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method to investigate sequential tests for the difference between two means when
outcomes are constrained to belong to a given bounded set. Tests of inequality
and of noninferiority are included. We find that inference in terms of type II error
based on a balanced sample cannot be improved by sequential sampling or even
by observing counter factual evidence providing there is a reasonable gap between
the hypotheses.
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Abstract

Small sample properties are of fundamental interest when only limited data is avail-

able. Exact inference is limited by constraints imposed by speci�c nonrandomized

tests and of course also by lack of more data. These e¤ects can be separated as we

propose to evaluate a test by comparing its type II error to the minimal type II error

among all tests for the given sample.

Game theory is used to establish this minimal type II error, the associated ran-

domized test is characterized as part of a Nash equilibrium of a �ctitious game against

nature.

We use this method to investigate sequential tests for the di¤erence between two

means when outcomes are constrained to belong to a given bounded set. Tests of

inequality and of noninferiority are included. We �nd that inference in terms of

type II error based on a balanced sample cannot be improved by sequential sampling

or even by observing counter factual evidence providing there is a reasonable gap

between the hypotheses.

Keywords: exact; distribution-free; nonparametric; independent samples; matched

pairs; Z test; unavoidable type II error; noninferiority.
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1 Introduction

Data available for inference is often very limited, since small samples are common in

many disciplines. Inference can have important consequences so we consider exact

hypothesis testing which involves rigorously analyzing tests, proving properties for

instance in terms of level analytically and not approximately. Moreover we consider

distribution-free inference (cf. Kendall and Sundrum, 1953) as we wish to derive

implications that do not rely on unveri�able assumptions imposed by the investigator.

What can the data tell us directly? As a related issue, how can we compare tests and

evaluate the conclusions in a given �nite sample?

We show here how game theory can help answer these questions. The key is to

develop statistical hypothesis testing as a strategy in a game against nature where

nature chooses the data generating process. It is a zero-sum game between the sta-

tistician and nature in which wrong recommendations are recorded as losses for the

statistician and as gains for nature. A test that is part of a Nash equilibrium of this

game generates the most powerful inference in terms of minimizing the type II error.

By �nding such an equilibrium one can establish tight bounds to inference in terms

of type II error. Bounds on inference are of interest in their own right as they answer

the question �What is the most a �nite sample of data can tell us?�. These bounds

provide a natural benchmark for evaluating and comparing tests, thus answering our

second question �How can we evaluate the performance of a test in light of many

di¤erent alternatives?�

As pointed out by Savage (1954), game theory can be used to solve problems

in statistics. The underlying idea is to solve worst case problems by invoking the

minimax theorem for zero-sum games developed by von Neumann (1928). However

game theory methods have not yet been used in hypothesis testing. Why not? For

hypothesis testing where search is for a level � test that minimizes type II error this

would mean to perform a worst case analysis among the level � tests. The problem

with this is that the characterization of the set of level � tests itself is typically a very

di¢ cult problem. Here we proceed to formulate hypothesis testing as a zero-sum game
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against nature without adding constraints on the level of test chosen in this game.

The desired level condition is ful�lled in equilibrium provided penalties are assigned

appropriately. In particular one need not be able to characterize all level � tests in

order to apply this method. This allows for deriving most powerful recommendations

for small sample problems.

Solving this game against nature produces a test that minimizes type II error.

Such a test is typically randomized and hence is not very useful in practice. However

the induced lower bounds can be used to evaluate the inference of other tests. New

terminology needs to be introduced to re�ect the new standards. The minimal type

II error achievable for a given pair of hypotheses will be called the unavoidable type

II error. The added type II error then measures the amount that the type II error of

a given test is above the unavoidable type II error.

We apply the new methodology by considering tests for comparing two means or

two distributions just given the interval or ratio data without making added distrib-

utional assumptions. The power of the game theory approach is that we are able to

analyze the unavoidable type II error among the most general tests, namely among

all tests that are based on sequential sampling.

An important condition for the environments we consider in this application is

that outcomes belong to a known bounded set. Given this condition we need not

make distributional assumptions and can focus on pure inference. Most environments

satisfy this condition, a property that emerges whenever measuring outcomes on a

bounded scale. Following arguments of by Bahadur and Savage (1956) we know

that nontrivial inference is not possible if there is no restriction on the underlying

distributions. Due to the possibility of fat tails, any test that has level � will have a

type II error bounded below by 1��. Alternative constraints on the data generating

process added to ensure non trivial inference such as bounding moments are typically

not veri�able. We wish to consider inference that is based on the properties of the

data without adding additional assumptions. �Let the data speak!�.

Our application retains quite general features as we include tests of inequality

and of noninferiority, samples of matched pairs as well as sequential sampling. Our
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understanding of hypothesis testing as a game against nature allows us to investigate

inference among all tests based on sequential sampling. Analysis is greatly simpli�ed

as one need not understand the performance of all tests in all environments but only

of all tests when facing the equilibrium strategy of nature. Beyond the novel game

theory methodology another tool is introduced. A randomization trick is employed to

extend results for environments with binary outcomes to those with known bounded

outcome spaces.

We illustrate the new insights available due to the �ndings of this paper.

(a) Tests can be evaluated. Consider testing H0 : EY1 � EY2 against H1 : EY1 �

EY2+d when Y1 and Y2 are Bernoulli distributed. Given a balanced sample of n = 25

independent observations of each variable the maximal added type II error of the test

of Boschloo (1970) across all d > 0 is 0:046 when level is equal to 5%: So it is not

possible to outperform this test in terms of type II error by more than 0:046 by any

test based on sequential sampling provided at most 50 observations may be gathered.

(b) Tests can be compared. The corresponding value for the Z test (Suissa and

Shuster, 1984, 1985) is 0:066.

