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Composite Likelihood EM Algorithm with
Applications to Multivariate Hidden Markov

Model

Xin Gao and Peter Xuekun Song

Abstract

The method of composite likelihood is useful to deal with estimation and infer-
ence in parametric models with high-dimensional data, where the full likelihood
approach renders to intractable computational complexity. We develop an exten-
sion of the EM algorithm in the framework of composite likelihood estimation
in the presence of missing data or latent variables. We establish three key theo-
retical properties of the composite likelihood EM (CLEM) algorithm, including
the ascent property, the algorithmic convergence and the convergence rate. The
proposed method is applied to estimate the transition probabilities in multivariate
hidden Markov model. Simulation studies are presented to demonstrate the empir-
ical performance of the method. A time-course microarray data is analyzed using
the proposed CLEM method to dissect the underlying gene regulatory network.



Composite Likelihood EM Algorithm with Applications to

Multivariate Hidden Markov Model ∗

XIN GAO and PETER X.-K. SONG

ABSTRACT

The method of composite likelihood is useful to deal with estimation and inference in parametric mod-

els with high-dimensional data, where the full likelihood approach renders to intractable computational

complexity. We develop an extension of the EM algorithm in the framework of composite likelihood es-

timation in the presence of missing data or latent variables. We establish three key theoretical properties

of the composite likelihood EM (CLEM) algorithm, including the ascent property, the algorithmic conver-

gence and the convergence rate. The proposed method is applied to estimate the transition probabilities in

multivariate hidden Markov model. Simulation studies are presented to demonstrate the empirical per-

formance of the method. A time-course microarray data is analyzed using the proposed CLEM method

to dissect the underlying gene regulatory network.

KEY WORDS: Composite likelihood; EM algorithm; Hidden Markov model; Latent variables; Time-

course microarray data

1 INTRODUCTION

This paper focuses on the development of statistical theory and method of the EM algorithm in the con-

text of composite likelihood (CL) for analyzing incomplete high-dimensional correlated data. The CL

paradigm (e.g. Lindsay, 1988) helps to make statistical estimation and inference via dimension reduc-

tion, in the sense that a pseudo likelihood is constructed with the utility of low dimensional likelihood

objects. It is particularly appealing in dealing with data with high-dimensional response variables. High-

dimensionality in the response variables appear in many practical studies, such as a genetic pathway

analysis involving gene regulatory networks and longitudinal cohort studies involving space-time mea-
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surements. A significant difficulty in parameter estimation with high-dimensional data via Fisher’s full

likelihood approach is computational feasibility. At many occasions, the likelihood function is too com-

plex to be numerically manageable. The CL method pertains to a compromise between the estimation

efficiency and computational ease. That is, a high-dimensional full likelihood is simplified to several low

dimensional pseudo-likelihoods for the benefit of computing. On the other hand, this simplification is at

the cost of some efficiency loss.

1.1 Composite Likelihood Methodology

The history of the CL method is relatively short, and it has drawn much attention in recent years. This

method has been successfully applied in many areas, including generalized linear mixed models (Re-

nard et al., 2004), statistical genetics (Fearnhead and Donnely, 2002), spatial statistics (Hjort and Omre,

1994; Heagerty and Lele, 1998; Varin et al., 2005), multivariate survival analysis (Parner, 2001), and high-

dimensional data (Fieuws and Verbeke, 2006; Faes, et al., 2008) among others. It has demonstrated to

possess good theoretical properties, such as consistency for the parameter estimation, and can be utilized

to establish hypothesis testing procedures.

This general formulation of composite likelihood comprises two main types. The first type is the

omission method, which forms the composite likelihood by removing some terms in the full likelihood to

simplify the evaluation. This includes Besag pseudolikelihood (Besag, 1974, 1977), the m-order likelihood

for stationary processes (Azzalini, 1983), and the approximate likelihood (Stein, 2004), among others.

The removed terms are chosen so that they contain little information about the parameter of interest,

and the loss of efficiency compared to the full likelihood method is tolerable. The other type includes

pseudolikelihood constructed from lower dimensional densities (Cox and Reid, 2004), which is the focus

of this paper.

