
UW Biostatistics Working Paper Series

9-26-2005

Semiparametric Loglinear Regression for
Longitudinal Measurements Subject to Irregular,
Biased Follow-up
Petra Buzkova
University of North Carolina, buzkova@u.washington.edu

Thomas Lumley
University of Washington, tlumley@u.washington.edu

This working paper is hosted by The Berkeley Electronic Press (bepress) and may not be commercially reproduced without the permission of the
copyright holder.
Copyright © 2011 by the authors

Suggested Citation
Buzkova, Petra and Lumley, Thomas, "Semiparametric Loglinear Regression for Longitudinal Measurements Subject to Irregular,
Biased Follow-up" (September 2005). UW Biostatistics Working Paper Series. Working Paper 263.
http://biostats.bepress.com/uwbiostat/paper263

http://biostats.bepress.com/uwbiostat
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1 Introduction

Longitudinal data often are irregularly spaced and the follow-up times can vary from

person to person. Moreover, those times often are continuous, not restricted to a pre-

determined set of times. Biased sampling under continuous times occurs when there is

no effective control of the follow-up times. That happens when the scheduled follow-

up times are not strictly followed, as in the health services research study we analyze,

or when follow-up times are not scheduled at all, as in administrative data where the

follow-up times are just observational times. We demonstrate the philosophy of biased

sampling with a simple example taken from air pollution. Assume an air pollution mea-

sure at time t as a covariate X(t). Let the outcome Y (t) be a lung function measure,

such as FEV1, the volume exhaled during the first second of a forced expiratory maneu-

ver started from the level of total lung capacity. Scientists are interested in quantifying

the association of FEV and air pollution. Further assume a binary indicator, Z(t), of

an asthma attack at time t. The lung function measure clearly is associated both with

the air pollution measure and presence or absence of an asthma attack. Also, the oc-

currence of an asthma attack may be related to the the air pollution measure. Assume

that a person with an asthma attack searches for medical help more often and that the

person has a lower lung function measure. So, data on individuals with present asthma

attacks form the majority of the observed data. If modeling FEV with the air pollution

covariate we obtain unbiased estimates for those who have come for a visit, primarily

people who suffer from an asthma attack on that day. Then, we obtain an exaggerated

estimate of the association of the lung function measure and the air pollution measure

for the general public. The bias can be overcome by including Z(t) as a covariate, but

this estimates the effect of X adjusted for Z, which may not be our targeted inference.

In a longitudinal study, we wish to examine the association of covariate process

{Xi(t), t ∈ [0, τ ]} and the response process {Yi(t), t ∈ [0, τ ]}, where the predetermined

constant τ is the end of study. Longitudinal data can be analyzed within the framework

of fully marginal regression models. By “fully marginal” models we mean those that do
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B̊užková & Lumley 2

not require the assumption

E[Yi(t)|Xi(t)] = E[Yi(t)|Xi(·)].

In particular, we do not require that the relationship between Yi(t) and future Xi(·)
be specified, in contrast to GEE and many likelihood methods, see Pepe & Anderson

(1994) or Pan et al. (2000).

We focus on a semiparametric outcome model where the intercept function α0(·) is

an unspecified arbitrary function of time. The reason why non-parametric modeling of

the intercept is attractive is that the effect of time may be complicated and it would

be better modeled non-parametrically in order to avoid model misspecification. This

concept is generalization to longitudinal data of the intercept in cross-sectional models

based on one observation time point only. There, the intercept is, however, a one–

dimensional unknown parameter, whereas here in longitudinal setting it is an infinitely–

dimensional parameter. We note that this non-parametric intercept modeling is not

needed in discrete times models with a small set of possible sampling times. There,

we can add a sampling–time–specific parameter, resulting in a fully parametric model.

A semiparametric regression with unspecified intercept is used for instance in Lin &

Carroll (2001b) and Lin & Carroll (2001a). In their approach they use profile–based

estimating equation for estimation of the parameter of interest and kernel estimating

equation for the nonparametric estimation. We note that for longitudinal data kernel

smoothing does not involve band–width selection issues only. It is a very hard task to

provide a
√

n–consistent estimator there, achieved either by artificially under–smoothing

or using a working independence in the profile–kernel estimating equations. They do not

address biased sampling. Lin & Ying (2001) integrated counting processes techniques

into analysis of longitudinal data under continuous time. They assume a linear regression

model with unspecified intercept. They also claim that the parametric specification for

the baseline mean function of the response variable over time is hard as “ This can be a

difficult task in practice”. Bůžková & Lumley (2005b) generalized the approach of Lin
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& Ying (2001) to biased sampling.

Recently, H. Lin et al. (2004) developed a class of weighted estimators in marginal

generalized regression models for longitudinal responses that might be observed in a

continuous-time fashion. Their outcome model covariates are fixed over time. Their

sampling-times model requires the estimation of a smooth hazard rate. This complicates

estimation, but more importantly, rules out sampling times that have some positive

probability, as occurs when there is partial compliance with a discrete set of planned

observation times. Bůžková & Lumley (2005a) proposed a similar approach that relies

on a proportional rates model for sampling times but avoids the need for a smooth

hazard function. This estimator is simple and easily implemented and choosing a log-

link provides a parametric counterpart of the estimator proposed in this paper.

We suggest a class of estimators that in loglinear semiparametric models account for

the possibility of biased sampling due to follow-up dependent on outcome or outcome-

related auxiliary variables. The loglinear models are suitable for Poisson, Gamma or

even Binomial data. Covariates in both the outcome model and the observation-times

model are not restricted in any way. For instance, the response at previous sampling

time can be included or an average of a covariate over a subject’s history.