(c) Tight minimal sample sizes can be derived. The unavoidable type II error of

any sequential noninferiority test for testing EY1 � EY2 � 0:3 against EY1 � EY2

at level 2:5% is strictly above 20% if there are at most 84 independent observations

while it is below 20% if the sample size is at least 86: This means that any 95%

(equi-tailed) con�dence interval of the di¤erence between the two means based on

at most 84 observations will wrongly cover the value 0:3 more than 20% of the time

when the two means are equal. These statements on sample size hold if one assumes

a balanced sample or if instead one allows for any sequential test. They hold if Y1

and Y2 are both Bernoulli distributed as well as when the only condition is that

Y1; Y2 2 [0; 1] : The approximate formulae of Rodary et al. (1989) for the binary

valued case underestimate this minimal sample size.

(d) Restrictions on inference can be evaluated. Consider testing the inequality of

two distributions that contain outcomes in [0; 1] when n = 25 and � = 0:05. The loss

when restricting selection to unbiased tests in terms of increased maximal unavoidable
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type II error is found to be 0:0066.

(e) The value of having more information available is measurable. Instead of

observing only one outcome assume that the outcomes of both variables are observed

each time, creating a sample of matched pairs. All statements above remain true.

More generally, consider inference when the di¤erence in means is the parameter of

interest and assume that there is a reasonable gap between the two hypotheses. Then

this additional information that can also be interpreted as counter factual evidence

does not to have any added value.

We add a few comments on the related literature. The only existing �nite sam-

ple lower bounds on type II error for the setting of this paper are those implicitly

given by the uniformly most powerful unbiased test for comparing two binomial pro-

portions due to Tocher (1950). Connections between matched pairs and sequential

sampling via properties of the least favorable distribution were �rst established by

Schlag (2006) in the context of statistical decision making. The random transforma-

tion used to extend results for binary valued distributions to a nonparametric setting

was independently developed in four special cases. It has been used by Cucconi

(1968) for constructing a nonparametric randomized probability ratio test, by Gupta

and Hande (1990) and by Schlag (2006) in the context of statistical decision making,

by Schlag (2003) in the context of repeated decision making and by Schlag (2007a,

2007b) to design exact nonrandomized tests.

We proceed as follows. In Section 2 we characterize hypothesis testing as an

equilibrium of a zero-sum game for a very general environment. In Section 3 we apply

this methodolgy to tests for comparing two binomial proportions. After formulating

the hypotheses in Section 3.1 we consider matched pairs in Section 3.2 and sequential

sampling in Section 3.3. In Section 4 we extend the above results to distributions that

have a support that is contained in a known bounded set. In Section 5 we conclude.
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2 Hypothesis Testing as a Game against Nature

We start by showing how one can use game theory to derive tests that minimize type

II error. We present the result in an abstract context. In the later sections we then

show how to apply this to various testing and sampling scenarios involving bivariate

distributions.

Let Y be the set of possible data generating processes. Assume that Y is a

topological space that is compact. A typical element of Y will be denoted by Y:

Consider two sets H0 and H1, identi�ed with the null hypothesis and the alternative

hypothesis respectively where H0; H1 � Y and H0 and H1 are nonempty, closed and

disjoint. A statistician uses information coming from the underlying data generating

process to make a recommendation whether or not to reject the null hypothesis in

favor of the alternative hypothesis. To keep notation simple we do not explicitly

specify the information available to the statistician. In particularly we allow for the

statistician to in�uence the information available as in sequential testing. Instead we

consider a reduced form approach and describe a test � as a mapping from the set of

data generating processes to a randomized choice of whether or not to reject the null

hypothesis. Formally, � : Y ! [0; 1] where the value of � speci�es the probability of

rejecting the null hypothesis. Let F be a set of tests available to the statistician. We

assume that F contains the two simplest tests, namely always reject � � 1 and never

reject � � 0:

Let EY (�) denote the probability of rejection or power of � when Y is the true

data generating process and let EY (1� �) = 1� EY (�) for Y 2 Y. supY 2H0 EY (�)

then represents the type I error of �: The test � has level � for � 2 (0; 1) if its type

I error lies below �: The type II error of � is given by supY 2H1 EY (1� �). We call

inf�2F supY 2H1 EY (1� �) the unavoidable type II error. A so-called least favorable

distribution corresponds to a data generating process under which the unavoidable

type II error is attained. We call the di¤erence between the type II error of a test �

and the unavoidable type II error the added type II error of �. The type II error of

� is therefore the sum of the unavoidable and the added type II error.
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Note that the unavoidable type II error refers to the set of all randomized tests as

this error is meant to measure limits to inference. Practitioners naturally only choose

among nonrandomized tests. We prefer to evaluate such additional constraints on

inference by the added type II error of the respective tests.

Let � (�; �) be the following zero-sum game de�ned for given constants �; � 2

(0; 1), a game we visualize as being played between the statistician and nature. Si-

multaneously, the statistician chooses a test � 2 F and nature chooses a data gener-

ating process Y 2 H0 [H1. The outcome resulting from this simultaneous choice is a

nonnegative penalty for the statistician. Penalites are de�ned as follows. The penalty

of wrongly not rejecting the null hypothesis is �; the penalty of not rejecting the null

hypothesis when the alternative hypothesis is true is 1 � �, and there is no penalty

when making the correct recommendation.1 Let � (�; Y ;�; �) denote the expected

penalty attained by � when facing Y; so

� (�; Y ;�; �) =

8<: �EY (�) if Y 2 H0
�EY (1� �) if Y 2 H1

:

In this game it is assumed that the statistician aims to minimize the expected penalty

while nature aims to maximize the expected penalty (of the statistician). This makes