We begin the discussion of the second type with some necessary notation. Let z = (z1, . . . , zn)T be the

vector of n variables observed from a single unit. Let { f (z; ψ), z ∈ Z , ψ ∈ Ψ} be a class of parametric

models, with Z ⊆ Rn, Ψ ⊆ Rq, n ≥ 1, and q ≥ 1. For a subset of {1, . . . , n}, say a, za denotes a subvector

of z with components indexed by the elements in set a. For instance, given a set a = {1, 2}, za = (z1, z2)T.

Let ψ = (θ, η), where θ ∈ Θ ⊆ Rp, p ≤ q, is the parameter of interest, and η is the nuisance parameter.

According to Lindsay (1988), the CL of a single vector-valued observation is Lc(θ; z) = ∏a∈A La(θ; za)wa ,

where A is a collection of index subsets called the composite sets, La(θ; za) = fa(za; θa), and {wa, a ∈ A}
is a set of positive weights. Here fa denotes all the different marginal densities and θa indicates the

parameters that are identifiable in the marginal density fa. Later in this article, the subscripts of fa and
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θa are omitted for notational simplicity. The weights wa are positive to ensure the ascent property of the

proposed CLEM algorithm discussed later.

For example, the independence CL can be formulated as a product of one-dimensional marginal like-

lihood objectives, namely Lc = ∏n
a∈A f (za; θ)wa , with A = {1, . . . , n}, and za, a ∈ A, denotes a single

variable indexed by the element in a. Likewise, the pairwise CL takes the production of all possible two-

dimensional marginal likelihoods, where A = {{1, 2}, {1, 3}, . . . , {n − 1, n}} is apparently the collection

of all indices for pairs. Both independence CL and pairwise CL can be combined in some optimal way

to ensure the satisfactory asymptotic properties of the resulting estimator (Cox and Reid, 2004). It is im-

portant to note that the choice of margins to use depends on the identifiability of the model parameters.

If some parameters of interest cannot be identified from bivariate margins, then the composite sets in the

CL formulation may have to contain three- or even higher dimensional margins.

The fundamental argument for the CL method to work lies on the theory of estimating functions (Song

2007, Chapter 3). Under the assumption that the true parameter θ0 belongs to the interior of a compact

parameter space, the maximum composite likelihood estimator solves the composite score functions,

∑
a∈A

wa
∂log f (za; θ)

∂θ
= 0. (1)

As the composite score function is a linear combination of several valid likelihood score functions, it is

unbiased under the usual regularity conditions. Therefore, even though the composite likelihood is not

a real likelihood, the maximum composite likelihood estimate is still consistent for the true parameter.

The asymptotic covariance matrix of the maximum composite likelihood estimator takes the form of the

inverse of the Godambe information (Godambe, 1960):

H(θ)T J(θ)−1H(θ),

where H(θ) = E{−∑a∈A ∂2 log f (za; θ)/∂θ∂θT} and J(θ) = var{∑a∈A ∂ log f (za; θ)/∂θ} are the sensitivity

matrix and the variability matrix, respectively. When the composite set takes the only full set of indices,

namely A = {{1, . . . , n}}, the CL is the same as the ordinary full likelihood, and the Godambe information

reduces to the usual Fisher information, because H(θ) = J(θ) in this case. But when A contains multiple

composite sets, the difference between the Fisher and Godambe information is always positive semi-

definite, which quantifies the efficiency loss incurred by using the CL instead of the full likelihood.

Concerning the asymptotic behavior of the resulting estimator, we distinguish between two scenarios.

One is the usual setting when the sample size tends to infinity, under which the maximum composite like-

lihood estimator is asymptotically normally distributed under the usual regularity conditions. The other

is that there are few replications but the data is of long sequence, such as spatio-temporal data. Under this
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situation, the maximum CL estimator may or may not be consistent depending on the interdependency

structure of the data. For example, for stationary time series and spatial processes with good mixing prop-

erties, the autocorrelation function follows an exponential decay and the maximum composite likelihood

estimator retains the good properties. Whereas for the stationary time series with long range dependence,

the convergence of the maximum composite likelihood estimator may be slow or even fail. Readers are

referred to Varin (2008) and Cox and Reid (2004) for a detailed discussion.