Notation and the proposed models are described in Section 2. Section 3 discusses

estimation and inference. We illustrate our methods on a health services research study,

called HUD–VASH study, in Section 4. In Section 5 we report simulation studies and

in Section 6 we describe a second estimation approach for the loglinear semiparametric

model and give a few concluding remarks.

2 Notation and models

We assume a fully marginal mean model for response Yi as a function of covariates Xi

of individual i ∈ {1, . . . , n} at time t ∈ [0, τ ]. Thus we model E[Yi(t)|Xi(t)], denoted
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by µi(t). We consider the full data semi–parametric log–link model

log (µi(t)) = α0(t) + βT
0 Xi(t). (2·1)

The effect of time-varying covariates Xi is modeled parametrically in a linear way. The

parameter of major interest, β0, is a p-dimensional vector. The intercept curve α0(·) is

not of special interest, it is a infinite-dimensional nuisance parameter, whose estimation

we avoid.

The model for response, formulated in equation (2·1), is a full data model. However,

we assume to observe response not continuously over time but at certain observation

times only. Denote the set of observation times {Ti1, Ti2, . . . , TiKi
} for individual i ∈

{1, . . . , n} as Ti, with 0 ≤ Ti1 < Ti2 < . . . < TiKi
≤ τ . Ki is a random total number of

observed events of the i-th individual. Denote T = {Tj , j = 1, . . . , n} the set of sample’s

observation times. Define Ni(t) =
∑Ki

k=1 I(Tik ≤ t) the counting process of number of

events of individual i by time t. The underlying uncensored process denote as N∗
i (·),

Ni(t) = N∗
i (t∧Ci) where Ci is drop-out time or end of follow-up τ , whatever comes first.

We assume a marginal rate model for uncensored observation times of each individual

i ∈ {1, . . . , n} at time t ∈ [0, τ ]:

E[dN∗
i (t)|Zi(t)] = exp{γT

0 Zi(t)}dΛ0(t). (2·2)

The cumulative intensity Λ0(·) is an arbitrary non-decreasing function of time t, contin-

uous up to countably many points, in our settings a finite number of points suffices.

We write ξi(t) = I(Ci > t) for the at-risk process based on the drop-out Ci and

assume that Pr(Ci ≥ τ) > 0. We define two weighted averages of a variable V at time
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t, Av1 and Av2, as

Av1(V )(t;β, h) =
n

∑

i=1

Vi(t)
ξi(t)h(Xi(t)) exp{βT Xi(t)}

∑n
j=1 ξj(t)h(Xj(t)) exp{βT Xj(t)}

(2·3)

Av2(V )(t; γ) =

n
∑

i=1

Vi(t)
ξi(t) exp{γT Zi(t)}

∑n
j=1 ξj(t) exp{γT Zj(t)}

. (2·4)

The weighted average Av1 has weights proportional to a function h(·) and exp{βT Xi(t)}.
It it a multiplicative centering of the variable V at time t. The weighted average Av2,

being the expected value for a sampled person at time t, has weights proportional to the

probability of the individual having an observation at time t, based on the observation-

times model (2·2).
There are two crucial assumptions characterizing the models. They are non-informative

drop-out for the mean of response,

E[Yi(t)|Xi(t), Ci ≥ t] = E[Yi(t)|Xi(t)], (2·5)

saying that EYi(t) depends on covariates Xi(t) and drop-out Ci through covariates Xi(t)

only, and independent sampling assumption,

E[dN∗
i (t)|Zi(t),Xi(t), Yi(t), Ci ≥ t] = E[dN∗

i (t)|Zi(t)], (2·6)

saying that sampling times depend on covariates Zi(t),Xi(t), on response Yi(t) and

drop-out Ci through covariates Zi(t) only.

The end of follow-up, τ , is a constant. Note, that although response Yi is observed

only at random times Tij , the expectations in (2·1), (2·5) and (2·6) do not condition on

those times. Additional technical assumptions are given in the Appendix.
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3 Estimation

3·1 Observation-times model

Based on the proportional rates model (2·2) and the drop-out part of assumption (2·6),
parameter vector γ0 of length g can be consistently estimated by γ̂, the solution to a set

of estimating equations U †(γ̂) = 0. The estimating function U †(γ) is defined as

U †(γ) =
n

∑

i=1

∫ τ

0
{Zi(t) − Av2(Z)(t; γ)} dNi(t), (3·1)

where Av2 is defined in equation (2·4). Solution of (3·1) and derivation of asymptotic

properties of the estimator are based on a zero mean random process {Mi(t; γ0,Λ0), t ∈
[0, τ ]} defined as

Mi(t; γ,Λ) = Ni(t) −
∫ t

0
ξi(s) exp{γT Zi(s)} dΛ(s). (3·2)

Though the estimating function (3·1) is the same as under the Cox proportional hazards

model, the asymptotic variance is different due to imposing weaker assumptions in the

proportional rate model (2·2). Define the limit of the weighted average Av2 of a variable

V at time t as

Av2(v)(t; γ) = lim
n→∞

Av2(V )(t, γ) =
E[V1(t)ξ1(t) exp{γT Z1(t)}]

E[ξ1(t) exp{γT Z1(t)}]

and denote X⊗2 = XXT the outer product of X. The asymptotic variance of
√

n(γ̂−γ0)

is Γ, Γ = A−1ΣA−1, where

A = lim
n→∞

E
1

n

[−∂U †(γ)

∂γ
|γ0

]

= E

∫ τ

0
[Z1(t) − Av2(z)(t; γ0)]

⊗2 ξ1(t) exp{γT
0 Z1(t)} dΛ0(t) (3·3)

Σ = lim
n→∞

Cov

[

1√
n

U †(γ0)

