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Abstract

The prognosis for patients with high-grade gliomas is poor, with a median sur-
vival of one year. Treatment efficacy assessment is typically unavailable until 5{6
months post diagnosis. Investigators hypothesize that quantitative MRI (qMRI)
can assess treatment efficacy three weeks after therapy starts, thereby allowing
salvage treatments to begin earlier. The purpose of this work is to build a predic-
tive model of treatment efficacy using qMRI data and to assess its performance.
The outcome is one-year survival status. We propose a joint, two-stage Bayesian
model. In stage I, we smooth the image data with a multivariate spatio-temporal
pairwise dierence prior. We propose four summary statistics that are functionals
of posterior parameters from the first stage model. In stage II, these statistics enter
a generalized non-linear model (GNLM)as predictors of survival status. We use
the probit link and a multivariate adaptive regression spline basis. Gibbs sampling
and reversible jump Markov chain monte carlo are applied iteratively between the
two stages to estimate the posterior distribution. Through both simulation stud-
ies and model performance comparisons we find that we are able to attain higher
overall correct classifi
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1 Introduction

Our work is motivated by a need to appropriately analyze data collected from quantitative

magnetic resonance imaging (qMRI) studies, and to determine whether qMRI can be used as

an early predictor of treatment efficacy as measured by survival for patients with malignant

gliomas. The data come from a pilot study of 53 high-grade glioma patients (Hamstra et al.

(2005)). The prognosis for patients with the high-grade gliomas is poor. The mortality rate,

at the time of data collection, is high with a median survival of one year after diagnosis (Laws

et al. (2003)). Treatment is a combined approach of surgery (if possible), radiation therapy

followed by chemotherapy. Assessment of treatment efficacy is based on radiological response

approximately 8–10 weeks post therapy, or approximately five to six months after diagnosis

(Moffat et al. (2005) and Hamstra et al. (2008)). Radiological response is determined by the

change in tumor size from baseline as measured on anatomical MR images. For those with

progressive disease, salvage therapy is given. However, it is typically too late for the salvage

therapy to have any effect in prolonging survival (Moffat et al. (2005)). If treatment efficacy

can be assessed earlier, salvage therapies can begin earlier or therapy can be modified.

In the pilot study, two different qMRI studies (diffusion and perfusion) and standard

anatomical MRI studies were conducted at each of two time points: baseline (one week

before therapy) and three weeks after therapy begins. All four quantitative images were

registered to the pre-treatment anatomical MRI via a mutual information algorithm (Meyer

et al. (1997), i.e., an affine translation and rotation). Full imaging data was available on

47 of the 53 patients, therefore we analyze the data from these 47 patients. Tumors were

identified on contrast-enhanced T1-weighted MR images at both time points and segmented

(outlined) by a radiologist. We use the intersection of the segmented tumors as the region

of interest (Hamstra et al. (2005), Moffat et al. (2005) and Hamstra et al. (2008)). Using
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the intersection of the segmented tumors, as opposed to the union, avoids the potential

comparison of tumor in one image with healthy tissue or edema in the other image that may

occur in the symmetric difference of the segmented tumors due to small changes in tumor

volume, swelling of tissue caused by therapy, and errors in segmentation.

The apparent diffusion coefficient (ADC) is a measure of the magnitude of Brownian

motion of water molecules in the extracellular space of tissue (Hamstra et al. (2005), Moffat

et al. (2005) and Hamstra et al. (2008)). Diffusion in biological systems is a complex

phenomenon, influenced directly by tissue microstructure. Its measurement can provide

information about the organization of this structure in normal and diseased tissue (Basser

and Jones (2002)). As tumor cells lyse, the ratio of extracellular to intracellular fluid increases

thus causing a temporary increase in ADC (Moffat et al. (2005) and Moffat et al. (2006)).

Perfusion is a measure of tissue-specific blood flow and blood volume and reflects the delivery

of essential nutrients to tissue (Galbán et al. (2009)). It is hypothesized that effective

therapy will disrupt tumor blood supply by damaging tumor neovascularity, resulting in

decreased tumor perfusion. Furthermore, recent studies have suggested that qMRI can be

used for early prediction of therapeutic efficacy. Early changes detected in mean tumor ADC

values were first found to be correlated with treatment response in rodent tumor models

(Ross et al. (1994), Zhao et al. (1996) and Chinnaiyan et al. (2000)). Previous studies

investigating perfusion MRI for tumor diagnosis and response monitoring, relied on the

whole-tumor mean value as the summary statistic of the perfusion maps for quantification of

hemodynamic parameters, with varying success (Young et al. (2007) and Law et al. (2007)).

The functional diffusion map (fDM), a voxel-by-voxel approach, was recently reported as

an early, quantitative biomarker for clinical brain tumor treatment outcome (Hamstra et al.

(2005), Moffat et al. (2005) and Hamstra et al. (2008)). Galbán et al. (2009) have also shown

that the functional perfusion map (fPM) based on perfusion MRI (obtained in the same way
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as fDM) is predictive of overall survival. However, both the fDM and fPM treat voxels as

independent observations thus ignoring spatial structure in the images. Treating the data

as independent observations may lead to incorrect variance estimates and invalid inference.