� a zero-sum game. Both players are also allowed to randomize.2 Thus the statistician

chooses a possibly randomized test � belonging to �F and nature may choose an

element of �(H0 [H1) which will be typically denoted by �:3 When � =2 �H0[�H1
then we let �0 2 �H0, �1 2 �H1 and � 2 (0; 1) be de�ned such that � = (1� �) �0+

��1: Above de�nitions of E and � extend from Y to � 2 �(H0 [H1) by taking

expectations, for instance,

� (�; �;�; �) = (1� �) �E�0 (�) + ��E�1 (1� �) :
1Note that we could have allowed nature to also choose Y 2 Yn (H0 [H1), in which case the

penalty for such choices would be equal to 0: However this would have unnecessarily complicated

notation.
2More generally, for the result below to hold we only need that the strategy set of each player is

convex.
3�A denotes the set of all distributions with support contained in the set A:
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We now present our characterization of tests that attain the unavoidable type II

error in terms of being part of a Nash equilibrium of the game � (�; �) for appropri-

ately de�ned � and �:

Proposition 1 Assume that � is continuous in � and �: The following statements

are equivalent:

(i) �� attains the unavoidable type II error among the tests in �F that have level

�.

(ii) There exists �� 2 �(H0 [H1) with �� 2 (0; 1) such that (��; ��) is a Nash

equilibrium of � (�; �) when � = E��1 (1� �
�) :

(iii) There exists �� 2 �(H0 [H1) with �� 2 (0; 1) such that E��0 (�
�) = �,

EY (1� ��) � E��1 (1� �
�) for all Y 2 H1 and � (��; ��;�; �) � � (�; ��;�; �) for all

� 2 �F when � = E��1 (1� �
�).

Continuity of � is only needed to show that (i) implies either (ii) or (iii). Neither

in (ii) nor in (iii) do we assume that �� has level �. (ii) and (iii) are useful to

evaluate whether a candidate test �� attains the unavoidable type II error, set � =

maxY 2H1 EY (1� ��) : However the above is not useful for deriving the unavoidable

type II error when one does not have such a candidate test. This is because the game

� (�; �) depends via the parameter � on the equilibrium strategies. In the following

formulation this is no longer the case. Here the exogenous parameters �0 and �0 that

enter � (�0; �0) determine the ratio of the two errors of the test ��.

Corollary 1 Assume that (��; ��) is a Nash equilibrium of the game � (�0; �0) for

some given �0; �0 2 (0; 1) : Then �� has size � = E��0 (�
�) and the unavoidable type

II error among the tests in �F that have level � is attained by �� and is equal to

E��1 (1� �
�) = �0�=�0:

One implication from understanding hypothesis testing in terms of a Nash equi-

librium of a zero-sum game is that it is very easy to establish necessary conditions for

which alternative tests may attain the unavoidable type II error. Here we iterate on

a well known result for zero-sum games, namely that the set of Nash equilibria has a

product structure.
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Corollary 2 Assume that (��; ��) is a Nash equilibrium of � (�; �) and that � =

E��1 (1� �
�). If �0 attains the unavoidable type II error then (�0; ��) is also a Nash

equilibrium of � (�; �) and E��1 (1� �
�) = E��1 (1� �

0).

Finally we show how to derive a lower bound on the type II error for the case

where a Nash equilibrium of � is not known.

Proposition 2 If there exists �� and �� such that �� > 0 and � (��; ��;�; �) �

� (�; ��;�; �) for all � 2 �F when � = E��0 (�
�) and � = E��1 (1� �

�) then E��1 (1� �
�)

is a lower bound on the unavoidable type II error among all tests that have level �.

Proof. We �rst prove Proposition 2. Let �� and �� = (��0; �
�
1; �

�) satisfy the

conditions of the �if statement� of Proposition 2. Let � be a test that has level

�. Then E��0 (�) � �, � (�; ��;�; �) � � (��; ��;�; �) = �� and �� > 0 imply

E��1 (1� �) � E��1 (1� �
�). Hence E��1 (1� �

�) is a lower bound on the unavoidable

type II error.

We now prove Proposition 1. Note that it is easy to show equivalence of (ii) and

(iii). For instance E��0 (�
�) = � follows directly from the indi¤erence of nature, that ��0

and ��1 both yield the same expected penalty. Otherwise nature would not randomize

between them.

We now wish to prove that (ii) implies (i). Since nature is indi¤erent between ��0

and ��1 it follows that � (�
�; ��;�; �) = ��: Together with the fact that � (��; ��;�; �) �

� (��; Y ;�; �) = �EY (�) for y 2 H0 it follows that �� has size �: Similarly it follows

from � (��; ��;�; �) � �EY (1� �) for Y 2 H1 that the type II error of �� is equal to

� which together with Proposition 2 proves (i).

Finally, we prove that (i) implies (ii). Let � be the unavoidable type II error.

Since both�F and�Y are compact and convex Hausdor¤ spaces and � is continuous

there exists a Nash equilibrium of � (�; �) (Glicksberg, 1952). Let (�0; ��) be such

an equilibrium. Since �� has size � and attains the unavoidable type II error it

follows that � (��; ��;�; �) � ��: Since (�0; ��) is a Nash equilibrium, � (�0; ��;�; �) �

� (��; ��;�; �) and hence � (�0; ��;�; �) � ��: Given � (�0; ��;�; �) � � (�0; �;�; �)
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holds for all � it follows that �0 has level � and that �0 attains the unavoidable type

II error. This proves (ii).

The statements in Corollaries 1 and 2 follow immediately.

3 Tests for Comparing theMeans of Two Bernoulli

distributions

We now use our above insights to investigate inference when testing the inequality of

the means of two Bernoulli distributed random variables.