]

= E

{

[
∫ τ

0
[Z1(t) − Av2(z)(t; γ0)] dM1(t; γ0,Λ0)

]⊗2
}

.

http://biostats.bepress.com/uwbiostat/paper263
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In deriving the properties of the estimators in the mean-response model we will need

only matrix A and therefore we refer a reader to Lin et al. (2000) for detailed derivation

of the variance of the estimator of γ0. There is a straightforward consistent estimator

of A

Â =
1

n

n
∑

i=1

∫ τ

0
[Zi(t) − Av2(Z)(t; γ̂)]⊗2 ξi(t) exp{γ̂T Zi(t)} dΛ̂(t)

with Aalen–Breslow estimator of Λ0(t)

Λ̂(t) =
n

∑

i=1

∫ t

0

dNi(s)
∑n

j=1 ξj(s) exp{γ̂T Zj(s)}
.

3·2 Biased sampling

To adjust for the biased sampling we use an approach based on inverse intensity rate ratio

weighting. For individual i ∈ {1, . . . , n} at time t ∈ [0, τ ] define inverse weights ρi(t; γ, h)

as

ρi(t; γ, h) =
exp{γT Zi(t)}

h(Xi(t))
. (3·4)

In the numerator we can include any function h(·) that is a deterministic function of

the mean–response model covariates Xi(t). The weight is proportional to the inverse of

the probability of individual i having an observation at time t. Ideally we would like

the weight to be proportional to inverse of variance of response. With no knowledge

about the variance of response, we want to make the weights variance, var[ρi(t; γ, h)−1],

as small as possible to increase estimators efficiency. Motivated by Hernán et al. (2002)

we try to find a function h(·) that decreases the variability of the weights. We choose

h0(Xi(t)) = exp{δT
0 Xi(t)}
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and we call the inverse weight ρi(t; γ, h0) a stabilizing inverse weight. The best choice of

δ0 we base on an estimator of δ0 in a proportional rate model similar to model (2·2)but

condition on covariates X instead of Z. When observation-times model covariates Zi(t)

are a subset of the mean–response model covariates Xi(t), for all individuals at all times,

then ρi(t) = 1, using the independent sampling assumption (2·6).

3·3 Estimation in the loglinear model

Motivated by the generalized estimating equations, we develop a class of estimators

defined as solution to unbiased estimating equations in the model (2·1). To compute the

estimates we do not require to use any smoothing techniques for consistent estimation of

the nuisance function α0(t) or the baseline intensity dΛ0(t). For individual i ∈ {1, . . . , n}
let us define the process {M(t;A, β, γ, h), t ∈ [0, τ ]}

Mi(t;A, β, γ, h) =

∫ t

0

1

ρi(t; γ, h)
{Yi(s) dNi(s)−

− exp{βT Xi(s)}ξi(s) exp{γT Zi(s)} dA(s;α,Λ)
}

(3·5)

with A(·) defined as

A(t;α,Λ) =

∫ t

0
exp{α(s)} dΛ(s). (3·6)

The dMi(t;A0, β0, γ0, h) has a mean zero conditional on covariates Xi(t) for any deter-

ministic function h(·). The fundamental set of estimating equations is

n
∑

i=1

Mi(t;A, β, γ, h) = 0 ∀t ∈ [0, τ ] (3·7)

n
∑

i=1

∫ τ

0
W (t)Xi(t)dMi(t;A, β, γ, h) = 0, (3·8)

where W (·) is a weight process over time. We notice that equation (3·7) actually is an

infinite-dimensional set of equations as those are defined for all times t ∈ [0, τ ]. Solving
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equation (3·7) for any t ∈ [0, τ ] yields

Â(t) =
n

∑

i=1

∫ t

0

Yi(s)
1

ρi(s;γ,h)dNi(s)
∑n

j=1
ξj(s)

ρj(s;γ,h) exp{γT
0 Zj(s)} exp{βT Xj(s)}

.

Plugging Â(·) into equation (3·8), the estimating function of an estimator of β0 is

U(β; γ, h) =

n
∑

i=1

∫ τ

0
W (t) [Xi(t) − Av1(X)(t;β, h)] Yi(t)

1

ρi(t; γ, h)
dNi(t), (3·9)

where the mean curve Av1(·) is as defined in equation (2·3). We can plug in any deter-

ministic function of time ζ(t) in the way shown below without changing the mean value

of the estimating function (3·9) at the true points β0, γ0. So the enriched estimating

function has the form

U(β; γ, h) =

n
∑

i=1

∫ τ

0
W (t) [Xi(t) − Av1(X)(t;β, h)] ×

×
[

Yi(t) − ζ(t) exp{βT Xi(t)}
] 1

ρi(t; γ, h)
dNi(t).

Function ζ(t) is an arbitrary deterministic function of time. We gain precision if ζ(t) =

exp{α0}. Thus, ζ(t) can be estimated as

ζ̂(t) =

n
∑

i=1

Yi(t)

exp{βT Xi(t)}
ξi(t)h(Xi(t)) exp{βT Xi(t)}

∑n
j=1 ξj(t)h(Xj(t)) exp{βT Xj(t)}

.