Our work is motivated by all of these studies and aims to build a statistically robust and

predictive model for treatment efficacy based on both the ADC and rCBF (relative cerebral

blood flow, a measure of perfusion, Galbán et al. (2009)) images. An axial slice of a registered

ADC image, a rCBF and a T1-weighted, contrast enhanced MR image are shown in Figure

1.

We propose a joint, two-stage Bayesian predictive model. In the first stage, we smooth

the images (two images at each of two time points) using a multivariate pairwise difference

prior (mPWDP) that models the spatio-temporal correlation in the images. The pairwise

difference prior (PWDP) was first introduced by Besag (1993). It is a member of the class

of pairwise interaction Markov random field models and captures general and local charac-

teristics of the image. A priori, it assumes that the mean values of neighboring voxels are

positively correlated. We extend the PWDP to the multivariate setting. We then propose

four summary statistics that are functionals of the parameters in stage I. The statistics enter

the second stage model as predictors of one-year survival status. The second stage model

is a generalized nonlinear model (GNLM) proposed by Holmes and Denison (2003). The

GNLM uses a probit link, for computational efficiency, and a Bayesian multivariate adaptive

regression spline (BMARS) basis. The MARS model was introduced by Friedman (1991).

The BMARS basis allows the predictors to enter the GNLM model nonlinearly; thus allowing

for a very flexible decision boundary. The two models are fitted jointly and the model is

validated via cross-validated prediction. Algorithmically, the models are joined by iterating

between the two stages in a generalized Markov chain Monte Carlo simulation (Metropolis-

within-Gibbs updates in stage I and an hybrid reversible jump Markov chain Monte Carlo
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(RJMCMC, MCMC) and Gibbs updates of hyperparameters in stage II).

Compared to current methods, our joint model has several new features and improve-

ments. In the first stage, our model: 1) accounts for spatio-temporal correlation in the

images, as well as the correlation between the ADC and rCBF images; 2) increases the sig-

nal to noise ratio by smoothing the images; and 3) reduces the data dimension via subject

level summary statistics. In the second stage, our model allows for a more flexible classifi-

cation boundary than that allowed by the standard linear systematic component of a GLM.

The joint model we proposed propagates the sampling error from stage I into stage II model.

We adopt the Bayesian paradigm for estimating and predicting outcomes. Furthermore,

model uncertainty is captured by model averaging.

This manuscript is organized as follows. In Section 2, we first outline, at a high level,

our joint model, then specify the two stages of the model and propose our model eval-

uation strategy that we have adopted. The pilot study data are then analyzed in Sec-

tion 3. We show our model outperforms simpler models in Section 4. The paper con-

cludes with a discussion, summarizing the strengths and limitations of our approach. Due

to manuscript length restriction, results from simulation studies and sensitivity analyses

can be found in a supplementary web-based materials (SWBM) document available at

http://www.bepress.com/umichbiostat/paper83 or by contacting the authors. Detailed

mathematical derivations of the posterior distributions, algorithm details and pseudo code

are also provided in the SWBM.

2 Bayesian Joint Model

To begin, we briefly describe the joint model. Let Y denote the set of all images for all

subjects and let Z denote the 1-year survival status (1-dead,0-alive) vector. Let Ω = Ω1∪Ω2

denote the set of all model parameters where Ω1 is the set of stage I model parameters and
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predictive values and Ω2 is the set of stage II model parameters. We further note that the

set (over all subjects) of all summary statistics, X , calculated in stage I is a functional vector

of Ω1 and that Z depends on Ω1 only through X = F (Ω1). The posterior distribution can

be factored as follows:

π(Ω | Y ,Z) ∝ π(Y | Ω1)π(Ω1)π(Z | Ω1,Ω2)π(Ω2). (1)

We will use π(Z | Ω1,Ω2), π(Z | Ω) and π(Z | X ,Ω2) interchangeably depending on the

context. We draw from the posterior (1) via Markov chain Monte Carlo (MCMC) simulation

by iteratively drawing between the full conditional distribution of Ω1:

π(Ω1|Y ,Z,Ω2) ∝ π(Y | Ω1)π(Ω1)π(Z | Ω1,Ω2) (2)

and the full conditional distribution of Ω2:

π(Ω2|Z,Ω1) ∝ π(Z | Ω1,Ω2)π(Ω2). (3)

The full conditionals in (2) and (3) are easily derived from (1) and repeated use of Bayes’

theorem.

The remainder of this section is broken up into four subsections. In Subsection 2.1 we

define the mPWDP model, in Subsection 2.2 we define the GNLM and then in Subsection

2.3 we give an overview of how we sample from the joint posterior distribution specified in

(1). The last subsection, 2.4, we describe how we evaluate our model.

