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1 Introduction

The problem of identifying genes that are differentially expressed across varying biological condi-

tions based on microarray data has been a problem of much recent interest (Cui & Churchill 2003).

It is now possible to simultaneously measure thousands of related variables or “features” in a

variety of biological studies. Many of these high-dimensional biological studies are aimed at identi-

fying features showing a biological signal of interest, usually through the application of large-scale

significance testing. For example, significance analyses are often performed in DNA microarray,

comparative genomic hybridization, genome-wide comparative genomics, protein array, mass spec-

trometry, and genome-wide association studies (Cui & Churchill 2003, Sebastiani et al. 2003, Wang

et al. 2005). In many of these applications, the true biological signals of interest across the features

are expected to be related. This motivates investigating approaches to large-scale testing that take

advantage of widespread structure in high-dimensional data.

We propose a new approach for performing simultaneous significance tests on many features in

a high-dimensional study. This approach is based on the “optimal discovery procedure” (ODP),

recently developed from a theoretical perspective (Storey 2005). The ODP was shown to be optimal

in that it maximizes the expected number of true positives for each fixed level of expected false

positives; this is also directly related to optimality in terms of the popular false discovery rate

(FDR). Here, we introduce approaches to estimating the ODP in practice, and we propose a

fully developed method for identifying differentially expressed genes in comparative microarray

experiments.

In a microarray study, there is very often pervasive asymmetry in differential expression that

is not due to chance. Indeed, it would seem unlikely that overall differential expression would be

symmetric, unless the experiment was designed to achieve this behavior. Asymmetric differential

expression is an example of the existence of an underlying structure present among thousands of

features in a high-dimensional biological study. Due to the pathway structure of gene expression

regulation, the expression measurements of genes are related at an even finer scale, which yields

further structure in observed differential expression.

A procedure for identifying differentially expressed genes should take advantage of this struc-

ture, the same holding true for other high-dimensional biological studies where much structure in

signal is present. The ODP approach does exactly this, utilizing the relevant information from

the entire data set in testing each gene for differential expression. The commonly used statistics

in high-dimensional studies, such as the t-statistic, F-statistic, or the chi-square statistic, were

originally designed for performing a single significance test. Whereas these statistics are formed

using information from only one feature at a time, the ODP takes advantage of the structure in
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high-dimensional data.

There are two steps implicitly required for performing large-scale significance testing in high-

dimensional biological studies: (1) order the features from those showing the most signal of interest

to those showing the least; (2) assign a significance level to each feature, allowing one to draw a

significance cut-off somewhere along this ordering. As an example, the significance analysis of a

microarray study involves ranking the genes from most differentially expressed to least (the first

step), and then drawing a significance cut-off based on, say, an estimate of the FDR (the second

step). This paper is focused on the first step, namely estimating an optimal ordering of the features.

The second step, which is not developed in this paper, has been addressed with new significance

measures for high-dimensional studies, such as the FDR (Storey & Tibshirani 2003).

Estimating the ODP in practice requires the development of a number of ideas beyond those

considered in the more theoretical setting of Storey (2005), which we illustrate through the microar-

ray application. For example, whereas a t-statistic automatically cancels out ancillary information

in testing for differential expression, certain approaches to estimating the ODP do not. Therefore,

steps must be taken so that such ancillary information has no effect on the significance results.

Here, we introduce a general set of methodology that overcomes a number of these challenges.

We demonstrate the proposed ODP approach for identifying differentially expressed genes on a

well-known breast cancer expression study (Hedenfalk et al. 2001), as well as on simulated data. We

compare the results to those from five leading differential expression methods (Tusher et al. 2001,

Kerr et al. 2000, Dudoit et al. 2002, Cui et al. 2005, Efron et al. 2001, Lonnstedt & Speed 2002). Our

method consistently shows substantial improvements in performance over these existing methods.

For example, in testing for differential expression between BRCA1 and BRCA2 mutation-positive

tumors, the ODP approach provides increases from 72% to 185% in the number of genes called

significant at a 3% FDR. A comparison between the methods over a range of FDRs is shown in

Figure 2 and Table 1.

2 The Optimal Discovery Procedure

2.1 Optimality goals

The typical goal when identifying differentially expressed genes is to find as many true positives as

possible, without incurring too many false positives (Storey & Tibshirani 2003). Sometimes genes

found to be significantly differentially expressed are subsequently studied on a case-by-case basis in

order to determine their role in the differing biological conditions. It is also now possible to discover

functional relationships among significant genes based on a number of ontological databases, making

this an attractive and more frequently used follow-up investigation technique (Zhong et al. 2004).
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Because of these goals in microarray experiments and a variety of other high-dimensional bio-

logical applications, the FDR has emerged as a popular criterion for assessing significance in high-

dimensional biological studies (Storey & Tibshirani 2003). The FDR is defined to be the proportion

of false positives among all features called significant (Soric 1989, Benjamini & Hochberg 1995).

For example, if 100 genes are called significant at the 5% FDR level, then one expects 5 out of

these 100 to be false positives. When investigating the functional relationships of a set of significant

genes, the FDR has the nice interpretation that it represents the level of “noise” present in the

genes used to draw conclusions about the functional relationships.

Instead of working directly with FDRs, the ODP is based on two more fundamental quantities:

the expected number of true positives (ETP) and the expected number of false positives (EFP).

Specifically, the ODP is defined as the testing procedure that maximizes the ETP for each fixed

EFP level. Since FDR optimality can be written in terms of maximizing the ETP for each fixed

EFP level (Storey 2005), the ODP also provides optimality properties for FDR. A consequence of

this optimality is that the rate of “missed discoveries” is minimized for each FDR level. In fact,

the optimality properties of the ODP translate to a variety of settings, including misclassification

rates (Storey 2005). This optimality can also be formulated as a multiple test extension of this

Neyman-Pearson optimality (Storey 2005).

2.2 ODP statistic

The ODP is very much related to one of the fundamental ideas behind individual significance

tests: the Neyman-Pearson lemma. Given a single set of observed data, the optimal single testing

procedure is based on the statistic

SNP(data) =
probability of the data under the alternative distribution

probability the of data under the null distribution
.

The null hypothesis is then rejected if the statistic SNP(data) exceeds some cut-off chosen to satisfy

an acceptable Type I error rate. (Here, the larger the statistic is, the more significant the test

is.) This Neyman-Pearson procedure is optimal because it is “most powerful,” meaning that for

each fixed Type I error rate, there does not exist another rule that exceeds this one in power. The

optimality follows intuitively from the fact that the strength of the alternative versus the null is

assessed by comparing their exact likelihoods.

The ODP statistic may be written similarly to the NP statistic. However, instead of considering

the data evaluated at its own alternative and null probability density functions, the ODP considers

the data for a single feature evaluated at all true probability density functions. Let “datai” be the
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data for the ith feature being tested. The ODP statistic for feature i is calculated as

SODP(datai) =
sum of probability of datai under each true alternative distribution

sum of probability of datai under each true null distribution
. (1)

For a fixed cut-off chosen to attain an acceptable EFP level (or FDR level), each null hypothesis is

rejected if its ODP statistic SODP(datai) exceeds the cut-off. Note that “datai” has been evaluated at

all true probability densities, thereby using the relevant information from the entire set of features.

For each feature’s data, evidence is added across the true alternatives and compared to that across

the true nulls in forming the ratio.

Figure 1 gives a graphical representation of the ODP statistic, and its relative behavior to the

NP statistic. It can be seen there that the difference between the two is that the ODP borrows

strength across all of the tests, as opposed to using information from only one test at a time.

This point is explored in depth in Storey (2005). In the Supplementary Material, we provide a toy

example showing how microarray data contains information shared across genes that can be utilized

by the ODP. The NP procedure and ODP are theoretical procedures that must be estimated in

practice. As it turns out, the estimated ODP may show favorable operating characteristics over

estimated NP procedures when testing many hypotheses, as we demonstrate in this article.

2.3 Mathematical formulation

To make the definition of the ODP statistic more precise, suppose that m significance tests are per-

formed on observed data sets x1,x2, . . . ,xm, where each significance test consists of n observations

so that each xi = (xi1, xi2, . . . , xin). For the microarray application that we consider, xij is the

relative expression level of gene i on array j. In this case, there are m genes tested for differential

expression, based on n microarrays.

Assume that significance test i has null probability density function fi and alternative density

gi; without loss of generality suppose that the null hypothesis is true for tests i = 1, 2, . . . ,m0 and

the alternative is true for i = m0 + 1, . . . ,m. In this notation, the ODP statistic of equation (1) is

written as:

SODP(x) =
gm0+1(x) + gm0+2(x) + · · · + gm(x)

f1(x) + f2(x) + · · · + fm0
(x)

. (2)

Null hypothesis i is rejected if and only if SODP(xi) ≥ λ, where λ is chosen to satisfy an acceptable

EFP or FDR level. In practice the exact forms of the fi and gi are unknown, as well as which of

the tests have a true null hypothesis. Therefore, this statistic not only requires one to know the

distributions associated with each test, but also whether the null or alternative is true for each test.