Further we approximate the unknown outcome Yj(t) for t ∈ T − {Tjk, k = 1, . . . ,Kj}.
The approximated response is denoted by Y ?, being for instance nearest neighbor or

some more sophisticated approximation or smoothing method. We emphasize that for

validity of the estimator of β̂(γ̂, h) we do not need any good estimator of α0(t) or any

good approximation of Yj(t) at t ∈ T−Tj. Bad estimators of those can worsen precision

only, they do not affect the validity of the estimator β̂(γ̂, h). The final estimating
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function defining the estimator β̂(γ̂, h) is

U(β; γ̂, h) =
n

∑

i=1

∫ τ

0
W (t) [Xi(t) − Av1(X)(t;β, h)] ×

×
[

Yi(t) − exp{βT Xi(t)}Av1

(

Y ?

exp{βT X}

)

(t;β, h)

]

1

ρi(t; γ̂, h)
dNi(t).(3·10)

Solution to U(β; γ̂, h) = 0 is
√

n-consistent and asymptotically normal. First define

Ri(t;A, β, γ, h) = Mi(t;A, β, γ, h) −

−
∫ t

0
exp{βT Xi(s)}Av1

(

Y ?

exp{βT X}

)

(s;β, h)
1

ρi(s, γ, h)
dMi(s; γ,Λ)

and

H ≡ lim
n→∞

E

[

− 1

n

∂U(β0; γ, h)

∂γ
|γ0

]

= E

∫ τ

0
w(t) [X1(t) − Av1(x)(t;β0, h)] ×

×
[

Y1(t) − exp{βT
0 X1(t)}Av1

(

y?

exp{βT x}

)

(t;β0, h)

]

Z1(t)
1

ρ1(t; γ0, h)
dN1(t).

The asymptotic variance of
√

n(β̂(γ̂, h) − β0) is D−1V D−1. The covariance matrix

V is defined as

V ≡ lim
n→∞

Cov

[

1√
n

U(β0; γ̂, h)

]

= E

[
∫ τ

0
w(t) [X1(t) − Av1(x)(t;β0, h)] dR1(t;A0, β0, γ0, h)−

− HA−1

∫ τ

0
[Z1(t) − Av2(z)(t; γ0)]

T dM1(t; γ0,Λ0)

]⊗2

and the matrix D of derivatives as

D ≡ lim
n→∞

E

[

− 1

n

∂U(β; γ0, h)

∂β
|β0

]

= E

∫ τ

0
w(t)

[

Av1

(

x⊗2
)

(t;β0, h) − {Av1(x)}⊗2 (t;β0, h)
]

Y1(t)
1

ρ1(t; γ0, h)
dN1(t).
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We note that in the covariance matrix V we account for estimation of γ0. Matrix H and

D can be consistently estimated by

Ĥ =

n
∑

i=1

∫ τ

0
W (t)

[

Xi(t) − Av1(X)(t; β̂, h)
]

×

×
[

Yi(t) − exp{β̂T Xi(t)}Av1

(

Y ?

exp{βT X}

)

(t; β̂, h)

]

Zi(t)
1

ρi(t; γ̂, h)
dNi(t)

D̂ =
1

n

n
∑

i=1

∫ τ

0
W (t)

[

Av1

(

X⊗2
)

(t; β̂, h) − {Av1(X)}⊗2 (t; β̂, h)
]

Yi(t)
1

ρi(t; γ̂, h)
dNi(t).

A consistent estimator of V is

V̂ =
1

n

n
∑

i=1

[
∫ τ

0
W (t)

[

Xi(t) − Av1(X)(t; β̂, h)
]

dM̂i(t)−

− Ĥ2Â
−1

∫ τ

0
[Zi(t) − Av2(Z)(t; γ̂)]T dM̂i(t)

]⊗2

,

where

dM̂i(t) = Ni(t) −
∫ t

0
ξi(s) exp{γ̂T Zi(s)} dΛ̂(s).

4 HUD–VASH study data analysis

In 1992, the US Department of Housing and Urban Development (HUD) and the US

Department of of Veterans Affairs (VA) established the HUD–VA Supported Housing

(HUD–VASH) program. Veterans were eligible if they were literally homeless at the time

of outreach assessment, had been homeless for 1 month or longer, and had received a

diagnosis of a major psychiatric disorder or an alcohol or drug abuse disorder. The 460

homeless veterans were randomly assigned to 1 of 3 intervention groups: HUD–VASH

intervention consisting of case management and housing vouchers (182 individuals);

case management (90 individuals); standard VA homeless services (188 individuals).

Vouchers authorized payment of a standardized local fair–market rent less 30% of the

individual beneficiary’s income. The important question to be answered by the program

is whether setting aside housing resources is either necessary or sufficient for facilitating
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B̊užková & Lumley 12

exit from homelessness in this population. The primary outcome was percentage of

days homeless during the last 3 months. Auxiliary time–dependent variables collected

during the study were income in the past three months and whether social security or

VA benefits were received during the past three months. Follow–up interviews were

scheduled for every 3 months. However, subjects often missed assessment and came

between scheduled interviews. Concern is raised that there as an association between the

follow-up process and the outcome process. For detailed study description see Rosenheck

et al. (2003).

In the analysis of the data, we set τ to 48 months and Ci = τ for all individuals

i ∈ {1, . . . , 460}. The 460 individuals made a total of 2855 follow–up visits by 48

months since randomization. The HUD–VASH intervention group has the highest level

of follow–up visits and the standard care group the lowest level of visiting. Figure 1

shows the primary outcome of percentage homeless during the last 3 months specific for

each treatment group. The time discretization is based on 6 months intervals. A crude

view at the data suggests that the HUD–VASH intervention is more effective in reducing

homelessness that the other two interventions that appear comparable.

To answer the question of efficacy of intervention we model the percentage days

homeless during the last three months, denoted as PH, as a function of treatment

assignment. We consider a semiparametric log–link model

log E [PHi(t)|Trti] = α0(t) + β01I(Trti = HUD–VASH)

+ β02I(Trti = case management), (4·1)

where the estimation of the parameters β01 and β02 is of primary scientific interest. The

intercept α0(t) is a nuisance parameter.