2.1 Stage I

In this subsection, patient subscripts are suppressed to reduce notational burden. Tumor

voxels (short for volume element—a cube) are indexed by i = 1, 2, . . . , n, where the tumor

size n (i.e. the size of the tumor ROI defined in the introduction section) ranges from 770

to 20380 voxels with a mean of 6143 and standard deviation of 4721. Two voxels, i and i′,
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that share a common face are called neighbors, denoted by i ∼ i′. Let Ni = {i′ : i′ ∼ i}

denote the set of neighbors of voxel i with |Ni| denoting the number of neighbors. Let Yith

represent the image intensity at voxel i, time t = 1, 2 (baseline and week 3, respectively)

and image type h (h = 1—diffusion, h = 2—perfusion). The vector of image intensities

at voxel i is Yi = (Yi11, Yi12, Yi21, Yi22)
T. We split Yi into two sub-vectors by time: Yit =

(Yit1, Yit2)
T. Furthermore, let Y = (YT

1 , . . . ,Y
T
n )T. Each Yith is measured with error with

mean µith. Let µi = (µi11, µi12, µi21, µi22)
T with corresponding subvectors µit = (µit1, µit2)

T.

Let µ = (µT
1 , . . . ,µ

T
n )T. Note that the components in Yi are correlated with covariance Σ.

We extend Besag’s (1993) PWDP model to the multivariate setting. First,

[Y | µ,Σ∗] ∼ N(µ,Σ∗),

where Σ∗ = diag(Σ)—a block diagonal matrix with Σ along the main diagonal. The prior

distribution of the mean vector µ is

π(µ | Ψ) ∝ exp

{
−0.5

∑
i∼i′

(µi − µi′)
TΨ−1(µi − µi′)

}
.

Spatial correlation in the image is modeled through the diagonal elements of the 4 × 4

covariance matrix Ψ. The off diagonal elements of Ψ account for temporal correlation within

an image type, correlation between image types at a particular time and correlation over

time and across image types. The covariance matrix Σ accounts for residual covariances.

A priori, Σ and Ψ are assigned inverse Wishart distributions: W−1 (I4, 5). The scale

matrix I4 is the 4 × 4 identity matrix and the degrees of freedom is 5. The degrees of

freedom can be regarded as the a priori sample size. Given the large n, this results in a

rather weak prior.

Predicting tumor response under the “null”: Ideally we would compare the ob-

served tumor response to its counterfactual: tumor response given no treatment. Given that

this is impossible, our summary statistics will be based on comparing the observed tumor
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response to the predicted tumor response in the contralateral hemisphere of the brain under

the assumption that the change in ADC/rCBF values in healthy tissue in the contralateral

brain and those of tumor in the contralateral brain, if they could be observed, are simi-

lar. In the contralateral brain the healthy tissue receives a low dose of radiation and little

damage from chemotherapy due to the blood-brain barrier which blocks large chemotherapy

molecules. Thus, the healthy tissue in the contralateral brain is protected from therapy and

diffusion and perfusion are stable over the short time period between imaging sessions. We

define a healthy tissue region of interest (ROI) in the contralateral brain. The healthy tissue

ROI is obtained by reflecting the tumor ROI, approximately about the midline of the brain,

to the contralateral hemisphere. We then ensure, visually, that the healthy tissue ROI lies

within the gray matter of the brain (some white matter is fine). If the healthy tissue ROI

intersects the ventricles, meninges or skull, we manually shift the ROI, to avoid this overlap

(details can be found in the SWBM). We now describe how we predict tumor response in

the healthy tissue ROI, which we refer to as the null response.

First we build a mPWDP model for the healthy tissue data in the healthy tissue ROI.

The model is identical to that described above with the following notational changes. For

healthy tissue, in the healthy tissue ROI, let Wi denote the image intensities for voxel i

with mean vector νi. The covariance of the Wi will be denoted ∆ and the covariance of

the mean vector νi will be denoted Ω. The number of voxels in the healthy tissue ROI is

also n. Denote the set of voxels in the healthy ROI by H. We extend the healthy tissue

ROI by a one-voxel thick shell and denote the set of voxels in this shell by S. Without this

extension, Ỹi2 and µ̃i2 are not identifiable (see equations (4) and (5) below and Section 5

in the SWBM). Let ns denote the number of voxels in the shell and let ne = n + ns be the

number in the extended ROI. Let N e
i = {i′ : i′ ∼ i} denote the set of neighbors of voxel i in

the extended ROI and |N e
i | denote the number in this set.
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Now to predict tumor null response translate the tumor baseline values Yi1 to the healthy

tissue ROI, using the same reflection and shift that created the healthy tissue ROI. We

partition the 4× 4 covariance matrices into 4, 2× 2 matrices. The mPWDP for prediction is[(
Yi1

Ỹi2

)
|
(

µi1

µ̃i2

)
,

(
∆11 ∆12

∆21 ∆22

)]
∼ N

[(
µi1

µ̃i2

)
,

(
∆11 ∆12

∆21 ∆22

)]
(4)

where Ỹi2 =
(
Ỹi21, Ỹi22

)T

is the predicted null response at time point 2 and µ̃i2 is its mean.