3.1 The Setting

Let Y = (Y1; Y2) be a binary valued bivariate random variable so Y 2 f0; 1g2 : Thus

Y1 and Y2 are two Bernoulli random variables with means (or success probabilities) we

denote by p1 and p2 respectively. In a later section we extend our results to the case

where the set of possible outcomes is only constrained to be contained in a known

bounded set.

We wish to test the one-sided null hypothesis H0 : p1 + d0 � p2 against the

composite alternative hypothesis H1 : p1 + d � p2 for some given d0 and d with

d0 < d. We refer to d�d0 as the gap between the null and the alternative hypothesis.

In terms of inference the di¤erence between the two means is assumed to be the only

parameter of interest.

Tests of inequality emerge when setting d0 = 0: Tests of superiority (of Y2 over

Y1) result when d0 > 0; tests of non-inferiority or equivalence refer to the case where

d0 < 0 with focus typically on d = 0 (e.g. see Röhmel and Mansmann, 1999, Röhmel,

2005).4 Tests for each d0 2 (�1; 1) are typically used when constructing con�dence

intervals for the di¤erence between the two underlying means.

4The underlying story is that there is a new treatment whose outcome is given by Y1 that should

be compared to a reference treatment corresponding to Y2.
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3.2 Matched Pairs

Consider inference based on matched pairs where the statistician observes N inde-

pendent realizations yj 2 f0; 1g2 of Y for j = 1; :::; N: Data generating processes that

belong to � f(1; 0) ; (0; 1)g will play a special role and will be denoted by Y (p2) :

A (randomized) test � is formally given by

� :
�
f0; 1g2

�N ! [0; 1]

where �
�
y1; :::; yN

�
is the probability of recommending a rejection based on the sam-

ple
�
y1; :::; yN

�
:

Consider �rst tests of inequality so d0 = 0: The natural candidate is the random-

ized version of McNemar�s test (McNemar, 1947, see Lehmann and Romano, 2005,

p. 138). This test, denoted in the following by �u; evaluates whether there are sig-

ni�cantly more observations of (0; 1) than of (1; 0) in the data set. �u is uniformly

most powerful among the unbiased tests (UMPU).5 We show that �u attains the un-

avoidable type II error and hence that the property of being unbiased here does not

constrain inference.

To also understand the case of d0 6= 0 we construct a new test that attains the

unavoidable type II error.6 This test emerges when applying the following two steps.

First randomly transform the data set into one that contains only outcomes (1; 0) and

(0; 1) in a way that leaves EY2 � EY1 unchanged. Then reject the null hypothesis if

there are su¢ ciently more observations of (0; 1) than of (1; 0) in the transformed data

set. The transformation independently replaces observations (0; 0) and (1; 1) equally

likely with (1; 0) and with (0; 1) : We now describe the recommendation of this test

denoted by �+ for a sample that contains only observations (1; 0) and (0; 1) : There

is some t 2 Z and � 2 [0; 1) such that in a sample that contains z1 observations of
5Recall that a test � is unbiased if EY 0 (�) � EY (�) when Y 2 H0 and Y 0 2 H1: A test �0 is

uniformly more powerful than a test � if EY 0
�
�0
�
� EY 0 (�) for all Y 0 2 H1:

6We remind the reader that the objective here is not to design practical tests but to uncover

benchmarks useful to evaluate such practical tests.
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(1; 0) and z2 of (0; 1) the test �
+ satis�es

�+ =

8>>><>>>:
1 if z2 > t

� if z2 = t

0 if z2 < t

if z1 + z2 = N (1)

and

EY ( 12 (1+d0))
�
�+
�
= �: (2)

Note that the parameters t and � as de�ned above are unique. Note also that if

d0 = 0 and Y 2 � f(1; 0) ; (0; 1)g then �+ = �u: It follows from the proof below that

�+ is unbiased and has size �: We apply Proposition 1 and Corollary 2.

Proposition 3 (i) The unavoidable type II error is given by

EY ( 12 (1+d))
�
1� �+

�
: (3)

(ii) If d0 = 0 then (3) is attained by the UMPU test �
u:

(iii) (1) and (2) are necessary conditions for a test to attain the unavoidable type

II error.

In particular we have shown that there is a least favorable distribution contained

in � f(1; 0) ; (0; 1)g : This will play an important role in later sections.

Proof. Let ��0 = Y
�
1
2
(1 + d0)

�
and ��1 = Y

�
1
2
(1 + d0)

�
: We will �rst show that

one can choose �� 2 (0; 1) such that �+ is a best response against �� in � (�; �) when

� = E
�
1� �+j��1

�
:

Since ��0; �
�
1 2 � f(1; 0) ; (0; 1)g we obtain that z2 is a su¢ cient statistic for the

information contained in the sample when facing �� where z1 = N �z2: The expected

penalty from rejecting the null hypothesis conditional on z2 is equal to � Pr (H0 truejz2).

The expected penalty from not rejecting the null hypothesis conditional on y is equal

to �Pr (H1 truejz2) : We derive the ratio of these two expected penalties:

� Pr (H0 truejz2)
�Pr (H1 truejz2)

=
�
�
2n
z2

�
((1 + d0) =2)

2n�z2 ((1� d0) =2)z2 (1� �)
�
�
2n
z2

�
((1 + d1) =2)

2n�z2 ((1� d1) =2)z2 �
(4)

=

�
(1� d0) (1 + d1)
(1 + d0) (1� d1)

�z2 �1 + d0
1 + d1

�2n
� (1� �)
��

.
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Now set �� equal to the solution � of�
(1� d0) (1 + d1)
(1 + d0) (1� d1)

�t�
1 + d0
1 + d1

�2n
� (1� �)
��

= 1 (5)

which exists and is necessarily contained in (0; 1).