The covariates of the observation-times model (4·2) were suggested by the primary

investigator. The time–invariant predictors of timing of visits are intervention assign-

ment (HUD-VASH arm estimate 0.359, case management arm estimate 0.217, compared

to the standard VA care arm), income at baseline (in thousands of dollars, denoted as IB,
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Figure 1: HUD–VASH: averaged outcome in each treatment arm.

estimate of -0.172), an indicator of receiving any social security or VA benefits at baseline

(BB, estimated as 0.104) and the quality of life at baseline (denoted by QLB, estimate

of -0.007). Time time–varying predictors for the observation-times model are percentage

homeless approximated by previous value carried forward (estimated by 0.001), denoted

by PH?, and cumulative number of visits so far, denoted by N−, stratified by arm

(estimated to be 0.044 for the standard VA care, additional -0.018 for the HUD-VASH

arm and -0.014 for the case management arm). Parameter estimates suggest that higher

intensity of visiting is associated with lower baseline income, receiving any social or VA

benefits at baseline, having higher approximated percentage days homeless and higher

cumulative number of visits so far. At any time, individual in the HUD–VASH interven-

tion arm is more likely to have a visit than an individual under only case management,

comparing two individuals on the same level of baseline income, indicator of social or
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VA benefits at baseline, approximated percentage days homeless and having the same

number of visits so far. Similarly, individual under case management is more likely to

have a visit than an individual on standard care, comparing two individuals on the same

level of baseline income, indicator of social or VA benefits at baseline, approximated

percentage days homeless and having the same number of visits so far.

E [dN?
i (t)|Trti, IBi, BBi, PH?

i (t), QLBi,N−i(t)] = exp {γ01I(Trti = HUD–VASH)+

+ γ02I(Trti = case management) + γ03IBi + γ04BBi + γ05PH?
i (t) + γ06QLBi+

+γ07N−i(t) + γ08N
HUD–VASH
− i(t) + γ09N

case management
− i(t)

}

dΛ0(t) (4·2)

The semiparametric log–link model (4·1) suggests that at any time the ratio of the

expected percentage days homeless within the last 3 months is 0.491 for the HUD–VASH

treatment arm compared to the standard VA care arm. The 95% confidence interval is

(0.351, 0.686). Though β̂02 suggests increase of proportion days homeless comparing the

case management group to the standard VA care, we did not have enough power to find

evidence that the case management treatment resulted differentially than the standard

VA care on the percentage days homeless on 5% statistical significance level. The 95%

confidence interval for the ratio of mean percentage of days homelss, comparing the

case management group to the standard VA care group, is (0.725, 1.587), point estimate

1.073. Table 1 provides the characteristics of the raw estimates of β01 and β02.

Table 1: HUD–VASH: estimates of primary parameter of interest (β01, β02) for
model (4·1). The point estimate, its standard error, the standardized estimate and
95% confidence intervals are provided.

β̂ SE(β̂) Z-statistic 95% CI

HUD–VASH -0.712 0.171 -4.164 (-1.047, -0.377)
case management 0.070 0.200 0.350 (-0.322, 0.462)

For comparison and actual evidence for existence of biased sampling we computed

the naive estimates, when not adjusting for biased sampling. We assume a log–link
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parametric model

log E [PHi(t)|Trti] = β00f(t) + β01I(Trti = HUD–VASH)

+ β02I(Trti = case management), (4·3)

where f(t) is as before a natural cubic spline with 4 degrees of freedom. We compute

the estimates of the parameters of model (4·3) using a GEE with log–link and inde-

pendent working correlation matrix. The naive parameter estimates, shown in Table 2,

suggest qualitatively the same answer. However, we see a decrease in favoring the HUD–

VASH treatment (point estimate of the ratio is 0.537, 95% confidence interval (0.355,

0.813)) and also increase of disliking the case management care (point estimate 1.097,

95% confidence interval (0.604 , 1.989)). Fitting the observation-times model (4·2) we

learned that individuals who were worse off, which is those with more homelessness,

lower baseline income and receiving baseline benefits, tended to have increased intensity

of visiting, resulting in an upward bias. This biasness is different for the treatment arms,

as suggested by fitting the observation-times model (4·2).

Table 2: HUD–VASH: naive GEE estimates of primary parameter of interest (β01, β02)
for model (4·3). The point estimate, its standard error, the standardized estimate and
95% confidence intervals are provided.

β̂ SE(β̂) Z-statistic 95% CI

HUD–VASH -0.621 0.211 -2.943 (-1.035, -0.207)
case management 0.092 0.304 0.303 (-0.504, 0.688)

5 Simulations

Assume a random effect semiparametric Poisson-Normal model for response Y with

covariate X1, that is model for each i ∈ {1, . . . , n} and time t ∈ [0, τ ]

E [Yi(t)|X1i(t), φi] = exp{α0(t) + β01X1i(t) + φi}. (5·1)
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Random effect φi, φi ∼ N(0, σ2
φ) is used to introduce autocorrelation. As φi is fixed for

a person, means and thus responses on the same subject are correlated (positively) in

time when σφ > 0. Model (5·1) can be obtained by marginalization from a model

E [Yi(t)|X1i(t), Z2i(t), φi] =
exp{α0(t) + β01X1i(t) + β02Z2i(t) + φi}

E [exp{β02Z2i(t)}|X1i(t)]
, (5·2)

where the denominator is included in order to avoid confounding of the mean–response

model by the covariate Z2. The marginal mean model is

µi(t) = E [Yi(t)|X1i(t)] = exp{α0(t) + β01X1i(t) + σ2
φ/2}. (5·3)

Marginally this count response distribution has no closed form. The following func-

tions were considered as the baseline predictor α0(t): first 0.1
√

t, second 0.1 sin(t), third

0.1 exp {range | sin(t)|} , fourth 0.1 sin(peak t) and fifth 0.1 exp{range | sin(peak t)|}.
Parameter range controls the extreme size of the intercept values and was set to 2. The

peakedness parameter peak was set to 3. See Figure 2 illustrating the five functions

considered with the specific parameters. The nonlinear trend and sine wave were con-

sidered in Lin & Ying (2001) in simplified models. We do not assume specification of the

intercept function, therefore these various cases are used to demonstrate the estimator

performance under a range of various scenarios of the baseline predictor.