The µi1 are obtained from the posterior distribution of the tumor mPWDP model and the

covariances from the healthy tissue mPWDP models. Let(
µ∗i1
µ̃∗i2

)
= |N e

i |−1

 ∑
i′∈Ne

i ∩S

(
0

νi′2

)
+

∑
i′∈Ne

i ∩H

(
µi′1

µ̃i′2

) . (5)

The prior for the mean vector in (4) is[(
µi1

µ̃i2

)
|
(

µ∗i1
µ̃∗i2

)
,

(
Ω11 Ω12

Ω21 Ωi22

)]
∼ N

[(
µ∗i1
µ̃∗i2

)
, |N e

i |−1

(
Ω11 Ω12

Ω21 Ω22

)]
(6)

where the covariances are obtained from the posterior of the healthy tissue mPWDP model.

The covariances taken from the posterior of the healthy tissue mPWDP model describe

the spatio-temporal relationship between the baseline tumor ADC/rCBF values and the

predicted values under our assumption that tumor changes would be similar to healthy tissue

changes in the environment of the contralateral hemisphere. We need to ensure that Σ11

and ∆11 are similar as well as Ψ11 and Ω11 as these describe the baseline residual covariances

and spatial covariances. If they are much different, the inequality in the baseline covariances

may result in biased predictions. One may be tempted to replace ∆11 with Σ11 in (4) and

Ω11 with Ψ11 in (6), however, there is no guarantee that the resulting covariance matrices

would be positive definite. After fitting our model to the data we investigated whether these

assumptions hold by comparing the posterior expected values of these leading sub-matrices.

To compare them, we computed the root mean squared relative difference between the three

9
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unique elements in the leading 2× 2 sub-matrices, where the mean is computed over draws

from the posterior (see details in the SWBM, section 1.1). The relative root mean squared

difference between the leading 2 × 2 sub-matrices of ∆ and Σ (relative to ∆) is 0.038 (sd

= 0.029) and that between the leading sub-matrices of Ω and Ψ (relative to Ω) is 0.039 (sd

= 0.018)—both small relative differences—hence we feel that this assumption is justified in

our model.

Now we can explicitly define the stage I parameter set Ω1 and, at the same time, add a

subject specific index, j. Gather all parameters and predictive values into a set of parameters

for subject j: Ω1j = {{µi,j}
nj

i=1, {νi,j}
ne

j

i=1,Σj,Ψj,Ωj,∆j, {Ỹi2,j}
nj

i=1, {µ̃i2j
}nj

i=1} . Then Ω1 =

∪jΩ1j.

Summary Statistics: The summary statistics are based on comparing the observed

tumor response with the predicted tumor response under the null. Previous work suggests

that the mean change in tumor ADC values is not predictive of treatment efficacy in humans

(Chenevert et al. (2000) and Moffat et al. (2005)). Empirically, however, the baseline

tumor ADC (rCBF) histogram and the week 3 tumor ADC (rCBF) histogram are notably

different. This gave us the idea to investigate whether the Kullback-Leibler divergence

(Kullback and Leibler (1951)) between posterior/predictive draws of µi2h and µ̃i2h, h = 1, 2,

respectively, would be good predictors of treatment efficacy. Specifically, we draw µi2h from

its full conditional posterior for all i in the tumor ROI and create a histogram and draw

µ̃i2h from its full conditional posterior for all i, create a histogram and then compute the

Kullback-Leibler divergence between these two histograms (See details in SWBM, Section

1.2).

Hamstra et al. (2005), Moffat et al. (2005) and Hamstra et al. (2008) have demon-

strated that fDM, a statistical approach for segmenting tumors into regions of response and

non-response, based on a defined upper threshold of ADC change following therapy, is a
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good biomarker for predicting early tumor response to therapy (this threshold is basically

an upper confidence limit of the regression slope of the week 3 tumor ADC values regressed

on the baseline ADC values). The fDM approach is based on the rationale that early ADC

changes due to therapy are heterogeneous within the tumor. Parts of the tumor respond to

therapy and show an increase in ADC, while other regions show no change or even a decrease

in ADC. However, successful therapy should result in tumor cells lysing with a corresponding

increase in ADC, thus the rationale for defining an upper threshold. Furthermore, a success-

ful treatment should result in a decrease in rCBF, as discussed in the introduction. However,

again, tumor response is heterogeneous and the mean change is minimal, whereas changes in

the tails of the distribution are more pronounced. Inspired by fDM, we sought statistics that

summarize the proportion of extreme expected values, µi2, in the tumor response relative to

the conditional distribution (SWBM, formula (29)) of means of predicted null tumor voxel

responses. We propose two additional summary statistics: the conditional diffusion statistic

(cDS) and the conditional perfusion statistic (cPS). The first, cDS, is defined as the propor-

tion of tumor voxels that have a mean response that is greater than the 0.975 quantile of the

conditional distribution (SWBM, formula (29)) of the same voxel under the null assumption:

cDS = n−1
∑n

i=1 I [µi21 > q0.975 (µ̃i21)], where I[·] is the indicator function and q0.975 (µ̃i21) is

the 0.975 quantile of the conditional posterior distribution of µ̃i21. The summary measure

cPS is similarly defined: cPS = n−1
∑n

i=1 I [µi22 < q0.025 (µ̃i22)], where q0.025 (µ̃i22) is the 0.025

quantile of the conditional posterior distribution of µ̃i22.