Since the right hand side in (4) is increasing in z2 it follows from the de�nition of

�� that �+ is a best response to the strategy �� of nature conditional on z2 in the sense

that �+ minimizes the expected penalty of the statistician among all possible tests

�. In particular, when z2 = t then the de�nition of �
� ensures that the statistician is

indi¤erent between rejecting and not rejecting the null hypothesis.

We will now establish the remaining statements in Proposition 1(iii). Given the

way �+ is de�ned when either (0; 0) or (1; 1) is contained in the sample it is as if

the statistician facing Y is really facing Y 0 2 � f(1; 0) ; (0; 1)g with EY 02 � EY 01 =

EY2 � EY1. This is because the random transformation is performed independently

for each matched pair in the sample and because this transformation preserves the

expected di¤erence between the two variables. Hence, for such Y and Y 0 we �nd that

EY
�
�+
�
= EY 0

�
�+
�
: Using the properties of �+ we thus obtain

max
Y 2H1\�f(1;0);(0;1)g

E
�
1� �+

�
= EY ( 12 (1+d1))

�
1� �+

�
:

This establishes Proposition 1(iii) which completes the proof of (i).

Concerning part (iii), if �0 attains the unavoidable type II error then following

Corollary 2 �0 hat to be a best response to �� which means that it has to satisfy (1)

and (2).

We now prove part (ii) so assume d0 = 0: Note that �
+ is unbiased. Hence the

UMPU test �u is uniformly more powerful than �0 and hence �u also attains the

unavoidable type II error.

The above proof reveals that unbiasedness does not here constrain inference:

Corollary 3 All statements in Proposition 3 remain true if one restricts attention

to unbiased tests.

Following Pratt (1961) the unavoidable type II error can be used to derive a tight

http://biostats.bepress.com/cobra/art59



13

lower bound on the maximal expected width of any family of con�dence intervals for

the di¤erence between the two underlying means.

Given space constraints we numerically illustrate our �ndings only in the following

more intricate setting.

3.3 Independent Observations and Sequential Sampling

We now consider inference based on N independent observations where for simplicity

we focus on the case where N is even. Let n = N=2. Each observation consists of

an outcome realized by one of the two random variables. The sample can thus be

described as
��
ik; y

k
ik

�
; k = 1; ::; 2n

�
2 (f1; 2g � f0; 1g)2n where ykik 2 f0; 1g has been

drawn from Yik ; k = 1; :::; 2n: The sample is balanced if jfk : ik = 1gj = n:7 Let yi be

the number of times that Yi realized 1 in this sample, so yi =
���k : ik = i; yki = 1	�� ; i =

1; 2. We allow the statistician to choose sequentially which random variable to observe

an outcome from, hence to determine ik conditional on
��
ij; y

j
ij

�
; j = 1; ::; k � 1

�
:

This we call sequential sampling. Formally a test � now describes how to gather the

sample, so

� : [2n�1k=0 (f1; 2g � f0; 1g)
k ! � f1; 2g

where � describes the index of the random variable from which the next outcome

should be realized. As in the setting with matched pairs, the test � also speci�es the

probability of making a rejection once the entire sample has been gathered, hence

additionally we have that

� : (f1; 2g � f0; 1g)2n ! [0; 1] :

Under simultaneous sampling the statistician determines ex-ante how many times

to observe each variable. This can be formally embedded in sequential sampling by

asserting that jfk : ik = 2gj is a constant and hence does not depend on the observed

outcomes. An important representative is balanced sampling where jfk : ik = 2gj = n.

Clearly sequentially sampling 2n independent observations generates less infor-

mation than sampling 2n matched pairs. Consequently the unavoidable type II error
7 jAj denotes the cardinality of the �nite set A:

Hosted by The Berkeley Electronic Press



14

under matched pairs (see (3)) is a lower bound on the type II error under sequen-

tial sampling. In the following we show that the two unavoidable type II errors can

coincide.

Let ��� be any test that has the following three properties. (i) ��� generates a

balanced sample. (ii) There exists b 2 Z such that

���
��
ik; y

k
ik

�2n
k=1

�
=

8<: 1 if y2 � y1 > b

0 if y2 � y1 < b
. (6)

(iii) The power of ��� is equal to � when p1 = 1
2
(1� d0) and p2 = 1

2
(1 + d0) ; formally

EY ( 12 (1+d0))
(���) = �: (7)

Notice that ��� is constructed similarly to �+: In fact, it follows that b = t � n.

Moreover, if ��� = � when y1�y2 = b then ��� has the same behavior as �+ whenever

Y 2 � f(1; 0) ; (0; 1)g : This particular representative will be called ���b;�1:

We combine Propositions 1 and 3 to derive necessary and su¢ cient conditions for

when inference (in terms of type II error) based on a sequential test is as good as

when based on matched pairs.

Proposition 4 (i) (3) is a lower bound on the type II error of any sequential test

that has level �:

(ii) If ��� has size � and attains its type II error when Y = Y
�
1
2
(1 + d)

�
then ���

attains the unavoidable type II error which is equal to (3).

(iii) (6) and (7) are necessary conditions for a sequential test � with level � to

have a type II error equal to (3).

If d0 = 0 then we �nd a related though more speci�c result to Proposition 4(ii) in

Lehmann and Romano (2005, Problem 3.59): ���b;�1 is uniformly most powerful among

all tests that gather a balanced sample when testing H0 : p1 = p2 = 1=2 against H1 :

p2 = 1� p1 > 1=2.

Proof. Part (i) follows immediately as matched pairs generates more information

than sequential testing. For parts (ii) and (iii) consider the game as de�ned in the
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proof of Proposition 3. Concerning part (ii), note that property (6) and (7) ensure

that ��� is a best response to the strategy of nature. The remaining assumptions

ensure that Proposition 1(iii) can be applied. The proof of part (iii) is analogous to

that of Proposition 3(ii).