There are two covariates in the sampling times model. First one represents treatment

and is changing over time randomly for each individual, X1 ∼ Bernoulli(0.5). This

covariate is the mean model covariate as well. Second covariate X2 is dependent upon

the first covariate. If a person is not at certain time t on treatment (X1(t) = 0), then

X2(t) is normally distributed with mean and variance four. If a person is at certain

time on a treatment (X1(t) = 1), then X2(t) is normally distributed with mean two and

variance one. The intention in these settings is to model an effect of treatment to reduce

values of the second covariate. Parameters of interest β01, β02 were set to 0.5 and -1,

respectively. Discretization of continuous time is based on a grid of 100 per a time unit.
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Table 3: Quartiles of number of observations per individual.
min 25 50 75 max

τ = 2 1 1 2 3 10
τ = 8 1 5 8 9 25

Censoring variable C is Uniform between τ/2 and τ , with τ picked 2 or 8, representing

the median number of observations per individual. These settings should demonstrate

cases of a few and many observations per person. See table (3) for the distribution of

number of events per person.

The observation times follow a random-effect Poisson counting process with intensity

λi(t) = ηi exp{γ01X1i(t) + γ02X2i(t)}.Random effect ηi ∼ Γ(µη = 1, σ2
η = 0.01). We set

γ1 is set to -0.2, γ2 to 0.3. Thus a person on a treatment is less likely to be sampled.

The parameter of putting weight to time is set to 1 for all time.

Along with our proposed estimate of β0, independent GEE estimates are computed

as well for comparison of the new estimator with this widely used one. We are assuming

independent covariance structure to avoid eventual bias of the GEE estimator due to

modeling not the marginal mean E[Yi(t)|Xi(t)] but E[Yi(t)|Xi(s), s ∈ {Ti1, . . . , TiKi
}]

instead. To accommodate the intercept and the additional term exp{σ2
φ}, we include as

an offset into GEE. For details on fitting a marginal model to mixed effects log linear

regression data via GEE see Grömping (1996).

Table 4: Statistics for estimator of β01 in the semiparametric log–link model (5·3) under
biased sampling for sample size 50.

Bias SSE SEE CP M I M II
α = 1, τ = 2 −0.034 0.377 0.333 0.91 1.28 1.61
α = 2, τ = 2 −0.029 0.375 0.339 0.90 1.22 1.50
α = 3, τ = 2 −0.029 0.355 0.325 0.91 1.24 1.82
α = 4, τ = 2 −0.028 0.381 0.343 0.91 1.17 1.53
α = 5, τ = 2 −0.042 0.350 0.321 0.92 1.39 1.87
α = 1, τ = 8 −0.012 0.203 0.208 0.95 2.74 4.68
α = 2, τ = 8 −0.008 0.220 0.211 0.93 2.36 3.68
α = 3, τ = 8 −0.023 0.206 0.202 0.94 2.70 4.54
α = 4, τ = 8 −0.017 0.211 0.210 0.94 2.59 4.35
α = 5, τ = 8 −0.021 0.193 0.203 0.95 3.06 5.23
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Figure 2: Intercept functional forms.

We present bias, sampling standard error of β̂0 and sampling mean of estimated

standard errors taken over 1000 simulations. We also present two comparison measures

of squared errors. Measure M I is based on mean of the ratio of empirical mean squared

error of the new estimate of β0 over empirical mean squared error of GEE estimate of

β0. Measure M II is based on empirical median of ratios of squared errors, being a more

robust efficiency estimate motivated by Pitman closeness. We report 95% sampling

coverage probability with precision of 1.4%. Number of individuals in a sample is set

to 50 and 200. Results for 20 and 100 individuals per sample are not shown but are
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Table 5: Statistics for estimator of β01 in the semiparametric log–link model (5·3) under
biased sampling for sample size 200.

Bias SSE SEE CP M I M II
α = 1, τ = 2 −0.016 0.176 0.194 0.97 3.55 5.68
α = 2, τ = 2 −0.021 0.186 0.195 0.96 3.21 5.11
α = 3, τ = 2 −0.007 0.136 0.145 0.94 3.40 5.18
α = 4, τ = 2 0.010 0.183 0.195 0.96 3.16 5.98
α = 5, τ = 2 −0.011 0.185 0.189 0.95 3.18 5.41
α = 1, τ = 8 −0.016 0.121 0.128 0.96 8.67 16.05
α = 2, τ = 8 −0.005 0.109 0.116 0.97 8.16 13.82
α = 3, τ = 8 −0.013 0.103 0.112 0.97 8.99 16.03
α = 4, τ = 8 −0.001 0.105 0.117 0.98 8.76 14.09
α = 5, τ = 8 −0.005 0.097 0.113 0.99 9.95 17.90

consistent with those shown here.