2.2 Stage II

For stage II, we borrow the generalized non-linear model with a Bayesian MARS basis

(GNLM-BMARS) proposed by Holmes and Denison (2003) to predict patients’ one-year

survival status. For patient j, let Xj = (Xj1, . . . , Xj4)
T denote the vector of the summary
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statistics obtained in stage I. Hence X = ∪j{Xj}j. Let Zj index the survival status of patient

j, with Zj = 1, representing the death of patient j within one year, and Zj = 0 otherwise,

for j = 1, . . . ,M . Set Z = (Z1, . . . , ZM). The set of all GNLM-BMARS parameters, Ω2,

will now be subscripted by K, the number of BMARS bases, as the number of bases is

treated as a parameter to be estimated and the number of parameters in Ω2K depends on

K. All parameters in Ω2K will be defined shortly. The GNLM-BMARS model with K bases

functions is:

π(Zj = 1 | Xj,Ω2K) = g(ηjK), ηjK =
K∑

k=0

βkBk(Xj),

Bk(Xj) =

{
1, k = 0,∏Lk

l=1[slk(Xjwlk
− tlk)]+ , k = 1, 2, . . . , K.

(7)

The link function g could be the cumulative distribution function (CDF) from any of the

commonly used distributions for modeling binary data such as the logistic, normal or extreme

value distributions. Due to the flexibility in the decision boundary afforded by the BMARS

basis, we argue that the choice of link function is not crucial. Thus, for computational

efficiency and simplicity, we use the probit link function, g(·) = Φ(·), where Φ is the standard

normal CDF. The function [ · ]+ = max (0 , · ). K is the number of basis functions in the

model. Lk is the degree of interaction in basis function Bk ( · ). For our application, we set

the highest order of interaction to 2. Thus, only main effects and two-way interactions are

allowed to enter the model. Estimating higher order interactions with any certainty would

require a large amount of data (sample size of our study is M = 47) due to the curse of

dimensionality (Denison et al. (2002)). The variable slk is a sign indicator, taking values

in {−1, 1}, tlk is the location of the spline knot associated with the covariate indexed by

wlk ∈ {1, 2, 3, 4}. Further tlk is restricted to the set of covariate values {X1wlk
, . . . , XMwlk

}

and all wlk are distinct for each k (that is, each basis function is at most linear in any one
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variable). Consult Holmes and Denison (2003) and Denison et al. (2002), Chapter 4 or the

SWBM for further details. Let βK = (β0, . . . , βK)T where β0 is the model intercept. Also,

let LK = {L1, . . . , LK}, sK = {s11, . . . , sLKK}, wK = {w11, . . . , wLKK}, tK = {t11, . . . , tLKK}

and ΘK = {K, sK ,wK , tK ,LK} . Then Ω2K = ΘK ∪ {βK}.

We specify non-informative prior distributions for all parameters

π(Lk = 1) = π(Lk = 2) = 1/2

π (w1k = w | LK = 1) = 1/4, w = 1, 2, 3, 4

π [(w1k, w2k) = (w,w′) | LK = 2] = 1/6, (w,w′) = (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)

π(tlk = Xjwlk
| wlk) = 1/M, j = 1, . . . ,M

π(slk = −1) = π(slk = 1) = 1/2

[βK | v,K] ∼ N(0, vIK+1),
[
v−1
]
∼ Gamma(0.001, 0.001),

with one exception: [K | λ] ∼ Poisson(λ) and [λ] ∼ Gamma(1, 0.2). We assess the impact

of this prior on classification results in the SWBM.

2.3 Sampling from the joint posterior

Now we outline how we sample from the joint posterior given in (1). For more details and

derivations, please consult the SWBM.

We begin with the sampling of stage I parameters. We sample parameters µi,j, νi,j, µ̃i2,j,

Σj, Ψj, ∆j and Ωj for i = 1, . . . , nj and j = 1, . . . ,M from their full conditional distributions

via a hybrid Metropolis-within-Gibbs algorithm. Both, Ψj and Σj are drawn directly from

their full conditionals (inverse Wishart distributions). The remaining parameters are drawn

from their full conditionals via Metropolis-Hastings updates (Hastings (1970)). Full details

are provided in the SWBM, Section 1. We note here that all parameters in a stand-alone

MPWDP model can be updated by a Gibbs algorithm. However, due to the joint nature of
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our full model, all stage 1 parameters other than Ψj and Σj are linked to stage II through the

summary statistics and thus require Metropolis-within-Gibbs updates as the full conditionals

no longer have a nice distributional form.

Now we outline our posterior sampling algorithm for stage II parameters. In Probit

regression models, the posterior distribution can be simulated by a Metropolis-Hastings al-

gorithm. However, to simplify computation, Albert and Chib (1993) derived a data augmen-

tation scheme which relies on the latent variable model representation of a binary variable.

This approach greatly simplifies sampling from the posterior distribution as the model is

transformed from a Probit regression model into an equivalent linear model, thus the param-

eter vector βK can be drawn from its full conditional as opposed to the Metropolis-Hastings

algorithm.