This seemingly nonsensical requirement turns out to be tractable when estimating the ODP.
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Figure 1: Plots comparing the NP testing approach to the ODP testing approach through a simple example. (a)

NP approach. The null (grey) and alternative (black) probability density functions of a single test. For observed

data x and y, the statistics are calculated by taking the ratio of the alternative to the null densities at each respective

point. In this NP approach, the test with data y is more significant than the test with data x. (b) ODP approach.

The common null density (grey) for true null tests and the alternative densities (black) for several true alternative

tests. For observed data x and y, the statistics are calculated by taking the ratio of the sum of alternative densities

to the null density evaluated at each respective point. In this ODP approach, the test with data x is now more

significant than the test with data y, because multiple alternative densities have similar positive means even though

each one is smaller than the single alternative density with negative mean.6
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However, it requires that we use a different but equivalent form of the statistic. The following

equivalently defines the ODP, as shown by Storey (2005):

SODP(x) =
f1(x) + f2(x) + · · · + fm0

(x) + gm0+1(x) + gm0+2(x) + · · · + gm(x)

f1(x) + f2(x) + · · · + fm0
(x)

, (3)

which equals 1 + eq. (2). Since eq. (3) = 1 + eq. (2), these produce the exact same testing

procedure [where a threshold of λ applied to the statistic defined in equation (2) is equivalent to a

threshold of 1 + λ applied to the statistic defined in equation (3)]. Because of this equivalence and

the tractability of estimating the statistic in equation (3), we employ and estimate this statistic for

the remainder of the article.

3 Proposed Approach for Estimating the ODP

Since the true ODP requires information not known in practice, the procedure must be estimated;

here, we propose some general methodology for doing so. The goal when estimating the ODP is to

be able to reproduce the same ranking of features as the true ODP. Note that it is not necessary

to reproduce the ODP statistics exactly, but rather their relative ranking. In order to estimate the

ODP statistic of equation (3), one must estimate the true probability density function for each test

and also address the fact that only the true null tests are represented in the denominator of the

statistic. The first challenge is straightforward to address: we use the observed data for each test

in order to estimate its true probability function. This is clearly justified by the fact that the data

are generated from that true density function. The second challenge can be addressed in several

ways, some of which we propose below.

3.1 A canonical plug-in estimate

A parametric approach can be taken to estimate the ODP, motivated by the generalized likelihood

ratio test for single significance tests. Recall that fi and gi will both be defined by a set of

parameters (e.g., the mean and variance of a Normal distribution). For each test i = 1, . . . ,m, let

f̂i be the maximum likelihood estimate1 of fi based on data xi under the constraints of the null

hypothesis, and let ĝi be the unconstrained maximum likelihood estimate. In single hypothesis

testing, the Neyman-Pearson procedure for test i is based on gi(xi)/fi(xi), and it can be estimated

by the generalized likelihood ratio statistic ĝi(xi)/f̂i(xi) (Lehmann 1986). Our proposed approach

builds on this strategy.

1Technically speaking, bfi is the version of fi defined by the unknown parameters’ maximum likelihood estimates
under the constraints of the null hypothesis.
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For true null hypotheses i = 1, . . . ,m0, the maximum likelihood parameters defining f̂i and ĝi

are both consistent estimates of the actual values of fi as the number of observations n grows to

infinity. Likewise, ĝi is composed of consistent parameter estimates of gi for false null hypotheses

i = m0 + 1, . . . ,m. Therefore, ĝ1 + · · ·+ ĝm can be used to estimate the numerator of equation (3),

where it is now unnecessary to be able to distinguish between true and false null hypotheses. This

motivates the following “canonical estimate” of the ODP statistic:

ŜODP(x) =
ĝ1(x) + · · · + ĝm0

(x) + ĝm0+1(x) + · · · + ĝm(x)

f̂1(x) + · · · + f̂m0
(x)

. (4)

We use the term “canonical” because the above is a direct plug-in estimate of the ODP thresholding

function, where all unknown parameters are consistently estimated.

Consistency in the number of observations n for each test is not necessarily the best property

to be concerned about in this setting, since it will usually be the case that n � m; nevertheless,

many of the commonly used statistics (t, F, chi-square) can be motivated from this perspective,

while also displaying good small sample properites. Other well behaved estimates of the fi and gi

could certainly be employed if they show favorable operating characteristics.

3.2 Common null distribution estimate

In general, it will not be possible to employ the canonical estimate because it requires one to be

able to identify the densities of the true null hypotheses. If a common null distribution f exists and

is known, then one does not need to know which of the null hypotheses are true. The canonical

ODP estimate can then be simplified to

ŜODP(x) =

∑m
i=1 ĝi(x)

f(x)
. (5)

Note that sometimes it is possible to transform the data so that the null distribution becomes

known and common among all tests (e.g., by replacing the data with a pivotal statistic). However,

this may remove much of the information in the data, making this approach less desirable. If there

is no common and known null distribution, then the following more generally applicable estimate

is proposed.

3.3 Generally applicable estimate

One general approach is to approximate the canonical plug-in estimate by estimating which null

densities should be included in the denominator of the statistic. Let ŵi = 1 if f̂i is to be included

8

Hosted by The Berkeley Electronic Press



in the denominator, and ŵi = 0 otherwise. The estimate of the ODP statistic is then

ŜODP(x) =

∑m
i=1 ĝi(x)∑m

i=1 ŵif̂i(x)
. (6)

More generally, the ŵi can be thought of as weights serving as estimates of the true status of each

hypothesis. We have defined them as equaling zero or one, but they could take on a continuum of

values as well.

We propose and implement a simple approach to forming the ŵi for the microarray application

below, although many different approaches would be possible. This simple approach is based on

ranking the tests by using a univariate statistic (e.g., a t-statistic). For all statistics exceeding some

cut-off (i.e., those appearing to be significant and not likely to be true nulls), we set ŵi = 0; for

those not exceeding the cut-off, we set ŵi = 1. The cut-off is formed so that the proportion falling

below and receiving ŵi = 1 is equal to an estimate of the proportion of true null hypotheses, based

on the method in Storey (2002) and Storey & Tibshirani (2003).

Note that if the tests are consistent, then we expect the true alternative tests to rise above

the cut-off with probability one. The proportion of true null tests can be estimated unbiasedly in

this case (Storey 2002), providing a reasonable method for extracting the true null densities to be

employed in the denominator of the statistic. Our particular version of this procedure, based on

a Kruskal-Wallis test statistic and the estimate of the proportion of true nulls by Storey (2002)

and Storey & Tibshirani (2003), performs nearly as well as the canonical estimate according to our

simulations.

3.4 Nuisance parameter invariance

In addition to estimating the ODP well, it is also necessary to consider the effect of ancillary

information on the procedure. Specifically, it is desirable to obtain a “nusiance parameter invari-

ance” property. Suppose that all significance tests have equivalently defined null and alternative

hypotheses and their probability density functions all come from the same family. If the null dis-

tributions fi are not equal then this is due to differing nuisance parameters. However, simply

changing the nuisance parameters of the true null hypotheses can produce substantial (and some-

times undesirable) alterations in the ODP (Supplementary Material). A strong way to enforce

nuisance parameter invariance is to require all fi to be equal. Alternatively, one may require that∑m
i=1 fi/m =

∑m0

i=1 fi/m0 so that on average there is no relationship between the status of the

hypotheses and the null distributions. See Supplementary Material for a more detailed discussion

on this important property.

In practice, it is sometimes possible to formulate the significance tests or transform the data
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so that
∑m

i=1 fi/m ≈
∑m0

i=1 fi/m0. When this nuisance parameter invariance property is met,∑m
i=1 f̂i/m may serve as an estimate of

∑m0

i=1 fi/m0, yielding the following estimate of the ODP

thresholding rule:

ŜODP(x) =

∑m
i=1 ĝi(x)∑m
i=1 f̂i(x)

, (7)

where the unknown constant m0/m can be omitted. However, it may also be difficult to estimate

the fi for true alternative tests since their data are in fact generated from the alternative density

gi. In other words, f̂i may be a poor estimate of fi for i > m0, making the denominator of equation

(7) poorly behaved.

4 ODP for Identifying Differentially Expressed Genes

For the microarray application, we found the implementation based on our general estimate of

equation (6) to perform the best. This implementation requires (i) fi and gi to be defined, (ii)

estimates f̂i and ĝi to be derived, (iii) an estimate of which f̂i to employ in the denominator to

be derived, and (iv) justification that the nuisance parameter invariance condition
∑m

i=1 fi/m =∑m0

i=1 fi/m0 is approximately met.

Some notation is necessary to describe the implementation. We assume expression is measured

on m genes from n arrays, where the n arrays come from one of two distinct groups. (The method-

ology easily extends to there being one, two, or more groups – details are given below.) Let µi1

be the mean of gene i in group 1, and µi2 be the mean of gene i in group 2, i = 1, . . . ,m. When

gene i is not differentially expressed, these means are equal and we denote them by their common

mean µi0. We denote xij to be the expression observation for gene i in array j, for i = 1, . . . ,m

and j = 1, . . . , n. As before, we represent the data for a single gene by xi = (xi1, xi2, . . . , xin).

Also, let xi1 be the subset of data from group 1 and xi2 the subset of data from group 2. For

example, with seven arrays in group 1 and eight in group 2, we write xi1 = (xi1, xi2, . . . , xi7) and

xi2 = (xi8, xi9, . . . , xi15).