Tables 4 and 5 provide summaries for the estimator with sample sizes of 50 and 200

after excluding 0.5% of simulations providing the most outlying estimates. For both

types of proposed estimators the bias estimate is always (for all considered scenarios of

various τ, n, α0(·), ) negligible relative to the sampling standard error (SSE). Comparing

SSE and SEE, the model based variance of the estimator of coefficients β0 (SEE) is

usually slightly underestimating the true variance of the estimator of β (SSE). With

larger n this discrepancy is decreasing. Both types of estimators have large outliers

compared to the GEE estimator. Originally, the mean squared error comparison measure

M I favored the biased GEE to our approaches, due to the outliers in both our methods

under both sample sizes. The measure M II, that is robust to outliers, however favored

under both sample sizes largely our new approaches. The magnitude of that favor

increases with sample size. If we exclude 0.5% of the simulations with the largest outliers,

even the measure M I will mostly favor our approaches. The M I bigger than one means

that the mean squared error of our new estimator is smaller than the mean squred error

of the GEE estimator. So, the variance induced by unspecified intercept of our estimator

is ovecome by the bias of the GEE estimator. Coverage probability (CP) is improving

with increasing sample size as well as larger number of observations per person. It is

not showing any trend with respect to the choice of intercept function.
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6 Discussion

6·1 Required Information

In survival analysis settings, assuming knowledge of the covariate process {Z(t), t ∈
[0, τ ]} at all times up to dropout is a standard assumption. On the contrary, in longitu-

dinal analysis settings, the usual assumption is that covariate process {X(t), t ∈ [0, τ ]}
is known at observation times only. Our estimator, combining survival analysis and lon-

gitudinal analysis approaches together, requires knowledge of both covariate processes

continuously at all times up to dropout. Approximations of the covariate process cause

our estimators to be biased. However, subcohort sampling techniques enable our esti-

mators to stay consistent after paying certain precession price.

6·2 Terminology

In discrete times models, where observation times come from a finite set of points,

biased sampling can be viewed as a missingness problem. We base our stratification of

missingness pattern on the typical one introduced by Rubin (1976). We can talk there

about biased sampling being equivalent to missingness at random given covariates X and

Z. It is informative missingness given covariates X only. Other terms that are being

used in that situation are informative inter-mitten missingness or informative follow-up.

However, in continuous observation-times settings we do not want to talk about how it

relates to the missingness classification. Here the data are missing with probability of

100% as the data are observed at discrete time points, not continuously over time as

curves.

6·3 Another estimation approach

Motivated by the linear regression approach, we developed an additional class of estima-

tors suitable for the semiparametric loglinear model (2·1). We define a weighted average

http://biostats.bepress.com/uwbiostat/paper263
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Ãv1 that has weights proportional to a function h(t).

Ãv1(V )(t;h) =
n

∑

i=1

Vi(t)
ξi(t)h(Xi(t))

∑n
j=1 ξj(t)h(Xj(t))

(6·1)

The construction of the estimator is based on a process

M̃i(t;A, β, γ, h) =

∫ t

0

1

ρi(s; γ, h)

{

Yi(s)

exp{βT Xi(s)}
dNi(s)−

−ξi(s) exp{γT Zi(s)} dA(s;α,Λ)
}

. (6·2)

Following the steps of derivation of the estimating equation (3·10) we derive the esti-

mating function

Ũ(β; γ̂, h) =

n
∑

i=1

∫ τ

0
W (t)

[

Xi(t) − Ãv1(X)(t;h)
]

×

×
[

Yi(t)

exp{βT Xi(t)}
− Ãv1

(

Y ?

exp{βT X}

)

(t;h)

]

1

ρi(t; γ̂, h)
dNi(t).(6·3)

Solution to Ũ(β; γ̂, h) = 0 is
√

n-consistent and asymptotically normal random vector.

Throughout all our simulations we have however discovered an inferior behavior of this

“tilde” class of estimators compared to the proposed one.

Table 6: Relative efficiencies for the two types of estimators for log–link models.
RE I RE II RE I RE II
sample size 50 sample size 200

α = 1, τ = 2 1.360 0.947 4.464 0.846
α = 2, τ = 2 1.543 0.926 4.434 0.803
α = 3, τ = 2 1.432 0.901 6.655 0.831
α = 4, τ = 2 1.361 0.920 7.646 0.829
α = 5, τ = 2 1.749 0.884 5.134 0.853
α = 1, τ = 8 2.058 0.887 12.885 0.911
α = 2, τ = 8 2.437 0.875 18.445 0.855
α = 3, τ = 8 2.562 0.906 20.825 0.851
α = 4, τ = 8 3.240 0.919 14.263 0.856
α = 5, τ = 8 2.953 0.910 15.732 0.782

Figure 3 generated from simulation with sample size 200, α one and τ two shows
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Figure 3: Comparison of β̂01 − β01 under the two approaches for log–link models. Box
plot is shown in the upper part and histograms of a region (−0.8, 0.8) in the lower part.

that the variability of the proposed estimates is generally smaller than the variability

of the tilde estimates. However, the proposed estimates relatively rarely (0.5%) reach

very extreme values. All simulations that we considered showed consistent pattern to

the one shown in Figure 3. The squared error comparison measures M become measures

of relative efficiency. Relative efficiencies type I and II differ, see Table 6. Relative

efficiency type I largely favors the tilde estimator, due to the rare but very extreme

values. Relative efficiency of type II, which is a more robust measure, favors the mainly
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proposed estimator.

Implementing the tilde estimation in the HUD–VASH data analysis, our findings are

consistent with simulations finding. Estimates of both parameters of interest have larger

standard errors under the tilde approach. The point estimate of exp{β01} is 0.48, with

95% CI (0.29, 0.79). The point estimate of exp{β02} is 1.07, with 95% CI (0.52, 2.18).