We introduce a continuous latent vector d = (d1, . . . , dM)T. Define the conditional

distribution of Zj given dj by

π(Zj = 1 | dj) = 1 if dj > 0, and = 0 if dj ≤ 0. (8)

The full conditional distribution of dj is straightforward to derive (SWBM and Holmes and

Denison (2003)) and is

[dj | Zj = zj,Xj,Ω2K ] ∼
{

N(ηjK , 1) truncated at the left by 0 if zj = 1
N(ηjK , 1) truncated at the right by 0 if zj = 0.

(9)

We draw dj, j = 1, . . . ,M from (9). We then draw βK from its full conditional distri-

bution: [βK | d, v,ΘK ,X ] ∼ N (m∗K , V
∗
K), where V ∗K = [(vIK+1)

−1 + BT
KBK ]−1 and m∗K =

V ∗KBT
Kd. Standard conjugacy results state that the full conditional distribution of v−1 is

[v−1 | βK , K] ∼ Gamma[0.001 + 0.5(K + 1), 0.001 + 0.5βT
KβK ].

All parameters contained in ΘK , are updated via the reversible jump MCMC algorithm

(Green (1995)). Since K is random, the dimension of ΘK varies as well as the column

dimension of the matrix of BMARS bases, BK , and the dimension of the vector βK . At each
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iteration of the algorithm, we randomly (with equal probability) choose to add a new basis

function (birth step) or to remove one of the existing basis functions (death step). Thus,

covariates (summary statistics) and any two-way interactions enter the model via these birth

and death steps. Details of the RJMCMC algorithm and pseudo code for sampling from the

posterior distribution of our joint model are given in the SWBM.

2.4 Model Evaluation

The traditional way to evaluate classification models is by randomly partitioning the data

into a training set for model building and a test set for model evaluation. However, due to the

small sample size in our data set, we evaluate our proposed joint model via cross-validation.

To implement cross-validation, a straightforward, but computationally expensive, approach

is to run the algorithm multiple times with one observation left out each time. Instead, we

adopt the importance sampling approach proposed by Gelfand et al. (1992) whereby one

need only estimate the posterior distribution of the parameters given the full dataset and

then by importance sampling compute the predictive probability that Zj = 1 given Z{−j}

and Y for subject j where Z{−j} denotes all observations except that of subject j. Let

Ω
(t)
2 denote the value of Ω2K from the tth draw from the posterior and that of Ω1 by Ω

(t)
1 .

The cross-validated posterior predictive probability is estimated by MCMC output (see the

SWBM) and is given by:

π
(
Zj = 1 | Z{−j},Y

)
=

∑T
t=1 π

(
Zj = 1 | Ω(t)

1j ,Ω
(t)
2

)
/π
(
Zj = zj | Ω(t)

1j ,Ω
(t)
2

)
∑T

t=1 1/π
(
Zj = zj | Ω(t)

1j ,Ω
(t)
2

) , (10)

where zj is the observed value of Zj. We assume that the losses incurred by a false negative

and a false positive prediction are equal. Thus, if π
(
Zj = 1 | Z{−j},Y

)
≥ 0.5, then the

cross-validated prediction of Zj = 1 and 0 otherwise.

Although not part of model evaluation, here is a good place to discuss the predictive
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decision boundary. Theoretically, one could use the predictive distribution, π(Znew = 1 |

Ynew,Z,Y), to define the decision boundary by varying Ynew over the space of all images.

Obviously this is too daunting a task. Instead we will define the conditional predictive deci-

sion boundary in terms of the summary statistics. This decision boundary is a hypersurface

in R4—the covariate space. It is defined as all solutions, Xnew, to the posterior predictive

probability

1/2 = π(Znew = 1 | Z,Xnew) =

∫
π(Znew = 1 | Xnew,Ω2K)π(Ω2K | Z,Ω1)dΩ2K .

We are not able to visualize this decision boundary either as the dimension is 4. Therefore,

to visualize the decision boundary, we will marginalize over pairs of covariates and plot

the marginal predictive probability map as a function of the remaining pair of covariates

by discretizing the marginal covariate space into a grid of values. The marginal decision

boundary, then, is a curve in 2-dimensional space (see Figure 2).

We note here, that at each iteration the number of BMARS basis may change, thus

implicit in the estimation of the cross-validated predictive probability and in building the

marginal probability maps we average over all potential BMARS models. By doing so,

we account for model uncertainty in our results along with the uncertainty in the model

parameters, and thus inductively, the uncertainty in the covariates X (Raftery et al. (1996)).

3 Results

Stage I is computationally much more expensive than stage II due to the large number of

voxels, n, in each patient’s tumor. We run the algorithm (stage I and stage II combined)

for 100,000 iterations. In each iteration, we over-sample (10:1) draws from the posterior of

the stage II parameters. Stage I takes around 20 hours for all 47 patients, whereas stage II

takes 5 minutes. The algorithm is programmed in C and implemented on a 3.0 GHz Mac
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Xserve. The first 50,000 draws are discarded as burn-in. By visual inspection of the trace

plots of the (fixed dimension) parameters, the burn-in is sufficient and the chain is sampling

from the posterior (stationary) distribution.