4.1 Probability density functions

The model we use to estimate the ODP is that xij comes from a Normal distribution with mean

µi1 or µi2 (depending on the group that array j belongs to) and variance σ2
i . Note that this is

only an assumption insofar as claims are made about the accuracy of the estimated ODP with

respect to the true ODP. We do not make any distributional assumptions when assessing the level

of statistical significance for each feature. We assume that the expression measurements xij are on

the log-scale or whatever scale makes the use of the Normal densities most reasonable.
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Under this assumption, the likelihood of a set of data can be written using the Normal prob-

ability density function φ. For example, the likelihood of data x with mean µ and variance σ2 is

written as

φ(x;µ, σ2) =
1

(2πσ2)n/2
exp

{
−

∑n
j=1(xj − µ)2

2σ2

}
.

In the notation used to define the general ODP estimates, we therefore define

fi(x) = φ(x;µi0, σ
2
i ) and gi(x) = φ(x1;µi1, σ

2
i )φ(x2;µi2, σ

2
i ).

For hypothesis i, the likelihood of data x is fi(x) under the null and gi(x) under the alternative.

4.2 Estimates of the densities

Ignoring nuisance parameter invariance issues, it is straightforward to define estimates of these

densities. Let (µ̂i0, σ̂
2
i0) be the maximum likelihood estimates under the constraints of the null

hypothesis, and (µ̂i1, µ̂i2, σ̂
2
iA) be the unconstrained maximum likelihood estimates. These are

simply the sample means and variances under the assumptions of the null and alternative hypothe-

ses, respectively (Supplementary Material). The above densities can then simply be estimated by

f̂i(·) = φ(·; µ̂i0, σ̂
2
i0) and ĝi(·) = φ(·; µ̂i1, σ̂

2
iA)φ(·; µ̂i2, σ̂

2
iA). Below, we modify these density defini-

tions and estimates to approximately achieve nuisance parameter invariance.

4.3 Extracting true null densities for the denominator

We also estimate which null densities should appear in the denominator of the statistic. The

ultimate goal is to recover the canonical estimate (equation (6)), where only f̂i corresponding to

true nulls are present in the denominator. We take the approach outlined in that Section 3.3,

summarized in the following algorithm.

1. Perform a Kruskal-Wallis test for differential expression on each gene, and rank the genes

from most differentially expressed to least according to this test.

2. Using the p-values from these tests, estimate the number of differentially expressed genes m̂0

according to the methodology in Storey (2002) and Storey & Tibshirani (2003).

3. Set ŵi = 1 for the genes falling in the bottom m̂0 of the ranking; set ŵi = 0 otherwise.

A rank-based test is used mainly because it is computationally efficient. Furthermore, if a t-

statistic or F-statistic were used, then this runs the risk of preferentially selecting genes with small

variances by chance, a phenomenon previously noted about such statistics (Tusher et al. 2001). It
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should be stressed that this is one of many approaches one could take to estimating which null

densities to include in the denominator. We anticipate that better strategies will be found in the

future. However, the procedure proposed here does in fact show improvements over setting all

ŵi = 1. Furthermore, at this stage it is not necessarily so important to identify individual null

genes well, but rather to identify a subset so that
∑m

i=1 ŵif̂i approximates
∑m0

i=1 fi well.

4.4 Nuisance parameter invariance

According to our notation, the null hypothesis for gene i is that µi1 = µi2 and the alternative is that

µi1 �= µi2. This can be re-written as µi1 − µi2 = 0 versus µi1 − µi2 �= 0. Without loss of generality,

the common mean when the null hypothesis is true can be defined as µi0 = (n1µi1 + n2µi2)/n,

where n1 and n2 are the number of arrays in groups 1 and 2, respectively. The data for gene i can

then be equivalently parameterized by (µi0, µi1 − µi2, σ
2
i ) rather than (µi1, µi2, σ

2
i ). It is clear that

the parameters µi0 and σ2
i are not of interest in the hypothesis test; these are the so-called nuisance

parameters.

Recall that the goal is to approximately achieve the equality
∑m

i=1 fi/m =
∑m0

i=1 fi/m0. If (i)

the distribution of the σ2
i is unrelated to the distribution of the µi1 − µi2 and (ii) each µi0 = 0,

then we can approximately achieve the nuisance parameter invariance condition (Supplementary

Material). Standard methods make it straightforward to transform the data so that there is no

apparent relationship between the σ2
i and the µi1 − µi2 (Rocke & Durbin 2003), so this condition

can often be fulfilled in practice. Ideally, we would force µi0 = 0 by subtracting the true µi0 from

each xij for j = 1, . . . , n. However, µi0 are unknown, so these must be estimated. Therefore, we

set µ̂i0 =
∑n

j=1 xij/n and define x∗

ij = xij − µ̂i0, thereby centering each gene around zero.

With the data transformed in this manner, it follows that µ∗

i0 = 0, µ∗

i1 = µi1 − µi0 and µ∗

i2 =

µi2 − µi0, with estimates µ̂∗

i1 = µ̂i1 − µ̂i0 and µ̂∗

i2 = µ̂i2 − µ̂i0. The variances σ2
i do not change, so

these can be estimated as before by taking the sample variances under the assumptions of the null

and alternative hypotheses to get σ̂2
i0 and σ̂2

iA, respectively.

4.5 Estimated ODP thresholding function

The ODP for identifying differentially expressed genes between two groups can then be estimated

by forming the following statistic for each gene i = 1, 2, . . . ,m:

ŜODP(xi) =

∑m
g=1 φ(x∗

i1; µ̂
∗

g1, σ̂
2
gA)φ(x∗

i2; µ̂
∗

g2, σ̂
2
gA)∑m

g=1 ŵiφ(x∗

i ; 0, σ̂
2
g0)

.
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Note that the centered data for gene i, x
∗

i is evaluated at the estimated likelihood functions for all

genes. Therefore, if gene g has a similar signal to gene i, then its likelihood under the alternative

will contribute substantially to the estimated ODP statistic of gene i. Also, the variance of a gene

is taken into account in its contribution to the statistic, where the smaller the variance, the more

its likelihood is allowed to contribute to gene i’s statistic. The formula of the statistic also makes it

clear why it is useful to use the gene-centered data x
∗

i . Strength is borrowed across genes that have

a similar structure in the signal, even if they have different baseline levels of expression (which is

not of interest for detecting differential gene expression).

This method is easily extended to a general K-sample analysis, where K different biological

groups are compared for differential expression. For example, in a 3-sample analysis the goal is to

identify genes whose mean expression is different in at least one of the three groups. The estimated

ODP statistic for a K-sample significance test of differential expression is a simple extension of the

above 2-sample statistic:

ŜODP(xi) =

∑m
g=1 φ(x∗

i1; µ̂
∗

g1, σ̂
2
gA) · · · φ(x∗

iK ; µ̂∗

gK , σ̂2
gA)∑m

g=1 ŵiφ(x∗

i ; 0, σ̂
2
g0)

. (8)

Analogously to the two-sample method, each gene is mean centered around zero to obtain the

transformed data x
∗

i . In the 1-sample case, the data do not have to be mean centered because there

is no nuisance location parameter present.

4.6 Existing methods

Most of the existing methods for identifying differentially expressed genes implicitly make the

Normal distribution assumption that we have made. The statistic for gene i is then formed by

ĝi(xi)/f̂i(xi). When the estimated parameters defining f̂i and ĝi are the maximum likelihood

estimates, then ĝi(xi)/f̂i(xi) is equivalent to employing the usual t-statistic (Lehmann 1986). When

the maximum likelihood estimates are shrunken towards a common value (across genes), then the

so-called SAM statistic and other similar versions emerge (Tusher et al. 2001, Cui et al. 2005,

Efron et al. 2001). Therefore, these more intricate statistics use information across genes only in

that different estimates are employed in ĝi(xi)/f̂i(xi). Not surprisingly, these modified statistics

sometimes perform worse than the traditional t-statistic and F-statistic (Section 5).

4.7 Overall algorithm for identifying differentially expressed genes

The following is a description of the estimated ODP for identifying differentially expressed genes.

The basic approach is to form estimated versions of the ODP statistics, and then assess significance
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using the q-value (Storey 2002, Storey & Tibshirani 2003). Full details of this algorithm, including

exact formulas can be found in the Supplementary Material. Note that one can also determine

a useful significance threshold through estimates of the EFP and ETP, which we also outline in

the Supplementary Material.

Proposed Algorithm for Identifying Differentially Expressed Genes

1. Using the formula given above in equation (8), evaluate the estimated ODP statistic for each

gene.

2. For B iterations, simulate data from the null distribution for each gene by the bootstrap,

and re-compute each statistic to get a set of null statistics. (Note: The bootstrap sampling

is carried out so that for each iteration, the same resampled arrays are applied to all genes.

This keeps the dependence structure of the genes intact.)

3. Using these observed and null statistics, estimate the q-value for each gene as previously

described (Storey 2002, Storey & Tibshirani 2003).

The algorithm generates an estimated q-value for each gene and a ranking of the genes from

most significant to least significant. The q-value is like the well-known p-value, but it is designed

for the FDR; the q-value of a gene gives the FDR that is incurred when calling that gene and all

others with larger statistics significant (Storey 2003, Storey & Tibshirani 2003). One may call genes

significant for differential expression by forming a q-value cut-off at an appropriate level (say, 1%,

5%, or 10%), or one may simply report the q-value for every gene and let each individual researcher

choose a level of desirable significance. We now apply this method to a well known breast cancer

study, and we compare the ODP approach to several highly used existing approaches.