1.2 EM Algorithm in Non-standard Settings

In practical applications, missing data further complicates the analysis of high dimensional correlated

data. The traditional EM algorithm plays an important role in the full MLE with missing data. The proce-

dure iterates between the E step, in which the expected log likelihood of the complete data is computed

conditionally on the observed data, and the M step, in which the expected log likelihood of complete

data is maximized to update the parameter estimate. However, to naively apply the EM strategy in

high dimensional setting, we will encounter inevitable difficulties of solving the expectation step condi-

tionally on the high-dimensional observed data. This often involves high dimensional integrals that are

hard to evaluate. Thus a modified EM algorithm, which is computationally less intensive is desired for

the composite likelihood inference in the presence of missing data. We anticipate the composite likeli-

hood EM (CLEM) algorithm developed in this paper will provide a fundamental tool to the analysis of

high-dimensional data with missing observations. We intend to provide a thorough investigation on the

EM algorithm in the CL framework. Extending the EM algorithm to non-standard likelihood settings

has been considered by many researchers, such as McLachlan and Krishnan (2008) and more references

therein. Some simple versions of the CLEM algorithm have been scattered in the literature, e.g. Liang

and Yu (2003) who named it as the pseudo EM algorithm and Varin et al. (2005) based on the pairwise

CL. There is a clear need of developing a general CLEM algorithm methodology based on arbitrary sizes

of composite sets, in order to deal with a wide range of high-dimensional data types. For instance, in

the analysis of familial data of genetic copy number variations (e.g. Wang et al., 2007), it appears more

desirable to form the CL based on nuclear families of trios (i.e., two parents and one offspring), as a trio

pertains to a full inheritance core in a pedigree than a pair. Another example is the spatio-temporal data

analysis, where in order to model the spatio-temporal interactions, quadruplets seem to be the minimal

elementary set in the formulation of the CL.

This article aims to establish several key theoretical properties of the CLEM algorithm, including the

ascent property, the algorithmic convergence, and the rate of convergence. We apply the CLEM algorithm
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in the construction of gene networks with time-course microarray data based on multivariate hidden

Markov models, in which the related computational complexity prohibits us from using the full likelihood

EM (FLEM) algorithm.

The paper is organized as follows. Section 2 presents the CLEM algorithm and its properties. Section

3 discusses the application of CLEM in the multivariate hidden Markov model. Simulation studies on

a three-variate and a 21-variate hidden Markov models are presented. Section 4 is devoted to a data

analysis example of gene network construction, and Section 5 gives some concluding remarks. All the

technical proofs are included in the appendix.

2 COMPOSITE LIKELIHOOD EM ALGORITHM

In many practical settings, we observe incomplete data. Assume under the composite likelihood frame-

work, for each composite set a, there exists a many-to-one mapping za → ya(za) from Za to Ya, where Za

and Ya denote the sample spaces. Instead of observing the complete data za, we observe the incomplete

data ya. Let the the full set of the incomplete data be denoted as y = (ya, a ∈ A). Then, the observed CL

is given by Lo
c(θ; y) = ∏a∈A Lo

a(θ; ya)wa with Lo
a(θ; ya) =

∫
Za(ya)

f (za; θ)dza, where Za(ya) = {za : ya =

ya(za)}, which is the subset of Za determined by the equation ya = ya(za).

Our goal is to develop a CL version EM (CLEM) algorithm that can produce the maximum CL es-

timation of the model parameter θ in the presence of missing data. Suppose the CLEM algorithm has

completed the (r− 1)-th iteration and produced an update θ(r−1). Now at the r-th iteration, the CL E-step

for a single vector-valued observation takes the form

Qc(θ|θ(r−1)) = ∑
a∈A

wa

∫
Za(ya)

log L(za; θ) f (za|ya, θ(r−1))dza. (2)

When applied to data analysis, obviously, the Qc will take an additional summation over the sample

replicates.

It is worth noting that in the calculation of the Qc function, we propose to replace the full set of

observed data y by a subset-specific observed data ya in the conditional part in order to make related

computations feasible. This leads to a further dimension reduction, in addition to the previous one taken

in the formulation of the CL.

Then, the proposed CLEM algorithm iterates the following E-step and M-step until convergence.