We calculate the cross-validated correct classification rate, CCRcv—the proportion of

correctly predicted survival statuses. The positive predictive value, PPVcv—the probability

of death within one year conditional on prediction of death within one year. And, the

negative predictive value, NPVcv—the probability of survival greater than one year given

a prediction of survival greater than one year. The results are: CCRcv = 0.787 (37/47);

PPVcv = 0.813 (13/16); and NPVcv = 0.774 (24/31) (Table 1, row 1). Investigators are

interested in therapy intervention or modification if the model accurately predicts death

within one year. Therefore, the PPVcv is of greater interest than the NPVcv.

In Figure 2 we display the six bivariate marginal predictive probability maps. On each

map is the marginal decision boundary separating the space of covariates into two regions

based on whether π(Znew = 1 | Z,Xnew) > 0.5. Also shown in the figure are the posterior

means of the covariates for all 47 subjects. The triangles represent those subjects who

died before one year, and the circles represent those who lived greater than one year. The

probabilities in the maps are π(Znew = 1 | Z,Xnew) marginalized over the six combinations

of pairs of covariates. It is evident that the marginal decision boundaries are quite complex.

From Figure 2 we see that, marginally, small values of dKLD and cDS are associated with

poor survival and that large values of pKLD are also associated with poor survival. There are

also substantial interactions between cPS and dKLD, between dKLD and cDS and between

pKLD and dKLD. In general, the overall gross pattern of increases in the dKLD and cDS

statistics are predictive of longer survival—consonant with what our colleagues hypothesized.

However, the overall gross pattern of decreases in the pKLD and cPS statistics are predictive

of shorter survival—dissonant with that hypothesized. One plausible explanation provided
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by our colleagues is that a reduction in rCBF creates an hypoxic environment within the

tumor and hypoxia is known to be protective against radiation damage. However, we caution

that the exact mechanism is unknown and that it warrants further investigation (Galbán

et al. (2009)).

Each of the four summary statistics were included in the joint model as either a main

effect or as an interaction term a high percentage of the MCMC draws (dKLD, 95.9%; pKLD,

90.5%; cDS, 81.1% and cPS, 84.3%). This indicates their importance in predicting survival.

Both dKLD and pKLD appear to be slightly stronger predictors than either cDS or cPS

based on the amount of time spent in the model.

The baseline prognostic factors age, surgery type, Karnofsky performance score, Pathol-

ogy grade, tumor size were also included in stage II as covariates. However, their inclusion

did not increase the overall correct classification rate and each was included in the model

less than 20% of the time (either as main effects or in an interaction term).

4 Model Assessment

Comparison with simpler models: Our first comparison is with two separate models (i.e.

not modeled jointly). The image data are fitted with our mPWDP model. The posterior

means of the summary statistics are treated as fixed, known values and used as covariates in

our GNLM-BMARS model. Thus the only difference between this procedure and our joint

model is that our joint model accounts for the uncertainty in the summary statistics. Using

point estimates, such as the posterior means, of the summary statistics as covariates in stage

II results in overly optimistic prediction errors (see, e.g. Little and Rubin (2002)). Ignoring

the sampling variability in stage I, two additional patients are correctly classified (Table

1, row 2). The posterior means of the summary statistics for these patients are near the

decision boundary and happened to fall on the correct side, while the maximum a posteriori
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probability (MAP) estimate was on the other side. Accounting for the variability in these

random statistics, therefore, is necessary for robust prediction.

Our second comparison is again with two separate models. We estimate the posterior

means of the summary statistics from our mPWDP model. These point estimates are then

treated as fixed, known covariates and put into a standard Probit regression model (Table 1,

row 3). Both main effects and interaction terms are allowed in the Probit regression model.

BIC is used for model selection. Correct prediction from our joint model is much higher even

though uncertainty in the covariates is ignored, as well as model uncertainty, in the separate

mPWDP + Probit regression model. The extra flexibility afforded by the BMARS basis has

a large effect on prediction.

Our final comparison illustrates the benefits of the spatio-temporal modeling in stage I

by comparing our results to those based on the observed images. Since the cDS and cPS

statistics rely on the conditional distribution of tumor response under the null, it is not

possible to derive these summary statistics on the observed images as we have no model

to use to predict tumor null response. Thus, this comparison uses only dKLD and pKLD.

We estimate dKLD and pKLD using the observed images by calculating the KL divergence

between observed tumor response and observed healthy tissue response (in the contralateral

hemisphere) at week 3 and plugging these statistics into our GNLM-BMARS model as fixed

covariates. Cross-validation results are shown in the bottom half of Table 1, rows 4 and 5.

Spatio-temporal modeling results in higher CCRcv, PPVcv and NPVcv.

Our overall conclusion from these comparisons is that joint modeling of the spatio-

temporal structure in the images and the complexity in the decision boundary afforded by

the covariates entering the GNLM model non-linearly and interacting in a complex manner

is warranted for this data set. The images have complex structure and there is a complex re-

lationship between the image based summary statistics and one-year survival. Furthermore,
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accounting for the uncertainty in the summary statistics and model averaging are necessary

for robust prediction.

Results from simulation studies and sensitivity analyses can be found in the SWBM.