Numerical calculations for many values of n and � reveal that ���b;�1 has size �

and that if the gap d� d0 is su¢ ciently large then ���b;�1 attains its type II error when

Y = Y
�
1
2
(1 + d)

�
: Thus we have found that inference based on a balanced sample is

as powerful as when based on matched pairs provided there is su¢ cient gap between

the hypotheses. For instance, when n = 20; � = 0:05 and d0 = 0 then d � 0:27764

is su¢ cient for this to be true. In the following we present alternative tests within

the class ��� that have the potential to generate the same power of inference as

under matched pairs for smaller values of d than under ���b;�1: The idea is to vary the

recommendation on the border of the critical region where y2 � y1 = b:

3.3.1 The L Test

Let ���b;v be a test de�ned as follows. �
��
b;v gathers a balanced sample and satis�es

(6) and (7). When y2 � y1 = b this test rejects the null hypothesis on the 2 (v + 1)

data points that are closest to the border and rejects with a constant probability

in the interior. Speci�cally ���b;v (y1; y1 + b) = 1 if y1 � v or y1 � n � v � b and

���b;v (y1; y1 + b) = � if v < y1 < n� v � b where v 2 f�1; 0; 1; ::; b(n� b) =2cg : Here v

and � have to be chosen such that (7) holds. Then ���b;v belongs to the class of tests

��� by construction.

It turns out in all numerical examples that ���b;v attains the unavoidable type II

error if and only if d � d� for appropriately chosen threshold d�: The value of v that

minimizes the threshold d� will be denoted by v�; ���b;v� will also be called the L test.

We illustrate for n = 20, � = 0:05 and d0 = 0. We �nd that b = 6 and v � 5 are

necessary to satisfy (6) and (7). However we �nd that ��b;v only has size 0:05 if v � 3:

The next step is then to search for each value of v for the values of d under which

the type II error is attained when Y = Y
�
1
2
(1 + d)

�
. We then select v =: v� which

has this property for the smallest values of d: Here it turns out that ���5;3 is uniformly
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more powerful than ���5;v for �1 � v � 2. Hence v� = 3 and we �nd that d� = 0:18969.

Remember that d� = 0:27764 under ���5;�1:

In Figure 1 we plot the unavoidable type II error under matched pairs together

with the type II error of the L test ���5;3. It turns out for d < d
� that the type II error

under ���5;3 is attained when p1 = 0 and p2 = d: Note that in the region where d > d
�,

and hence where the two graphs coincide, the graphs show the unavoidable type II

error under balanced sampling.

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1d

Figure 1: Type II error of ���5;3 (solid) and unavoidable type II

error under matched pairs (dotted) as function of d when

n = 20, � = 0:05 and d0 = 0:

In Table 1a we provide the values of b and v� of the L test together with the

threshold d� and the type II error attained at this threhold for various values of n

when � = 0:05. This means that the L test attains the unavoidable type II error

whenever its type II error is below the indicated value at the threshold d = d�.
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Table 1a: Some Parameters of the L Test when � = 0:05 and d0 = 0

n 5 10 15 20 25

b 3 4 4 5 6

v� 0 2 1 3 6

d� 0:4894 0:3343 0:2735 0:1897 0:2116

Type II error for d = d� 0:52 0:56 0:55 0:67 0:56

n 30 40 50 60 70

b 6 7 8 9 10

v� 5 9 13 26 24

d� 0:2053 0:1607 0:1404 0:1374 0:1361

Type II error for d = d� 0:52 0:58 0:6 0:56 0:51

In Table 1b we illustrate how these parameters change with d0 when n = 30 and

� = 0:025: Note that the L test attains the unavoidable type II error in this table

whenever this is above 0:475 unless d0 is very large.
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Table 1b: Some Parameters of the L Test when n = 30 and � = 0:025

d0 �0:98 �0:95 �0:9 �0:8 �0:7 �0:6 �0:5 �0:4

d� �0:933 �0:87 �0:789 �0:645 �0:573 �0:394 �0:317 �0:224

b; v� �28;�1 �26;�1 �23;�1 �19;�1 �15; 4 �12; 1 �8; 7 �5; 7

type IId=d� 0:667 0:615 0:587 0:556 0:735 0:527 0:646 0:693

d0 �0:3 �0:25 �0:234 �0:2 �0:1 0 0:1 0:2

d� �0:069 �0:0284 0 0:0579 0:156 0:256 0:312 0:397

b; v� �2; 7 0; 10 0; 8 2; 13 5; 11 8; 10 10; 4 13; 3

type IId=d� 0:548 0:586 0:546 0:475 0:488 0:484 0:614 0:65

d0 0:3 0:4 0:5 0:6 0:65 0:7 0:8 0:841

d� 0:447 0:573 0:693 0:735 0:671 0:889 0:96 1

b; v� 16; 3 19; 3 21; 0 24; 0 25; 0 26;�1 28;�1 29;�1

type IId=d� 0:779 0:683 0:562 0:737 0:961 0:359 0:275 0

where type IId=d� denotes the type II error when d = d�

3.3.2 Bounds to Inference among Noninferiority Tests

In the context of noninferiority tests where d0 < 0 there has been special interest

in deriving minimal sample sizes necessary for particular inference, mostly for the

case where d = 0. For a given pair of hypotheses the unavoidable sample size refers

to the smallest sample under which the unavoidable type II error is below a given

threshold. Here we focus on balanced samples and report in Table 2 the value of n

corresponding to the unavoidable sample size necessary to achieve a type II error of

0:2 when � = 0:025. These values are derived by �rst calculating lower bounds on the

sample sizes using Proposition 4(i) and then verifying for those sample sizes and for

the given value of d0 that the conditions in Proposition 4(ii) hold when considering

