correct model (13) with
various true θ is misspecified to the semiparametric normal model (4) with parameter ρ to
estimate. SEe and SEm are empirical and model based standard errors, respectively.

θ True Kendall’s Censoring ρ Model-based tau

tau ρ̂ SEe SEm t̂au SEe SEm

4 0.614 Censoring on T1 only 0.840 0.020 0.014 0.620 0.024 0.016
Univariate censoring 0.839 0.026 0.021 0.619 0.028 0.022
Bivariate censoring 0.820 0.033 0.030 0.608 0.033 0.026

2 0.500 Censoring on T1 only 0.696 0.042 0.038 0.490 0.035 0.030
Univariate censoring 0.685 0.063 0.057 0.487 0.050 0.041
Bivariate censoring 0.693 0.064 0.057 0.492 0.052 0.043

1 0.333 Censoring on T1 only 0.500 0.060 0.059 0.339 0.044 0.041
Univariate censoring 0.483 0.076 0.077 0.320 0.056 0.053
Bivariate censoring 0.493 0.077 0.072 0.327 0.058 0.051

0.5 0.199 Censoring on T1 only 0.313 0.067 0.072 0.209 0.046 0.048
Univariate censoring 0.291 0.084 0.078 0.194 0.054 0.062
Bivariate censoring 0.297 0.087 0.079 0.196 0.057 0.064
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