5 Results

5.1 Analysis of breast cancer tumor tissue

We assessed the performance of the ODP on a well-known study comparing the expression of breast

cancer tumor tissues among individuals who are BRCA1-mutation-positive, BRCA2-mutation-

positive, and “Sporadic” (Hedenfalk et al. 2001). The expression measurements used in the study

consist of 3226 genes on 22 arrays; seven arrays were obtained from the BRCA1 group, eight from

the BRCA2 group, and six from the Sporadic group. One sample was not clearly classifiable, so we

eliminated it from the analysis here. Also, as previously described (Storey & Tibshirani 2003),

several genes have aberrantly large expression values within a single group, so we eliminated
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those genes from the analysis. Genes were filtered that had any absolute expression measure-

ment greater than 20, which is well beyond several times the interquartile range from the median.

These steps left measurements on 3169 genes from 21 arrays. The raw data were obtained from

http://research.nhgri.nih.gov/microarray/NEJM Supplement/ and all data were analyzed on

the log2 scale. We applied our proposed procedure to identify differentially expressed genes between

the BRCA1 and BRCA2 groups, and also between all three groups.

We compared our approach to five leading techniques, including (i) the highly-used SAM soft-

ware based on Tusher et al. (2001) and Storey (2002), (ii) the traditional t-tests and F-tests as

previously suggested for microarray analysis (Kerr et al. 2000, Dudoit et al. 2002), (iii) a recently

proposed variation on these that uses “shrunken” versions of the statistics (Cui et al. 2005), (iv)

a non-parametric Bayesian method whose estimated posterior probabilities are also sometimes

interpreted as estimated Bayesian “local FDR” estimates (Efron et al. 2001), and (v) a model-

based empirical Bayes method giving posterior probabilities of differential expression (Lonnstedt

& Speed 2002).

The methods were compared to determine how accurately and efficiently each one extracts the

relevant biological signal. Each method produces some sort of statistic for each gene, as well as

a rule for thresholding these statistics. We used this information to estimate q-values for each

gene according to previously described methodology (Storey 2002, Storey & Tibshirani 2003). In

order to estimate the q-values, simulated null statistics were calculated for each method. This was

accomplished by simulating the same null data in order to calculate null statistics for each method.

It should be noted that several model based Bayesian methods exist (e.g., Newton et al. 2001,

Townsend & Hartl 2002, Newton et al. 2004) for identifying differentially expressed genes. In

particular, Newton et al. (2004) offers an interesting semi-parametric empirical Bayes approach

that provides an estimate of a novel Bayesian version of the FDR. The method is not included

in our comparison because of its different approach to quantifying the FDR. We have only com-

pared methods that have been proposed in or are easily amenable to the framework of calculating

significance based on a resampling-based frequentist FDR.

Newton et al. (2004) and three of the methods we include in our comparison (Tusher et al.

2001, Efron et al. 2001, Lonnstedt & Speed 2002) are able to capture asymmetry in differential

expression signal for when comparing two groups. Tusher et al. (2001) and Efron et al. (2001) do

not do so for three or more groups, so they are essentially equivalent to a standard F-test for three

or more groups or time course studies. As we have described, the ODP captures any structure

in the signal; this could be asymmetry in differential expression for two or more groups, variance

structure, or structured temporal trajectories in a time course study.
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Figure 2: A comparison of the ODP approach to five leading methods for identifying differentially expressed genes

(described in the text). The number of genes found to be significant by each method over a range of estimated

q-value cut-offs is shown. The methods involved in the comparison are the proposed ODP (black), SAM (turquoise),

the traditional t-test/F-test (red), a shrunken t-test/F-test (green), a non-parametric empirical Bayes “local FDR”

method (a: blue, b: turquoise), and a model-based empirical Bayes method (fuchsia). (a) Results for identifying

differential expression between the BRCA1 and BRCA2 groups in the Hedenfalk et al. data. (b) Results for

identifying differential expression between the BRCA1, BRCA2, and Sporadic groups in the Hedenfalk et al. data.

The model-based empirical Bayes methods have not been detailed for a 3-sample analysis, so they are omitted in this

panel. 16
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5.2 Numerical results on the breast cancer data

The methods were compared by considering the number of genes called significant across a range of

FDR cut-offs, which gives an estimate of the relative ETP levels at each given FDR (Supplementary

Material). For the methods employed here, this is equivalent to comparing the ETP for each fixed

EFP level or p-value cut-off on a slightly different scale. Intuitively, the number of genes called

significant quantifies the relative amount of biological information obtained at a given noise level.

Figure 2 plots the number of genes called significant among the different methods across a range

of estimated q-value cut-offs.

In testing for differential expression between the BRCA1 and BRCA2 groups, the ODP approach

shows surprisingly large improvements in performance over existing methods. For example, at a

FDR level of 3%, our proposed approach finds 117 significant genes, whereas existing methods only

find 41–68 significant genes. The estimated ODP method therefore offers increases from 72% to

185% in the number of genes called significant. The median increase in the number of genes called

significant at q-value cut-offs less than or equal to 10% ranges from 43–87% across all methods. In

testing for 3-sample differential expression among the BRCA1, BRCA2, and Sporadic groups, the

ODP approach offers even greater improvements. For example, it provides increases from 123–217%

in the number of genes called significant at a false discovery rate of 3%. Table 1 shows a number

of additional comparisons.

An important point is that it is not surprising that the relative performance of the ODP ap-

proach is even better in the 3-sample case. The existing methods no longer take into account any

asymmetry in the differential expression signal across genes, as they are mostly exactly equivalent

to or variations on F-statistics. Whereas in the 2-sample setting there are two possible directions

for differential expression, there are now six directions in the 3-sample setting. The ODP takes ad-

vantage of any systematic asymmetry of differential expression in both the 2-sample and 3-sample

settings, whereas it is not possible to do so using any version of an F-statistic. If one were to

apply the ODP approach to time course analyses (Storey et al. 2005), then the gains may be even

more substantial because in that setting the asymmetry is even harder to quantify using traditional

statistics.

5.3 Biological significance

In order to determine whether the ODP leads to additional biological information, we considered our

findings relative to those of the five existing methods in the context of identifying genes differentially

expressed between the BRCA1 and BRCA2 groups. It is well known that breast tumors associated

with BRCA1 mutations and BRCA2 mutations differ greatly from each other in their histological
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Table 1: Improvements of the ODP approach over existing thresholding methods. Shown are the minimum, median,

and maximum percentage increases in the number of genes called significant by the proposed ODP approach relative

to the existing approaches among FDR levels 2%, 3%, . . . , 10%. The exact same FDR methodology (Storey 2002,

Storey & Tibshirani 2003) was applied to each thresholding method in order to make the comparisons fair. The

model-based Bayesian methods (Lonnstedt & Speed 2002) is not defined for a 3-sample analysis, so that case is

omitted.

% Increase by ODP – 2-sample % Increase by ODP – 3-sample
Thresholding Method Minimum Median Maximum Minimum Median Maximum
SAM (Tusher et al. 2001) 29 43 72 76 92 211
t/F-test (Dudoit et al. 2002, Kerr et al. 2000) 52 86 185 63 82 407
Shrunken t/F-test (Cui et al. 2005) 34 52 77 61 69 154
Bayesian “local FDR” (Efron et al. 2001) 58 87 117 76 92 211
Posterior probability (Lonnstedt & Speed 2002) 44 60 113 – – –

appearance (Lakhani et al. 1998). For example, whereas tumors with BRCA1 mutations exhibit

a higher mitotic index and more lymphocytic infiltration, tumors with BRCA2 mutations are

heterogeneous, are of a median or high grade, and show a reduced tubule formation (Lakhani

et al. 1998). Concordant with these morphological differences, the gene expression profiles of these

two types of tumors have also shown to be distinctive (Hedenfalk et al. 2001).

At a q-value cut-off of 5%, we found 232 genes to be differentially expressed. Many of the

genes that we identified agree with the morphological changes mentioned above. Thirty-six of

these genes are known to have functions associated with the cell cycle, including many important

molecules such as PCNA, cyclin D1 (CCND1), cyclin-dependent kinase inhibitor 2C (CDKN2C),

CDC20 cell division cycle 20 (CDC20), CDC28 protein kinase regulatory subunit 2 (CKS2), cell

division cycle 25B (CDC25B), and CHK1 checkpoint (CHEK1). The majority of these cell-cycle

genes are up-regulated in BRCA1 positive tumors, except for cyclin D1, whose over-expression in

BRCA2 associated tumors has been shown to be a useful marker for BRCA2 related breast cancer

(Hedenfalk et al. 2001). Closely related to cell cycle and cell proliferation functions, many genes

over-expressed in the BRCA1 group are found to be associated with apoptosis and genome stability:

P53BP2, MSH2, PDCD5, Myc oncogene, and others. Many of these genes have been described in

an earlier analysis of this study (Hedenfalk et al. 2001).