• CL-E Step: Given the previous update θ(r−1), obtain the expected composite likelihood Qc(θ|θ(r−1));

• CL-M Step: Maximize Qc(θ|θ(r−1)) with respect to θ to produce an update θ(r).
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2.1 Main properties

To justify the proposed CLEM algorithm, we investigate the following three key properties, similar to

those in the establishment of the full likelihood EM (FLEM) algorithm. They are, (i) the proposed CLEM

algorithm retains the ascent property; (ii) it is a fixed point algorithm converging to a stationary point;

and (iii) the convergence rate of the CLEM depends on the curvature of the CL function surface.

We proceed our justification in the following sequence of steps. All the technical details of the proofs

are listed in the appendix. First, for each subset index a ∈ A, we define a conditional density of za on ya:

f (za|ya; θ) =
f (za; θ)∫

Za(ya)
f (z′a; θ)dz′a

, (3)

where the denominator is the likelihood of the observed data ya, namely Lo
a. Define a CL version H-

function as follow:

Hc(θ̃|θ) = ∑
a∈A

wa

∫
log f (za|ya; θ̃) f (za|ya; θ)dza.

Then, we obtain an inequality stated in Lemma 1 below, which is crucial to establish the ascent property.

Lemma 1 For any pair of (θ′, θ) in Θ×Θ, Hc(θ′|θ) ≤ Hc(θ|θ).

Moreover, Theorem 1 states that the CLEM algorithm satisfies the ascent property.

Theorem 1 The composite log-likelihood of the observed data y, lo
c (θ; y) = log Lo

c(θ; y), is nondecreasing over the

sequence of updated estimates θ(r), r = 1, . . .; that is, lo
c (θ(r); y) ≥ lo

c (θ(r−1); y).

Second, we present the sufficient conditions under which any limit points of any instance of the CLEM

updates θ(r) are stationary points, and log Lo
c(θ(r); y) converges monotonically to log Lo

c(θ∗; y) for some

stationary point θ∗. For a bivariate function f (u, v), let ∇(ij) f (u, v) denote the i-th and j-th derivatives

with respective to u and v.

Lemma 2 Under the regularity condition that the order of differentiation and expectation can be exchanged, for all

θ ∈ Θ,

(a) ∇(10)Hc(θ|θ) = 0, and

(b) ∇(11)Hc(θ|θ) = ∑a∈A wavar
{

∂ log f (za |ya;θ)
∂θ |ya; θ

}
, where f (·) is given in (3).

Theorem 2 states that the CLEM algorithm is a fixed point algorithm converging to a stationary point

of the observed composite likelihood surface.

Theorem 2 Assume the following regularity conditions:
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(i) Θ0 = {θ ∈ Θ : Lo
c(θ; y) ≥ Lo

c(θ0; y)} is compact for any θ0 satisfying Lo
c(θ0; y) > −∞;

(ii) Lo
c(θ; ·) is continuous in Θ and differentiable in the interior of Θ; and

(iii) the function Qc(θ′|θ) in (2) is smooth in both θ′ and θ.

Then, all the limit points of any instance of the CLEM algorithm {θ(r)} are stationary points, and Lo
c(θ(r); y)

converges monotonically to Lo
c(θ∗; y) for some stationary point θ∗.

Third, we investigate which factors affect the convergence rate of the CLEM algorithm. This would

provide useful insights to improve the algorithmic speed. Theorem 3 presents our findings.

Theorem 3 Suppose the regularity conditions (i)-(iii) stated in Theorem 2 hold. In addition, assume that

(i) an instance of the CLEM algorithm θ(r), r = 0, 1, 2, . . . , converges to θ∗ in the closure of Θ, and

(ii) ∇(20)Qc(θ(r)|θ(r−1)) is negative definite with eigenvalues bounded away from zero.

Then the θ∗ is a stationary point. Moreover, let M(θ∗) = − {∇(11)Hc(θ∗|θ∗)} {∇(20)Qc(θ∗|θ∗)}−1
. Then, the

convergence rate of the CLEM equals to the M for a scalar parameter or equals to the largest eigenvalue of the M for

a parameter vector.