5 Discussion

In this manuscript, we propose a Bayesian joint model to predict early treatment efficacy

based on qMRI data from patients with high-grade gliomas. In stage I, we model the spatio-

temporal structure in the qMRI data via a mPWDP model and derive summary statistics

as functionals of the parameters in the posterior. In stage II, a GNLM is used to classify

each patient’s one-year survival status with the summary statistics derived in stage I as

random predictors. The final predictive power is evaluated by cross-validation. Compared

to previous work, our proposed joint model integrates many of the ideas that have been

previously discussed. First, we extend the idea of the PWDP model to a multivariate

setting, and, in fact, use it in a full spatio-temporal setting. The mPWDP model accounts

for spatio-temporal correlation in the images as well as the correlation between the diffusion

and perfusion images. This results in an increase in the signal to noise ratio. Furthermore,

data dimension reduction is realized by defining subject level summary statistics. Second,

by utilizing the BMARS basis, we allow a flexible and complex classification model that can

achieve high predictive power. Finally, our model accounts for the uncertainty in the stage

II covariates and for the uncertainty in model selection, resulting in more robust predictions.

In our analysis, we dichotomize each patient’s survival status at one year. However, there

may not be any substantial difference between a patient who dies 11 months after diagnosis

and a patient who dies at 13 months. Moreover, the censoring rate in the data is about

30% with a median follow-up of 23.1 months and all censored observations are greater than

one year. Censoring may also play a role in the evaluation of tumor treatment efficacy and
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dichotomizing survival may lead to inefficient estimation. We are currently building a joint

imaging/survival model, where, in stage II, we model the censored survival times explicitly.

We note here that we propose four summary statistics that capture information about

the early changes in ADC and rCBF due to treatment. Results show that they perform

well in terms of good prediction. We do not claim that these summary statistics capture

the most, or even the best, information. Information is always lost in data reduction. Much

more research is needed to determine how much data reduction is tolerable. Reduction to

four summary statistics does a good job, but perhaps five or six would be better. We did

not attempt to use more than four summary statistics due to the limited sample size in the

pilot study. With larger samples size, less data reduction may be beneficial.

Our results show that early changes in diffusion and perfusion appear to be valuable

biomarkers for the early assessment of treatment efficacy. These result are promising, albeit

preliminary. The ability to predict treatment response during therapy, as opposed to waiting

to assess traditional radiologic response, has the potential to facilitate patient management

and may allow second line or salvage therapies to begin earlier than current practice dictates.

Lastly, our model and sampling algorithm is easily extendable to more than 2 image types

at more than 2 times points with more than four summary statistics.
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Table 1: Model Comparisons. Upper part: comparisons based on all four statistics. First
row: our proposed joint model. Second row: separate two-stage model (not joint). The
second stage model (GNLM-BMARS) run conditional on the posterior expectations of the
summary statistics from stage 1. Third row: separate two-stage model. The second stage
model is a standard Probit regression model. Summary covariates are fixed at their posterior
expectations from stage I. Bottom part: comparisons using only the two KLD statistics.
Fourth row: our proposed model. Fifth row: Summary statistics computed on observed
data. GNLM-BMARS runs conditional on “observed” dKLD and pKLD.

Model 1CCRcv 2PPVcv 3NPVcv
Bayesian joint model 0.787 (37/47) 0.813 (13/16) 0.774 (24/31)
Separate models (two-stage model) 0.830 (39/47) 0.853 (15/18) 0.827 (24/29)
Separate models (stage I + Probit) 0.617 (29/47) 0.572 (11/20) 0.667 (18/27)
Bayesian joint model 0.723 (34/47) 0.733 (11/15) 0.719 (23/32)
Single model (stage II only) 0.638 (30/47) 0.600 (9/15) 0.656 (21/32)

1 Correct cross-validated (CV) classification rate.
2 Cross-validated positive predictive value.
3 Cross-validated negative predictive value.
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Figure 1: A single axial slice of pre-treatment MRI data. Upper left image: diffusion MRI;
Upper right: perfusion MRI; Lower left: T1-weighted contrast enhanced MRI. The tumor is
visible in all three images. It is located roughly at voxel (100,80) just below the left ventricle.
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Figure 2: Marginal predictive probability maps from the glioma data. Each probability map
is obtained by marginalizing over the two summary statistics not appearing in x and y labels
of the images. The darker gray indicates smaller probability of patients’ death before one
year (i.e. π(Zj = 1 | Z(−j),Y(−j),Yj)). The curved lines demarcate the marginal decision
boundary (i.e. π(Zj = 1 | Z(−j),Y(−j),Yj) = 0.5)—if π(Zj = 1 | Z(−j),Y(−j),Yj) > 0.5,
we predict death of that patient before one year. The symbols are located at the marginal
posterior means of the statistics. The circles and triangles represent the true one year survival
status for each patient. A circle indicates that the patient actually lived longer than one
year. A triangle indicates that the patient died before one year.

28

http://biostats.bepress.com/umichbiostat/paper86


	text.pdf.1292607304.titlepage.pdf.afVmq
	tmp.1292607304.pdf.H6ZoM