At a q-value cut-off of 5%, the five existing methods found between 115–153 genes to be sig-

nificant. Almost every gene identified by these other methods is among the 232 genes found by

our ODP method. However, we find many more genes with the same error rate. Many important

genes would have been missed had we not use the proposed method. Example genes include cell

division cycle 25B (CDC25B), connective tissue growth factor (CTGF), growth factor receptor-

bound protein 2, CCAAT/enhancer binding protein beta (CEBPB), among others. In general, the

gene ranking of the proposed ODP approach appears to be notably different than that of the other
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methods. Figure 6 of the Supplementary Material shows the ranking of the top 200 genes from the

proposed ODP approach versus each gene’s ranking from the other five methods. In the two-sample

comparison, genes ranked in the top 100 by the ODP approach were ranked nearly as low as 600 by

other methods. In the three-sample comparison, genes ranked in the top 200 by the ODP approach

were ranked lower than 400 by other methods.

5.4 Simulation results

Similar comparisons were made on simulated data, where one knows with certainty which genes are

differentially expressed. Across a range of scenarios, our proposed method continued to perform

favorably over the existing methods. It is certainly possible to find some simulation scenario

where the estimated ODP is outperformed, but this should be distinguished from the fact that it

is impossible to outperform the true ODP regardless of which simultaneous-thresholding rule one

employs. Under certain simulation scenarios, the true ODP can be reduced to a simple rule. As an

extreme example, if data are simulated so that every gene has the same variance, and the signal

is symmetric about zero (that is, if one gene is positively differentially expressed, then there exists

another gene with negative differential expression of the same magnitude), then it can be shown

that the true ODP reduces to ranking genes by the absolute values of the fold change.

This fact is important to keep in mind when using simulations to evaluate the various procedures.

Most of the existing procedures make specific assumptions when deriving their statistics; if these

assumptions are enforced in the simulations, then clearly that particular method will be among

the top. One advantage of our proposed method is that it does make fairly general assumptions.

Because of this, it performed well under a range of scenarios.

We show results from four different scenarios in Figures 3 and 4 in order to give a flavor of the

relative performance of the various methods. Both figures are based on the same four simulation

scenarios. In moving from scenario (a) to (d) , increasingly complicated structure is included in

the data. Scenario (a) is based on data with no high-dimensional structure; the true ODP is more

or less equivalent to ranking genes based on absolute fold change. In this scenario, two groups are

compared, there is perfectly symmetric differential expression and the variances are simulated from

a unimodal, well-behaved distribution.

Scenario (b) has some asymmetry in the differential expression, but the signals and the variances

are simulated from distributions similar to those motivating the methods in Lonnstedt & Speed

(2002) and Cui et al. (2005). Two groups are compared, there is moderate asymmetry in the

differential expression, and the variances are simulated from a bimodal distribution. In scenario (c),

three groups are compared, there is slight asymmetry in differential expression, and the variances

are simulated from a unimodal, well-behaved distribution. Similarly, scenario (d) also compares
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Figure 3: A comparison of the ODP approach to five leading methods for identifying differentially expressed genes

(described in the text and Figure 2) based on simulated data. The number of genes found to be significant by each

method over a range of estimated q-value cut-offs is shown for a single, representative data set from each scenario.

The proposed ODP approach is in black and the other methods are in grey. In general, the data sets increase in

complexity from panels (a) to (d). (a) In this scenario, two groups are compared, there is perfectly symmetric

differential expression and the variances are simulated from a unimodal, well-behaved distribution. (b) Two groups

are compared, there is moderate asymmetry in the differential expression, and the variances are simulated from

a bimodal distribution. (c) Three groups are compared, there is slight asymmetry in differential expression, and

the variances are simulated from a unimodal, well-behaved distribution. (d) Three groups are compared, there is

moderate asymmetry in differential expression, and the variances are simulated from a bimodal distribution.
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Hosted by The Berkeley Electronic Press



0.00 0.02 0.04 0.06 0.08 0.10

0
50

10
0

15
0

20
0

25
0

a

true FDR

tr
ue

 E
T

P

0.00 0.02 0.04 0.06 0.08 0.10

0
50

10
0

15
0

20
0

25
0

30
0

b

true FDR

tr
ue

 E
T

P

0.00 0.02 0.04 0.06 0.08 0.10

0
10

0
20

0
30

0
40

0
50

0

c

true FDR

tr
ue

 E
T

P

0.00 0.02 0.04 0.06 0.08 0.10

0
50

10
0

15
0

20
0

25
0

30
0

35
0

d

true FDR

tr
ue

 E
T

P

Figure 4: A comparison of the ODP approach to five leading methods for identifying differentially expressed genes

(described in the text and Figure 2) based on simulated data. The expected number of true positive (ETP) genes

is shown for each true FDR level. As opposed to Figure 3, we have averaged over 100 data sets here and taken into

account knowledge of which genes are true and false discoveries in order to make these exact calculations. Panels

(a), (b), (c), and (d) are analogous to those in Figure 3.
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three groups, but there is more asymmetry in differential expression, and the variances are simulated

from a bimodal distribution.

All data sets were generated using the R statistical software package; the code used to generate

the data can be found in the Supplementary Material. In each scenario, we simulated data from 3000

genes on eight samples from each biological group, where one third of the genes are differentially

expressed. These commonalities were enforced and the signal to noise structure was made similar

in order to more clearly demonstrate the operating characteristics of our proposed approach and

the relative behavior to existing methods. The fact that one third of the genes are differentially

expressed does not have a large impact on the relative performance of the various methods. We

merely chose this number to closely match the overall signal in the Hedenfalk et al. (2001) data

and to provide enough signal to make the comparisons clearer.

Figure 3 is based on a single set of data from each scenario, where the number of significant

genes is plotted against cut-off applied to the estimated q-values. The purpose of this figure is to

show that the relative behavior of the various methods shown in Figure 2 on the Hedenfalk et al.

(2001) data can be recapitulated with simulated data. Figure 4 shows results averaged over 100

data sets each, where we have plotted true FDR versus true ETP for each method. This figure

compares the relative performance of each method based on knowledge of the true status of each

gene, as opposed to the empirical comparisons of Figures 2 and 3.

There are a number of reasons for the less dramatic improvements one sees in Figure 4 relative

to Figure 3, including the fact that the y-axis is on a different scale. A major reason is that Figure

4 does not include the fact that in practice the q-values must be estimated for each method. The

conservativeness of these estimates is greatly affected by the estimate of the proportion of true

nulls (Storey 2002, Storey et al. 2004), which depends on how well the method ranks the least

differentially expressed genes. Our proposed approach tends to rank the genes better at both ends,

showing the most dramatic improvements when one takes into account both the ranking of the

most significant genes and the q-value estimation, which are both necessary in practice.

Finally, we verified that each method does in fact control the FDR. Figure 7 of the Supplemen-

tary Material shows the estimated q-values based on Storey & Tibshirani (2003) compared to the

true FDR across a relevant range of values. It can be seen that all methods we have considered

here, including our proposed method, conservatively estimate the FDR at all estimated q-value

cut-offs.
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6 Discussion

We have presented a new approach for the significance analysis of thousands of features in a

high-dimensional biological study. The approach is based on estimating the optimal procedure for

applying a significance threshold to these features, called the optimal discovery procedure (ODP).

We developed a detailed method that can be used to identify differentially expressed genes in

microarray experiments. This method showed substantial improvements over five of the leading

approaches that are currently available. This method is available in the open-source, point-and-click

EDGE software package available at http://faculty.washington.edu/jstorey/edge/.

Although the basic theoretical ODP result is straightforward to state (Storey 2005), applying

it in practice requires some care. Specifically, one must make sure to avoid over-fitting or letting

nuisance parameters have a strong effect on the results. We have proposed some simple guidelines

here to accomplish this, although each specific application will need to be considered carefully. We

used Normal probability density functions in our microarray method, mainly because the data are

continuous and can be shown to be approximately Normal. If one were to analyze some sort of count

data, such as that obtained when analyzing genome sequences, then an appropriate distribution

such as the Poisson or Binomial can be used instead. Some early investigations indicate that the

ODP approach may also offer substantial improvements for tests involving count data. Note that

the actual significance can be calculated nonparametrically, so one does not necessarily have to use

the correct parametric distribution in order to obtain a good procedure.

An important point is that characterizing the true ODP in a particular application can be a

powerful tool for developing an estimated ODP. For example, if every gene’s expression has the

same variance, and the differential expression signal across genes is perfectly symmetric about zero,

then under the Normal distribution assumption it can be shown that the true ODP is equivalent

to ranking the genes based on the absolute difference in gene expression (i.e., the simple log-scale

fold-change criterion). Clearly this exact situation would never occur in practice, but it stresses

the fact that the approach proposed here defines a concrete goal for large-scale significance testing:

to estimate the true ODP as well as possible.