When θ is a scalar, it is easy to see that the convergence rate is proportional to the information due to

the missing data, Ia,mis(θ∗) and anti-proportional to the information due to the complete data, Ia,com(θ∗),

in the form of

M(θ∗) =

{
∑
a∈A

wa Ia,mis(θ∗)

}{
∑
a∈A

wa Ia,com(θ∗)

}−1

, (4)

where

Ia,mis(θ) = E
{
−∂2 log f (za|ya; θ)

∂θ2 |ya; θ

}
,

Ia,com(θ) = E
{
−∂2 log f (za)

∂θ2 |ya; θ

}
.

The CLEM convergence rate in (4) may be slower than that of the FLEM algorithm, depending on how

the current choice of term ya in the CLEM is chosen. Obviously, the size of composite set a plays a key

role in the trade-off between the convergence rate and computational convenience.

In order to estimate the standard error of the CLEM estimates, we need to estimate the Godambe

information matrix H(θ)T J(θ)−1H(θ). For H(θ), under standard regularity conditions, a consistent esti-

mator is the negative Hessian matrix evaluated at the maximum composite likelihood estimator. Given
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y1, . . . , ym independent samples of the observed data, the estimate takes the following form:

Ĥ = −
M

∑
m=1

∂2 log Lo
c(θ; ym)

∂θ∂θT |θ∗ .

If the Hessian is difficult to compute,

Ĥ =
M

∑
m=1

∑
a∈A

wa
(∂ log Lo

a(θ, ym
a )

∂θ
|θ∗

)(∂ log Lo
a(θ, ym

a )
∂θ

|θ∗
)T,

as the second Bartlett identity remains true for each subset.

The estimation of J(θ) poses more difficulties , since the corresponding naive estimator

Ĵ =
( M

∑
m=1

∑
a∈A

wa
∂ log Lo

a(θ, ym
a )

∂θ
|θ∗

)( M

∑
m=1

∑
a∈A

wa
∂ log Lo

a(θ, ym
a )

∂θ
|θ∗

)T

vanishes when evaluated at the maximum composite likelihood estimator. Instead, J can be estimated

by the sample variances of the individual contributions to the composite score function. An interesting

alternative is to perform jackknife (Zhao and Joe, 2005) for the evaluation of the variance matrix. For non-

independent samples, one might partition the sample Y so that the corresponding contributions to the

composite score function are approximately uncorrelated. Then the empirical and jackknife estimation

can be derived based on these contributions. A more detailed discussion on the estimation of J especially

for time series and spatial data, may be found in Varin (2008).

Such estimation of J(θ) and H(θ) involves the calculation of the derivatives of the log-likelihood,

which may not be computationally convenient in some situations. Another alternative approach is to

perform nonparametric bootstrap. The asymptotic covariances among the CLEM estimates from different

bootstrap samples can be used to estimate the standard errors of the CLEM estimates.

3 Application: Multivariate Hidden Markov Models

In this section, we focus on the application of the proposed CLEM algorithm in the estimation of transition

probabilities in multivariate hidden Markov model, which has direct applications in the analysis of time-

course microarray data. Recent technological advances have allowed biologists nowadays to collect gene

expression data at multiple times (Rangel et al., 2004; Kobayashi et al., 2005; Spellman et al., 1998). Time

course expression data are essential to understand individual cellular behaviors such as mobility, division

and differentiation, and gene regulatory networks are important knowledge of biological pathways. As

pointed by Somogyi and Kitano (1999), the ultimate goal researchers may dream of pursuing is to infer,

from the data obtained from microarray experiments, the genetic regulatory networks that lie in at their

basis.
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Let Y = {Ym
g,t, m = 1, . . . , M, g = 1, . . . , N, t = 1, . . . , T} be a time-course microarray data set that

collects M replicates of time-series expression trajectories from a collection of N genes over T time points.

Suppose the data Y are generated from an HMM with the set of binary hidden variables, X = {Xm
g,t, m =

1, . . . , M, g = 1, . . . , N, t = 1, . . . , T}, under the conditional density functions f0 and f1 on states 0 and

1, respectively. The unobserved Xm
g,t, g ∈ G, t = 1, 2, . . . , are a stationary Markov order-one process.