��� = ���b;v� : We include in Table 2 the values, denoted by nasym, that result from the

asymptotic formula of Rodary et al. (1989) (see also Farrington and Manning, 1990).
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Table 2: Testing Non-Inferiority with a Balanced Sample:

Achieving Type II Error below 0:2 when � = 0:025 and d = 0

d0 �0:3 �0:25 �0:2 �0:15

Unavoidable sample size n 43 62 97 173

nasym 41 61 96 172

3.3.3 Unbiased Tests for Inequality

Here we brie�y investigate inference under sequential sampling within the class of

unbiased tests when d0 = 0. The randomized version of Fisher�s (1935) exact test due

to Tocher (1950), denoted here by �T ; is UMPU under simultaneous sampling. Hence

it attains the unavoidable type II error among the unbiased tests under simultaneous

sampling. If its type II error (given a balanced sample) is attained for Y
�
1
2
(1 + d)

�
we obtain more, namely that �T attains the unavoidable type II error among unbiased

tests for sequential sampling. However, �T never attains the lower bound (3) on the

type II error as it does not satisfy (6). Extending Proposition 2 to unbiased tests we

then obtain the following.

Corollary 4 Consider d0 = 0: Then EY ( 12 (1+d))
�
�T
�
is a lower bound on the type

II error of any unbiased test which is strictly above (3). In particluar, if the type II

error of �T under a balanced sample is attained at Y
�
1
2
(1 + d)

�
then the unavoidable

type II error among unbiased tests is attained by �T and equal to EY ( 12 (1+d))
�
�T
�
:

It follows that unbiasedness constrains inference under independent observations

when d0 = 0. All numerical examples have revealed that �
T based on a balanced sam-

ple attains the unavoidable type II among the unbiased tests for all d > 0. Moreover,

we have found that the type II error of �T is very close to the bound (3) if n is not

too small. For instance, we �nd for n = 20 and � = 0:05 that the maximal distance

between the type II error of �T and (3) is 0:0072. For Table 3 we have also calculated

the maximal distance for other values of n: Importantly, we have veri�ed each time

using the L test that this maximal distance is attained for a value of d where (3) is
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equal to the unavoidable type II error. Hence Table 3 lists the maximal added type

type II error of �T .

3.3.4 Evaluating Speci�c Tests for Inequality in Balanced Samples

Next we calculate the added type II error of two special nonrandomized tests for

the case where d0 = 0. We consider the B test (Boschloo, 1970) which is uniformly

more powerful than Fisher�s (1935) exact test and the Z test (Suissa and Shuster,

1984)8. We only evaluate these tests for values of d where the lower bound on the

type II error is below 0:8 for following reason. These tests are nonrandomized and

hence their type II error is equal to 1 when p1 = p2 = 0: On the other hand, the

maximal unavoidable type II error is equal to 1 � �: Thus, � is the lower bound on

the maximal type II error of any nonrandomized test. To dampen this disadvantage

of being nonrandomized we only evaluate the tests over those values of d where the

lower bound (3) is below 0:8: For instance, for n = 20 and � = 0:05 this means that

we only consider the added type II error for d � 0:12817: With this restriction on

the possible alternative hypotheses we �nd for the chosen values of n that the upper

bound on the added type II error is largest in the region of d where it is tight. Thus

we are able to present maximal added type II errors in Table 3. Note that an analysis

with only �b;�1 would not have generated this result as for instance the maxima are

attained under n = 20 in the region where �b;�1 does not attain the unavoidable type

II error (so where d < 0:27764).

Table 3: Maximal Added Type II Error when � = 0:05

n 5 10 15 20 25 30 40 50

UMPU 0:087 0:029 0:026 0:0071 0:0066 0:0093 0:0067 0:0032

Z test� 0:136 0:031 0:048 0:034 0:066 0:013 0:013 0:0205

B test� 0:136 0:08 0:034 0:033 0:046 0:012 0:012 0:0204

(� when the unavoidable type II error is below 0:8)

8Suissa and Shuster (1985) have veri�ed that the Z test is uniformly more powerful than Fisher�s

exact test when � 2 f1%; 2:5%; 5%g and 10 � n � 150:
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We hasten to point out that while the added type II error is a useful means for

comparing tests it should not be the sole measure for selecting a test. For instance,

in this table the Z test always attains a slightly higher added type II error than the

B test. However, if n 2 f20; 25; 30; 40g then while the power of the Z test is never

lower than that of the B test by more than 0:043 it can be up to 0:22 higher. For

these parameters the Z test seems preferable. On the other hand, when n = 15 then

it turns out that the B test is uniformly more powerful than the Z test.

An alternative means to evaluate a test � is to compare its minimal sample size to

the unavoidable sample size. The minimal sample size of a test � with level � refers

to the smallest value of n for which its type II error is below a given threshold �. In

Table 5 we present the minimal sample size of the Z test and the unavoidable sample

size for various values of d when d0 = 0; � = 0:05 and � = 0:2: Note that we �nd

in each case as in numerical examples of Section 3.3.2 that the lower bound derived

using (3) is tight.

Table 5: Minimal Sample Sizes for Type II Error Below 0:2

when � = 0:05 and d0 = 0

d 0:5 0:4 0:3 0:25 0:2

Unavoidable sample size 12 19 34 49 77

Z test 13 20 37 51 79

Following Table 5, given d = 0:3; there is no sequential test with level 0:05 that

yields a type II error below 0:2 when n � 33: If instead n � 34 then the unavoidable

type II error is below 0:2: The Z test based on a balanced sample requires n = 37 to

attain a type II error below 0:2:

4 Testing given Multiple Outcomes

Here we consider the more general setting where outcomes belong to some known

bounded set Z which contains more than two di¤erent outcomes. It will be enough
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to consider the case where f0; 1g $ Z � [0; 1].9 In addition to comparing means we

will now also consider testing the equality of the two distributions. If Z is not �nite,

such as when Z = [0; 1], then our hypotheses will be nonparametric (cf. Kendall and

Sundrum, 1953). We show that our previous results extend.