In motivating the ODP approach, we described two major steps involved in large-scale signif-

icance testing: ranking the features and assigning a significance level to each one. However, for

a number of genomics applications, another step may involve deciding exactly what a “feature”

is. For example, in genome-wide tests of association or in protein mass spectrometry analysis, a

feature may be a window of adjacent observations, or features may even overlap. These are ques-

tions that are also likely to play a major role in developing methods that take full advantage of

the high-dimensional nature of the data. We do not claim that the exact method developed for
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microarrays will serve as an off-the-shelf procedure to apply to any large-scale significance testing

problem. However, we do project that the basic ODP framework and some of the tactics that we

employed can serve as a useful example for how one approaches these high-dimensional significance

analyses.
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7 A Simple Motivating Example

The following toy example provides some intuition into the operating characteristics of the ODP in

the context of high-dimensional biological studies. Suppose that an expression study is performed

on 15 individuals, seven of which come from one group and eight from another, where the goal is

to identify genes that are differentially expressed between these two groups. This design reflects

the breast cancer study we consider below. Figure 5 shows a heat map of simulated expression

data over 1000 genes under this study design, where the genes have been hierarchically clustered

(Eisen et al. 1998). It can be seen that there is substantial structure among the differentially

expressed genes. Most obviously, there is asymmetry in the differential expression: more genes are

over-expressed in Group 2 than in Group 1. However, among the differentially expressed genes

there are three distinct patterns. Some of these patterns make it more straightforward to detect

differential gene expression than others. Moreover, the more genes with a common differential

expression pattern, the more fruitful it is (in terms of the ETP to EFP trade-off) to call these

genes differentially expressed.

The ODP takes this kind of structure into account, and uses it to optimally extract the differen-

tial expression signal from the noise. The distinct patterns of differential expression are denoted in

Figure 5. The genes present in each cluster will have similar likelihood functions. Moreover, some

types of likelihood functions will be more distinct from the null likelihoods than others. The ODP

considers the data for each gene and evaluates it at the true likelihoods, forming a ratio of the sum

of the data evaluated at the true alternative likelihoods to that of the true null likelihoods. The

precision to which the structure can be captured depends on the level of complexity of the model

for the data defining the likelihood functions.

Note that this type of structure will be present in other high-dimensional biological studies.

For example, in population-based genetic tests of association, contiguous SNPs will show similar

genotypic patterns. Therefore, regions showing true associations with a trait of interest will do so

in a similar manner.

8 Detailed algorithm for identifying differentially expressed genes

The following is a detailed description of the full algorithm for identifying differentially expressed

genes that was presented in the main text.

Let xij be the expression observation for gene i in array j, for i = 1, . . . ,m and j = 1, . . . , n.

The data for a single gene is written as xi = (xi1, xi2, . . . , xin). Assume there are K groups tested

for differential expression, and let xik be the subset of data from group k, k = 1, . . . ,K. Finally,

let Gk be the set of arrays corresponding to group k so that xik = (xij)j∈Gk
. Gene i in group k has

2
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Figure 5: Simulated expression data showing structure in the biological signal of interest. A heat map of expression

data on 1000 genes among 15 individuals is shown (red = high, blue = low). The first seven individuals come from

Group 1 and the last eight from Group 2. The genes were hierarchically clustered, and it can be seen that four distinct

clusters of genes emerge: (A) No differential expression; (B) Moderate over-expression in Group 2, low variance; (C)

Strong over-expression in Group 2, large variance; (D) Strong over-expression in Group 1, large variance. Further,

there is pervasive asymmetry in differential expression towards Group 2. The proposed ODP approach captures this

structure and uses it to optimally separate signal from noise in identifying differentially expressed genes.
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mean gene expression µik, and variance σ2
i . Without loss of generality, we define the mean when

the null hypothesis of no differential expression is true to be µi0 =
∑K

k=1 nkµik/n, where nk is the

number of arrays in group k.

Step 1: Calculating ODP statistics. Let (µ̂i0, σ̂
2
i0) be estimates under the constraints of the

null hypothesis, and (µ̂i1, . . . , µ̂iK , σ̂2
i1) be unconstrained estimates. These are defined as follows:

µ̂i0 =

n∑
j=1

xij/n; σ̂2
i0 =

n∑
j=1

(xij − µ̂i0)
2

n − 1

µ̂ik =
∑
j∈Gk

xij/nk; σ̂2
iA =

K∑
k=1

∑
j∈Gk

(xij − µ̂ik)
2

n − K

Note that these are the typical estimates for Normally distributed data. The estimated weights ŵi

for inclusion of each null density in the denominator of the statistic are calculated as detailed in

the main text.

When K = 1 and differential expression is defined to be average expression not equal to zero

(which would be the case when examining the log ratios of expression from a direct comparison

using two-channel microarrays), the estimated ODP statistic for gene i (i = 1, . . . ,m) is

ŜODP(xi) =

∑m
g=1 φ(xi; µ̂g1, σ̂

2
gA)∑m

g=1 ŵiφ(xi; 0, σ̂
2
g0)

.

When K > 1 each gene is centered as a step in approximately achieving “nuisance parameter

invariance” as described in the main text. Define x∗

ij = xij − µ̂i0 and µ̂∗

ik = µ̂ik − µ̂i0. The

estimated ODP statistic for each gene i is then

ŜODP(xi) =

∑m
g=1 φ(x∗

i1; µ̂
∗

g1, σ̂
2
gA) · · · φ(x∗

iK ; µ̂∗

gK , σ̂2
gA)∑m

g=1 ŵiφ(x∗

i ; 0, σ̂
2
g0)

.

Centering each gene induces a slight dependence among the x∗

ij within a gene, but this can be taken

into account by modifying the definition of the Normal densities φ. However, this turns out to be

algebraically proportional to the original definition, so no modification is actually necessary. Note

that by centering each gene, we lose no information about differential expression.

Step 2: Simulating null statistics. We obtain null statistics by applying the standard boot-

strap procedure for generating the null distribution when testing the location parameter(s) of a

distribution (Efron & Tibshirani 1993). Let εi be the alternative model residuals obtained from

each gene i’s expression data xi by setting εij = xij − µ̂ik(j) where k(j) is the group to which array

j belongs for i = 1, . . . ,m. For each gene i, a bootstrap null set of data for gene i, x
0
i , is obtained

4

Hosted by The Berkeley Electronic Press



by resampling n observations with replacement from among the εij and adding these back to the

estimated null mean µ̂i0. For B iterations, bootstrap from the null distribution the expression

data and re-compute each statistic to get a set of null statistics ŜODP(x0b
i ) for b = 1, . . . , B and

i = 1, . . . ,m. Each bootstrap sampling is applied to all genes, keeping the dependence structure of

the genes intact.

It should be noted that the standard permutation null scheme (see, for example, that carried

out in Storey & Tibshirani 2003) could be applied here as well. However, the ODP statistic does

not carry the same pivotality properties as, say, a t-statistic. Therefore, the null permuted data

from a gene with a strong differential expression signal can produce null data with a much larger

variance than its true null. If many genes have a strong signal, then the null statistics from these

genes are not representative of the true null distributions. Since the bootstrap null removes the

signal from each gene before resampling, we have found the bootstrap approach to be more reliable

in this setting. It appears more research into this issue is warranted.

Step 3: Estimating q-values. According to the ODP approach, each possible significance cut-off

is formed by calling all genes significant with ŜODP(xi) ≥ c for some cut-point c. The algorithm

for estimating q-values presented in Storey (2002) and Storey & Tibshirani (2003) is written in

terms of p-values. We show here that if p-values are calculated for each gene in a certain fashion,

then one can employ the existing p-value based q-value estimation so that direct thresholding of

the statistics actually takes place. This avoids the need to re-develop q-value estimation and the

theory justifying it, while allowing us to form ODP statistic thresholds (i.e., ŜODP(xi) ≥ c) rather

than p-value based thresholds.

Suppose that the p-value for gene i is calculated by

pi =

∑B
b=1

∑m
j=1 1

(
ŜODP(x0b

j ) ≥ ŜODP(xi)
)

m · B
, (10)

where 1(·) is standard indicator function equal to one when the argument is true and zero other-

wise. When p-values are calculated in this pooled, gene non-specific way, the subsequent q-value

estimation procedure as defined in Storey (2002) is equivalent to estimating q-values by directly

thresholding the statistics. The following estimate of the false discovery rate when calling all p-

values ≤ t significant is implicit in the algorithm for estimating q-values (Storey 2002, Storey &

Tibshirani 2003):

F̂DR(t) =
π̂0m · t∑m

i=1 1 (pi ≤ t)
.

For a fixed significance cut-off c applied to the original statistics, the analogous false discovery

5
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rate estimate is

F̂DR(c) =
π̂0

∑B
b=1

∑m
i=1 1

(
ŜODP(x0b

i ) ≥ c
)

/B∑m
i=1 1

(
ŜODP(xi) ≥ c

) , (11)

where π̂0 is derived from a smoother fit to the

π̂0(c
′) =

∑m
i=1 1

(
ŜODP(xi) < c′

)
∑B

b=1

∑m
i=1 1

(
ŜODP(x0b

i ) < c′
)

/B

over some range of c′ exactly as in the algorithm given in Storey & Tibshirani (2003).

As was stated in Storey & Tibshirani (2003), the original FDR estimate of Storey (2002) is

easily shown to be equivalent to the above formula when p-values are calculated as above. The

key observation is that one can equivalently define the Type I error rate of a given cut-off by∑B
b=1 #{ŜODP(x0b

i ) ≥ c}/(m · B) rather than the p-value threshold t. In fact, if we define

c(t) ≡ min{ŜODP(xi) : pi ≤ t}

then it can be shown that

π̂0
∑B

b=1

∑m
i=1 1

(
ŜODP(x0b

i ) ≥ c(t)
)

/B∑m
i=1 1

(
ŜODP(xi) ≥ c(t)

) =
π̂0m · t∑m

i=1 1 (pi ≤ t)

making the two false discovery rate estimates equal. Therefore, q-values derived from either method

are equal as long as the p-values are calculated from the gene non-specific empirical distribution of

the simulated null statistics.