At a fixed time point t, the cross-sectional set of hidden variables, which is a subset of X, is denoted as

Xm
·t = (Xm

1t, . . . , Xm
Nt). Given a collection of N genes, the joint analysis requires to estimate a 2N × 2N

transition matrix, and the related computational burden presents a serious challenge.

The pairwise CL method concerns only submatrices of the Λ, including 4× 4 transition matrices Λgg′

of all gene pairs (g, g′) and 2× 2 transition matrices Λg of one gene g. Precisely, for a pair of genes (g, g′),

the joint transition matrix Λgg′ constitutes the transition probabilities of the form:

P[(Xg,t+1, Xg′,t+1) = (sg, sg′)|(Xg,t, Xg′,t) = (s̃g, s̃g′)], (sg, sg′) or (s̃g, s̃g′) ∈ S2 = {{0, 0}, {1, 0}, {0, 1}, {1, 1}}.

Likewise, the marginal transition matrix Λg comprises of the transition probabilities:

P(Xg,t+1 = sg|Xg,t = s̃g), sg or s̃g ∈ S1 = {0, 1};

As a result, the dimensionality of the parameter space is reduced by the CL method now only to be of or-

der N2, which is considerably smaller than that of the full parameter space, 22N , and hence computations

in the estimation and inference become feasible.

To implement the CLEM algorithm, we need to identify distinct parameters and their constraints

among the model parameters. In the HMM, the network parameters are involved in the following limiting

distributions: (i) The joint limiting distribution of bivariate vectors of hidden variables for pairs of genes

(g, g′) at two time points (t, t + 1),

pgg′
jj′ = lim

t→∞
P[(Xg,t, Xg′,t) = (sg,j, sg′,j), (Xg,t+1, Xg′,t+1) = (sg,j′ , sg′,j′)],

where (sg,j, sg′,j) and (sg,j′ , sg′,j′) are, respectively, the j-th and j′-th elements in S2; (ii) the cross-sectional

pairwise limiting distribution for pairs of genes (g, g′),

π
gg′
j =

4

∑
j′=1

pgg′
jj′ = lim

t→∞
P[(Xg,t, Xg′,t) = (sg,j, sg′,j)], (sg,j, sg′,j) ∈ S2;

(iii) the cross-time pairwise limiting distribution for one gene g,

qg
jj′ =

1

∑
sg′ ,j=0

1

∑
sg′ ,j′=0

pgg′
jj′ = lim

t→∞
P(Xg,t = sg,j, Xg,t+1 = sg,j′), (sg,j, sg,j′) ∈ S2.
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Under these limiting distributions, the transition probabilities of interest are given by

Λgg′
jj′ = P[(Xg,t+1, Xg′,t+1) = (sg,j′ , sg′,j′)|(Xg,t, Xg′,t) = (sg,j, sg′,j)] = pgg′

jj′ /π
gg′
j .

Under this re-parametrization, it is sufficient to estimate all the distinct parameters of marginal probabil-

ities qg
jj′ and pairwise probabilities pgg′

jj′ .

Therefore, for an HMM the expected composite likelihood can be expressed through the parameter

vector θ that includes all the distinct marginal and pairwise probabilities. Given the current update θ(r),

the CL-E step computes the expected composite likelihood of the form

Qc(θ|θ(r)) = ∑
all (g,g′)

E
{

log f
(
Yg·, Yg′ ·, Xg·, Xg′ ·; θ

) |θ(r), Yg·, Yg′ ·
}

.

Since all the expectations are restricted within a pair of Markov chains, the calculation is easily carried

out using the well-known forward and backward algorithm (Baum et al., 1970).

In the CL-M step, maximizing Qc(θ|θ(r)) is subject to the set of constraints that the marginal tran-

sition probabilities should be compatible with all the bivariate probabilities. The maximization under

constraints is dealt with using the method of Lagrange multipliers. Iterating between the CL-E step and

the CL-M step to convergence gives the maximum CL estimates of all the marginal and pairwise probabil-

ities. The CL-E procedure is benefited from the idea of conducting local expectation which considerably

simplifies the computational complexity. The essence of the CL-M step allows the sharing of informa-

tion across different subsets while conducting the global maximization. Finally, we obtain the standard

errors of the CL estimates by the nonparametric bootstrap method. The alternative way is to estimate

the asymptotic covariance matrix, which involves the calculation of the derivatives of log-likelihood un-

der constraints for hidden Markov models and is computationally more difficult than the nonparametric

bootstrap method.