Let P denote the distribution of the joint random variable Y = (Y1; Y2) ; let FYi be

the cdfs of the marginal distribution with respect to Yi and let EYi be the expected

value, i = 1; 2: Let g : [0; 1] ! � f0; 1g be the so-called binomial transformation

where g (z) = 1 with probability z and g (z) = 0 with probability 1 � z; z 2 [0; 1] :

Note that
R
g (z) dPi (z) = EYi and that g is the identity on f0; 1g : For a given test �

de�ned for binary valued data let � � g be the test for data contained in [0; 1] de�ned

by �rst transforming each observation independently into f0; 1g using g and then

applying � to the transformed sample.

The �rst step is to show that the power of inference in terms of type II error

remains unchanged when intermediate outcomes are possible. In particular we �nd

that there is always a least favorable distribution that puts only weight on the extreme

outcomes. The result holds whenever both hypotheses only depend on means or when

the alternative hypothesis has this property while the null hypothesis postulates the

identity of the two distributions. Here we utilize that Bernoulli distributions are

identical if and only if their means are equal.

Proposition 5 Consider either tests of H0 : FY1 � FY2 against H1 : (EY1; EY2) 2 W

for some W � [0; 1]2 n f(w;w) ; w 2 [0; 1]g or tests of H0 : (EY1; EY2) 2 W0 against

H1 : (EY1; EY2) 2 W1 for some W0;W1 � [0; 1]2 with W0 \W1 = ;: If � attains the

unavoidable type II error for binary valued data then � � g attains the unavoidable

type II error when outcomes belong to Z.

Proof. Given P 2 � [0; 1]2 let P 0 2 � f0; 1g2 satisfy P 0i (1) = EYi; i = 1; 2: Then

EP (� � g) = EP 0 (�) : So for given w 2 [0; 1]2 it follows that

max
P2�[0;1]2:(EY1;EY2)=w

EP (�) � max
P2�f0;1g2:(EY1;EY2)=w

EP (�) = max
P2�[0;1]2:(EY1;EY2)=w

EP (� � g) :

9For general Z �rst transform all outcomes linearly, mapping the extreme points into 0 and 1

respectively.
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Similarly,

max
P2�[0;1]2:FY1�FY2

EP (�) � max
P2�f0;1g2:FY1�FY2

EP (�)

= max
P2�f0;1g2:EY1=EY2

EP (�) = max
P2�[0;1]2:EY1=EY2

EP (� � g) :

Given these observations the claim is immediate.

Now we combine Proposition 5 with some of our previous results for binary valued

distributions. In particular we gain insights to inference among permutation tests as

these are particular unbiased tests for testing the identity of two distributions.

Corollary 5 Consider either tests of H0 : FY1 � FY2 against H1 : EY1 + d � EY2

for some d > 0 or tests of H0 : EY1 + d0 � EY2 against H1 : EY1 + d � EY2 for

some d0 < d: Consider 2n independent realizations generated from a balanced sample,

from sequential testing or from sampling matched pairs. (3) is a lower bound on the

unavoidable type II error which is tight whenever it is tight for the setting with binary

valued outcomes, in particular when sampling matched pairs. (3) can be attained with

an unbiased test when sampling matched pairs while this is not true under sequential

sampling.

5 Conclusion

The knowledge of a compact set that contains all outcomes plays a central role in our

analysis. Given that we make no distributional assumptions the statistician may face

distributions that only put weight on the extreme outcomes in the support. In fact

it turns out that a least favorable distribution is contained among these particular

distributions. In other words, distribution-free inference is not limited per se by the

number of possible outcomes but by its range.

We �nd particular distributions to be least favorable and use their property to

make statements about inference among all sequential tests. The particular property

is that the two random variables almost surely yield di¤erent outcomes. The intuition

is that these distributions generate the most variance and hence make learning most

di¢ cult when interested in the di¤erence between the two means.
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The strategic component of trying to outguess the opponent in the underlying

zero-sum game naturally leads to mixed strategies being played in equilibrium. The

consequence is that the unavoidable type II error is typically realized by a randomized

test. Randomized tests have only received little attention in statistics but here we

�nd that understanding their properties is insightful to deriving bounds to inference.

Randomized tests for data with binary valued outcomes along with insights from

this paper are also used by Schlag (2007b) in the construction of nonrandomized

nonparametric tests and thus attaining the �rst exact solution to a nonparametric

Behrens Fisher problem.

Game theoretic methodology and thinking is generating new insights and results

in distribution-free hypothesis testing. The existence of equilibria in which opponent�s

strategy set is implicitly limited by own play (e.g. underlying Corollary 5) does not

come at a surprise to game theorists. The extreme example of this phenomenon arises

in the babbling equilibrium of games with cheap talk where ignoring messages makes

opponent�s messages that have no meaning optimal and vice versa (Crawford and

Sobel, 1982). For the �rst time in hypothesis testing we can compare tests based on

sequential sampling. Instead of needing to compute type II errors for each sampling

sequence one only needs to consider the best responses to nature�s strategy. Inference

focuses on speci�c pairs of composite hypotheses and often generalizes to a large

class of hypotheses. Uniqueness results are easily established. For instance, given

the results in Section 2 it is an easy excersize for any game theorist to show that

the binomial test is the unique uniformly most powerful test. This follows when

investigating best response behavior which turns out to resemble that of �Matching

Pennies�.
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