Out of these derivations come direct estimates for the EFP and ETP for each ODP threshold.

In particular, for a threshold c define

ÊFP(c) =
π̂0

∑B
b=1

∑m
i=1 1

(
ŜODP(x0b

i ) ≥ c
)

B

ÊTP(c) =

m∑
i=1

1
(
ŜODP(xi) ≥ c

)
− ÊFP(c)

where π̂0 is estimated as above. The FDR estimate from equation (11) can then be written in terms

of these estimates, further showing the direct connection between the EFP, ETP, and FDR:

F̂DR(c) =
ÊFP(c)

ÊFP(c) + ÊTP(c)
. (12)

6
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We estimate q-values for our ODP approach in a new way. We pool simulated null statistics

across genes as above, but we do not employ the null statistics from every gene. Specifically, we

only use null statistics from genes with ŵi = 1, i.e., those represented in the denominator of the

statistic. We have found this produces more well behaved estimates of the q-values over using null

statistics from every gene. In implementing this approach, the above formulas are simply replaced

with the proper subset of null statistics. For a fixed significance cut-off c applied to the original

statistics, the EFP and ETP estimates are:

ÊFP(c) =
π̂0

∑B
b=1

∑m
i=1 ŵi1

(
ŜODP(x0b

i ) ≥ c
)

B
∑m

i=1 ŵi/m
,

ÊTP(c) =

m∑
i=1

1
(
ŜODP(xi) ≥ c

)
− ÊFP(c).

The estimates π̂0(c
′) are analogously modified to

π̂0(c
′) =

∑m
i=1 1

(
ŜODP(xi) < c′

)
P

B

b=1

P
m

i=1
bwi1( b

SODP(x0b

i
)<c′)

B
P

m

i=1
bwi/m

.

The overall estimate π̂0 is formed by smoothing over some range of c′ exactly as in the above

algorithm. We then plug these estimates into equation (12) in order to estimate FDR for a given

threshold c. Finally, the q-value estimate for each gene i is:

q̂i = min
c≤ b

SODP(xi)
F̂DR(c),

i.e., the minimum estimated FDR among all thresholds where gene i is called significant.

9 Comparing procedures based on the number of genes called

significant

The ODP approach was compared to five leading procedure for identifying differentially expressed

genes by comparing the number of genes called significant at each FDR level. It is straightforward

to show that this is an empirical version of the comparison based on the ETP for each fixed FDR.

This follows since ÊTP = (# significant genes)(1− F̂DR), as just shown above. Since each method

is compared at the same value of F̂DR, it follows that comparing the number of significant genes

is equivalent to comparing the methods based on ÊTP, which we showed above provides a valid

estimate of the true ETP. Note that it can also be shown based on these arguments that this

7
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comparison gives equivalent information about relative performance based on comparing ÊTP for

each fixed ÊFP level.

10 Nuisance parameter invariance

The ODP is most simply defined in terms of the following rule (Storey 2005):

gm0+1(x) + gm0+2(x) + · · · + gm(x)

f1(x) + f2(x) + · · · + fm0
(x)

.

If each hypothesis test has identically defined null and alternative hypotheses then differences

between the fi would be due to nuisance parameters. For example, consider the 2-sample microarray

problem where the null hypothesis for each test is that µi1 = µi2 and the alternative is µi1 �= µi2.

Above, we defined µi0 = (n1µi1 + n2µi2)/n, which is the common mean when the null hypothesis

is true. Under the Normal distribution assumption, the ODP rule is based on∑m
i=m0+1 φ(x;µi1, µi2, σ

2
i )∑m0

i=1 φ(x;µi0, σ2
i )

, (13)

where as before tests 1, 2, . . . ,m0 have true null hypotheses and the remainder have true alternative

hypotheses. Differences between the null densities φ(x;µi0, σ
2
i ) are due to differing µi0 and σ2

i , which

are not used at all in defining the null and alternative hypotheses. The parameters µi0 and σ2
i are

therefore nuisance parameters.

In the Neyman-Pearson setting, nuisance parameters are usually “canceled out” in some fash-

ion, making them irrelevant in the hypothesis tests. In practice, “pivotal statistics” are desirable

because their null distributions do not depend on any unknown nuisance parameters. In the sin-

gle significance test setting, nuisance parameters are most troublesome in that they make it more

difficult to calculate a null distribution. In the ODP setting, the presence of nuisance parameters

is troublesome for another reason: since the ODP is defined in terms of the true likelihood of each

test, one can manipulate the ODP quite substantially by varying the degree by which the nuisance

parameters values differ between the true null and true alternative tests.

Specifically, consider the above statistic in equation (13) under the scenario where µ10 = · · · =

µm0,0 = −1000 and µm0+1,0 = · · · = µm0 = 1000, as opposed to the scenario where µ10 = · · · =

µm0 = 0. Clearly these two scenarios would yield very different results. In the former case, it

would be much easier to distinguish the true null hypotheses from the true alternative hypotheses.

However, in practice it is not clear how much this matters since in the former case, one would not

be able to estimate the ODP nearly as well. Similar examples can be constructed in terms of the

8
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nuisance parameters σ2
i . We have also found that certain types of nuisance parameter effects can

lead to over-fitting of the data in the significance testing (see below). Therefore, it is desirable from

a variety of perspectives to eliminate these effects as much as possible.

In the context of this Normal distribution example, one way to avoid effects from nuisance

parameters is to transform the data so that the null distributions are all equal to the N(0, 1)

distribution. This can be done by replacing xij with (xij − µi0)/σi. In practice, this could be

accomplished instead with estimated values, (xij − µ̂i0)/σ̂i. The null distribution of every gene

would then approximately be N(0, 1). This is obviously an extreme form of what we call “nuisance

parameter invariance” because all nuisance parameters have been removed from the data. In our

experience, this particular choice does not work well because there is relevant information in the

σ2
i , and dividing the data by σ̂i induces a lot of extra noise into the expression measurements.

A weaker criterion for nuisance parameter invariance involves a type of subset exchangeability

across null distributions. In particular, we require that the average null likelihood among all tests is

equal to that from the true null tests:
∑m

i=1 fi/m =
∑m0

i=1 fi/m0. This implies that the likelihoods

of the true nulls cannot be pathologically different from the true alternatives simply because of

nuisance parameter values. In the Normal example, one may approximately achieve this property

by forcing all µi0 = 0 (leading to no loss of information or addition of noise) and removing any

relationship between the signal µi1 − µi2 and the variances σ2
i .

Let x
∗ be the mean centered data for a single gene (thereby removing the effect of µi0), and let

µ∗

i1 = µi1 −µi0, µ∗

i2 = µi2 −µi0, µ∗

i0 = 0. In the case that
∑m

i=1 φ(·; 0, σ2
i )/m =

∑m0

i=1 φ(·; 0, σ2
i )/m0,

the following statistics are all equivalent:∑m
i=m0+1 φ(x∗;µ∗

i1, µ
∗

i2, σ
2
i )∑m0

i=1 φ(x∗; 0, σ2
i )

∑m
i=m0+1 φ(x∗;µ∗

i1, µ
∗

i2, σ
2
i )∑m

i=m0+1 φ(x∗; 0, σ2
i )∑m

i=m0+1 φ(x∗;µ∗

i1, µ
∗

i2, σ
2
i )∑m

i=1 φ(x∗; 0, σ2
i )

∑m0

i=1 φ(x∗; 0, σ2
i ) +

∑m
i=m0+1 φ(x∗;µ∗

i1, µ
∗

i2, σ
2
i )∑m

i=1 φ(x∗; 0, σ2
i )

The fact that the two on the top row are equivalent is reassuring in that the true null and true

alternative hypotheses do not differ in their average likelihoods due to nuisance parameters. The

bottom two statistics show the transition from the original ODP (top left) to the straightforwardly

estimated ODP (bottom right), which was used to motivate our proposed microarray method.

In order to approximately obtain the condition
∑m

i=1 φ(·; 0, σ2
i )/m =

∑m0

i=1 φ(·; 0, σ2
i )/m0, first

mean center the data for each test. Then perform a proper transformation so that there is no

apparent relationship between the difference in average expression between the two groups and the

sample variances. This latter step has been well-studied in general and in the context of microarrays

(Rocke & Durbin 2003).

9
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11 Over-fitting

In a single test procedure, the null statistic is calculated under the assumption that the data come

from the null distribution. When the statistic involves estimation of parameters, the estimation is

carried out with null data when calculating null statistics. For example, suppose that a generalized

likelihood ratio statistic, ĝ(x)/f̂ (x), is formed, and a resampling based p-value is to be calculated.

This involves randomly resampling the data under the null distribution to obtain null data x
0b for

b = 1, . . . , B iterations. The null statistics are calculated by ĝ0b(x0b)/f̂0b(x0b) where ĝ0b and f̂0b

are the new estimates based on x
0b.