6·4 Independent observation times

We would also like to point out that the “Independent observation times” version of our

estimator, similar to Lin & Ying (2001), exists as well and we feel that the contribution to

log linear models allowing for the unspecified intercept alone is worthy noting, regardless

of biased or unbiased sampling. We think that the process-like centering of both the

response and covariates is a unique tool for an elegant solution to the intercept issue.
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Appendix

A Large Sample Theory

We base our derivations on asymptotic theory established in Lin & Ying (2001) using

monotone functions and “manageable processes” tools. Estimating function U defined

in (3·10) at the true values β0, γ0 can be rewritten as

U(β0; γ0, h) =

n
∑

i=1

∫ τ

0
W (t) [Xi(t) − Av2(X)(t;β, h)] dRi(t;A0, β0, γ0, h).
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By arguments similar to those in Appendix of Lin & Ying (2001), 1√
n
U(β0; γ0, h) is

asymptotically equivalent to

1√
n

∫ τ

0
w(t)

[

n
∑

i=1

Xi(t)dMi(t;A0, β0, γ0, h) − Av1(x)(t;β0, h)
n

∑

i=1

dMi(t;A0, β0, γ0, h)−

−Av1

(

y?

exp{βT
0 x}

)

(t;β0, h)

n
∑

i=1

Xi(t) exp{βT
0 Xi(t)}

1

ρi(t; γ0, h)
dMi(t; γ0,Λ0)+

+Av1(x)(t;β0, h)Av1

(

y?

exp{βT
0 x}

)

(t;β0, h)

n
∑

i=1

exp{βT
0 Xi(t)}

1

ρi(t; γ0, h)
dMi(t; γ0,Λ0)

]

.

After applying Taylor’s expansion several times, we obtain

1√
n

U(β0; γ̂, h) =
1√
n

U(β0; γ0, h) − 1

n

∂U(β0; γ, h)

∂γ
|γ◦

(

1

n

∂U †(γ)

∂γ
|γ?

)−1
1√
n

U †(γ0)(A1)

with γ◦ and γ? being on the line segment between γ0 and γ̂.

Equation (A1) is asymptotically equivalent to

1√
n

n
∑

i=1

[
∫ τ

0
w(t) [Xi(t) − Av1(x)(t;β0, h)] [dMi(t;A0, β0, γ0, h)−

−Av1

(

y?

exp{βT
0 x}

)

(t;β0, h) exp{βT
0 Xi(t)}

1

ρi(t; γ0, h)
dMi(t; γ0,Λ0)

]

−

−HA−1

∫ τ

0
[Zi(t) − Av2(z)(t; γ0)]

T dMi(t; γ0,Λ0)

]

which is a sum of n independent identically distributed mean zero random vectors.

So
√

n(β̂(γ̂, h) − β0) can be expressed as

√
n(β̂(γ̂, h) − β0) =

(

− 1

n

∂U(β; γ̂, h)

∂β
|β?

)−1 1√
n

U(β0; γ̂, h)

=

(

− 1

n

∂U(β; γ̂, h)

∂β
|β?

)−1

×
[

1√
n

U(β0; γ0, h)−

− 1

n

∂U(β0; γ, h)

∂γ
|γ◦

(

1

n

∂U †(γ)

∂γ
|γ?

)−1
1√
n

U †(γ0)

]

(A2)
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B̊užková & Lumley 25

and thus
√

n(β̂(γ̂, h) − β0) is asymptotically equivalent to

1√
n

n
∑

i=1

D−1

[
∫ τ

0
w(t) [Xi(t) − Av1(x)(t;β0, h)]

×
[

dMi(t;A0, β0, γ0, h) − ρi(t; γ0, h)Av1

(

y?

exp{βT
0 x}

)

(t;β0, h) dMi(t; γ0,Λ0)

]

−

− HA−1

∫ τ

0
[Zi(t) − Av2(z)(t; γ0)]

T dMi(t; γ0,Λ0)

]

which is a sum of mean zero i.i.d. random vectors.

This plus consistency of β̂(γ̂, δ̂) and of D̂ when the estimator of δ0 is used yields that

n
1

2

(

β̂(γ̂, δ̂) − β0

)

is asymptotically normal with a consistent estimate of the asymptotic

variance being D̂−1V̂ D̂−1.

B Assumptions

We assume that (Yi(·),Xi(·), Zi(·),N∗
i (·), ξi(·)) are i.i.d. quintuples of random processes

over time t for individuals 1 through n. The counting uncensored process of events at

the end of follow-up τ, Ni(τ), is required to be bounded by a constant. Both mean

response model covariates Xi and observation-times model covariates Zi need to have

bounded total variations by a constant for all individuals i = 1, . . . , n. That is |Zji(0)|+
∫ τ

0 |dZji(t)| ≤ K, j = 1, . . . , g and |Xji(0)| +
∫ τ

0 |dXji(t)| ≤ K, j = 1, . . . , p. Total

number of observations per individual i, denoted by Ki, is bounded. The weight function

W (·) is a difference of two monotone functions, each of which converges to a deterministic

function. We denote the limit of W (·) by w(·). We assume that the function h(·) has

bounded variation.

C Implementation of the estimation procedure

The estimating procedures mentioned in this paper can be implemented in S-plus/R

with relative ease. The observation-times model (2·2) can be fitted by function coxph in

package survival in order to obtain the estimate of γ0. In the log–link mean–response
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models (2·1), we need to solve the estimating equations as specified in equations (6·3)
and (3·10). We can solve those by the optim function from package stats. Because

of biased sampling we also need to re-weight the response by the inverse probability

weights ρ. The standard errors of the estimate of β0 in all cases can be obtained by

bootstrapping or implementing the sandwich estimates provided. We plan on adding

an implicit function into R that would conveniently provide the estimates and their

characteristics.
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