In our proposed procedure the null statistics are calculated by ŜODP(x0b
i ), where ŜODP is the es-

timated thresholding function based on the original data. In other words, we do not re-estimate the

densites using the null data. When calculating the null distributions of many tests, the assumption

is that some subset of m0 null hypotheses are true and the remaining m−m0 are false. Therefore,

the correct null distribution would be calculated by (i) resampling the m0 true nulls from their

null distributions, (ii) resampling the remaining m − m0 from their alternative distributions, (iii)

re-estimating ŜODP, and (iv) calculating the EFP based on the null statistics calculated among the

m0 true nulls.

Since we cannot identify the m0 true nulls, we resample all data from their null distributions

and we use the originally estimated thresholding function. We do not re-estimate ŜODP for each set

of resampled data because these data are all null, and we want to be able to control the error rate

under the case where m0 are true nulls and m − m0 are true alternatives. Re-estimating ŜODP for

each set of full null data would result in a gross inflation of significance.

The danger in calculating the null statistics as we have done is that over-fitting could cause

some artificial inflation of significance. If our procedure were carried out for a single test, then this

inflation would be very noticeable. However, we were not able to detect any evidence of over-fitting

for our proposed procedure in a variety of scenarios. For example, we randomly selected 1000 genes

from the Hedenfalk et al. data set and randomly permuted their data (within genes) so that we

could be certain that these 1000 were true nulls. We then performed our procedure, calculating p-

values for every gene exactly as described in our algorithm. The p-values corresponding to the 1000

known null genes were then tested for equality to the Uniform distribution through a Kolmogorov-

Smirnov test. According to the Kolmogorov-Smirnov test carried out over many iterations of this

simulation, the p-values followed the Uniform distribution nearly perfectly1.

There seem to be two reasons why our procedure does not suffer from over-fitting. The first is

1That is, for each iteration of this simulation, a Kolmogorov-Smirnov p-value was calculated, and then these were
again tested against the Uniform distribution, indicating that there was no evidence among the many simulations
that the ODP p-values deviated from a Uniform distribution.
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that the ODP thresholding function is estimated from thousands of genes, so the variance of this

estimate is negligible. In other words, one can randomly select a subset of, say, 1500 genes, estimate

the ODP by these, and apply it to all of the data. The results will be virtually identical to using

the entire data set. This is evidence that as the number of genes grows large, the estimated ODP

eventually settles down to some fixed form. The second reason why we are able to avoid over-fitting

is based on the approximate nuisance parameter invariance that was achieved. Because of this, the

signals of true alternatives were not allowed to affect the overall sum of null densities.

Regardless, an extra precaution one can take is the following. When calculating resampling

based null statistics for gene i, replace ĝi and f̂i with versions estimated from the resampled null data

for gene i. The over-fitting of gene i is most likely to occur in ĝi and f̂i, so these can be re-estimated

while not disturbing the status of the other significance tests. If a gene’s data are very different than

all the other genes, then this adjustment is crucial because the other estimated densities contribute

negligible amounts to its statistic, making this gene’s statistic especially susceptible to over-fitting.

If this extra precaution is taken then we do not foresee over-fitting to be an issue in typical data

sets. One can also always test for over-fitting in the manner that we did with the Hedenfalk et al.

study.

12 Simulation Details

The following displays the R code used to generate each data set from the four simulation scenarios

considered in detail here. In each scenario, we simulated data from 3000 genes on eight samples

from each biological group, where one third of the genes are differentially expressed. These com-

monalities were enforced and the signal to noise structure was made similar in order to more clearly

demonstrate the operating characteristics of our proposed approach and the relative behavior to

existing methods.

Scenario a:

dat <- matrix(rnorm(3000*16), ncol=16)

y <- c(rep(1,8),rep(2,8))

sigma2 <- 0.5 + rgamma(1500, shape=2, rate=4)

sigma2 <- c(sigma2, runif(1500, min=1.7, max=2.2))

sigma2 <- sample(sigma2)

mu <- rep(0,3000)

mu[1:200] <- rnorm(200, mean=1, sd=0.3)

mu[201:333] <- 1.2

mu[334:800] <- rnorm(467, mean=-1.0, sd=0.3)

mu[801:1000] <- -0.9
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mu[1:1000] <- abs(mu[1:1000])*sample(c(rep(1,500),rep(-1,500)))

for(i in 1:3000) {

dat[i,1:8] <- dat[i,1:8]*sqrt(sigma2[i])

dat[i,9:16] <- dat[i,9:16]*sqrt(sigma2[i]) + rep(mu[i],8)

}

Scenario b:

dat <- matrix(rnorm(3000*16), ncol=16)

y <- c(rep(1,8),rep(2,8))

sigma2 <- runif(1000, min=0.5, max=0.75)

sigma2 <- c(sigma2, runif(500, min=1.2, max=1.3))

sigma2 <- c(sigma2, runif(1500, min=1.7, max=2.2))

sigma2 <- sample(sigma2)

mu <- rep(0,3000)

mu[1:200] <- rnorm(200, mean=1, sd=0.3)

mu[201:333] <- -1.2

mu[334:800] <- rnorm(467, mean=-1.0, sd=0.3)

mu[801:1000] <- -0.9

for(i in 1:3000) {

dat[i,1:8] <- dat[i,1:8]*sqrt(sigma2[i])

dat[i,9:16] <- dat[i,9:16]*sqrt(sigma2[i]) + rep(mu[i],8)

}

Scenario c:

dat <- matrix(rnorm(3000*24), ncol=24)

y <- c(rep(1,8),rep(2,8),rep(3,8))

sigma2 <- runif(3000, min=0.5, max=1.25)

sigma2 <- sample(sigma2)

mu <- rep(0,3000)

mu[1:200] <- rnorm(200, mean=1, sd=0.3)

mu[201:333] <- -1.2

mu[334:800] <- rnorm(467, mean=-1.0, sd=0.3)

mu[801:1000] <- -0.9

mu[1:1000] <- abs(sample(mu[1:1000]))

for(i in 1:600) {

dat[i,y==1] <- dat[i,y==1]*sqrt(sigma2[i])

dat[i,y==2] <- dat[i,y==2]*sqrt(sigma2[i]) + rep(mu[i],8)

dat[i,y==3] <- dat[i,y==3]*sqrt(sigma2[i])

}

for(i in 601:1000) {

dat[i,y==1] <- dat[i,y==1]*sqrt(sigma2[i])

dat[i,y==2] <- dat[i,y==2]*sqrt(sigma2[i])

dat[i,y==3] <- dat[i,y==3]*sqrt(sigma2[i]) + rep(mu[i],8)
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}

for(i in 1001:3000) {

dat[i,] <- dat[i,]*sqrt(sigma2[i])

}

Scenario d:

dat <- matrix(rnorm(3000*24), ncol=24)

y <- c(rep(1,8),rep(2,8),rep(3,8))

sigma2 <- runif(1000, min=0.5, max=0.75)

sigma2 <- c(sigma2, runif(500, min=1.2, max=1.3))

sigma2 <- c(sigma2, runif(1500, min=1.7, max=2.2))

sigma2 <- sample(sigma2)

mu <- rep(0,3000)

mu[1:200] <- rnorm(200, mean=1, sd=0.3)

mu[201:333] <- -1.2

mu[334:800] <- rnorm(467, mean=-1.0, sd=0.3)

mu[801:1000] <- -0.9

mu[1:1000] <- abs(sample(mu[1:1000]))

for(i in 1:700) {

dat[i,y==1] <- dat[i,y==1]*sqrt(sigma2[i])

dat[i,y==2] <- dat[i,y==2]*sqrt(sigma2[i]) + rep(mu[i],8)

dat[i,y==3] <- dat[i,y==3]*sqrt(sigma2[i])

}

for(i in 701:1000) {

dat[i,y==1] <- dat[i,y==1]*sqrt(sigma2[i])

dat[i,y==2] <- dat[i,y==2]*sqrt(sigma2[i])

dat[i,y==3] <- dat[i,y==3]*sqrt(sigma2[i]) + rep(mu[i],8)

}

for(i in 1001:3000) {

dat[i,] <- dat[i,]*sqrt(sigma2[i]) }

13
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Figure 6: The gene ranking of the ODP versus the existing five methods when identifying differentially expressed

genes from the Hedenfalk et al. data. For each of the top 200 ranked genes according to the ODP approach (x-axis),

the ranking given by the other methods is plotted (y-axis). It can be seen that the ODP approach yields a notably

different ranking of the genes. The identity line is shown in red, indicating whether the other methods produce a

ranking higher or lower than the ODP approach. (a) Two-sample analysis identifying differentially expressed genes

between BRCA1 and BRCA2 mutation positive tumors. (b) Three-sample analysis identifying differentially expressed

genes between BRCA1, BRCA2, and Sporadic tumors.
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Figure 7: Plots verifying that each method considered controls the FDR by using the estimated q-value methodology

of Storey (2002) and Storey & Tibshirani (2003). For each of the four simulation scenarios considered (a–d; see main

text and Section 13 above), the estimated q-values versus the true FDR are plotted. The proposed ODP method is

plotted in black, the other methods are plotted in grey, and the dotted line is the identity function. It can be seen

that the estimated q-values conservatively estimate the FDR in all cases.
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