3.1 Simulation Experiments

Simulation studies were conducted to evaluate the performance of the CLEM algorithm to estimate the

transition probabilities. In the first simulation, we considered a three-gene network with all pairwise

dependencies. The three genes are denoted as a, b and c, and the corresponding bivariate transition ma-

trices are Λab, Λbc and Λac, respectively. The true joint transition matrix was set by first generating the

null matrix under independence and then deviating it by +0.5 in the odd-number columns and −0.5 in

the even-number columns. In the marginal transition matrix for a single gene, Λa, Λb or Λc, was spec-

ified by randomly generating the cell probabilities randomly from a uniform distribution. In addition,
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the conditional densities were set as f0 ∼ N(0, 1) and f1 ∼ N(4, 1) to generate the observed time series.

One thousand simulation rounds were performed. The number of replicates was set M = 30, and the

number of time points was set as T = 40. Table 1 presents the summary of the CLEM estimates of the

pairwise transition probabilities. It is easy to see that the CLEM method produced consistent estimates of

the transition probabilities, as all the estimates appear very close to the true parameter values with small

standard deviations.

In the second simulation, we consider a more complicated situation. We constructed a tree structure

containing 21 nodes. The first hub node is at the top of the tree structure. We simulated its hidden states

according to its marginal transition distribution. Conditional on the first node’s hidden state, we indepen-

dently simulate four offspring nodes according to a bivariate transition matrix Λ12. Further conditional

on each of the four offspring’s hidden states, we independently simulate four offsprings for each of them

according to another bivariate transition matrix Λ23. Overall it is a tree structure of three layers, with one

node on the top, and four nodes in the second layer and 16 nodes at the bottom. All the edges between

the first and second layer share the same transition matrix Λ12 and all the edges between the second

and third layer share the other transition matrix Λ23. In total, we have 21 nodes and 20 edges in the tree

structure. Based on each node’s hidden states to be 0 or 1, we simulate the observed state according to

a normal distribution N(0, 1) or N(4, 1). Overall we have a 21-variate hidden Markov model. Such kind

of structure may be found in the analysis of genetic regulation pathways, whereas the top node serve as

the gene regulates the four genes down the path through a same mechanism resulting to a same bivariate

transition matrix. Further down the pathway, each of the second layer gene can regulates its own tar-

gets through similar mechanisms leading to another bivariate transition matrix. In order to understand

the two mechanisms, we need to estimate the two transition matrices. The full likelihood method ren-

ders to infeasible calculation as the complicated dependency relationship among the 21 hidden Markov

chains. We applied the composite EM method where the composite sets are all the pairs of genes linked

by direct edges in the tree structure. The number of replicates was set M = 40, and the number of time

points was set as T = 10. We generated 100 data sets according to the same parameters. In Table 2, the

means of the estimates of all the transition probabilities are given. The true values are provided aside

for comparison purposes. The standard deviation of the estimates across the 100 data sets are provides

in the parenthesis. Based on one of the simulated data set, we also performed 50 times nonparametric

bootstrap, so that we obtained the estimated standard deviation of the CLEM estimates. It can be noted

that the CLEM method produced consistent estimates of the transition probabilities. The nonparametric

bootstrap procedure yields the standard error estimates of the CLEM estimates, which are very close to

the empirical standard deviation across the 100 simulations. From Table 2, we can see that the estimators
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for Λ23 are more accurate than that of Λ12 with less standard error. This is because the estimation of the

Λ12 relies on the likelihood compounded from four edges, whereas the the estimation of the Λ23 relies on

the likelihood compounded from 16 edges.

4 DATA ANALYSIS

We re-analyzed the T-cell data (Rangel et al., 2004) to study the genetic dependency network in the

activation process of T-cells. To generate an immune response, the T-cells become activated and then

proliferate and produce cytokines involved in the regulation of B cells and macrophages, which are the

most important mediators for the immune response. It is known that T-cell activation is initiated by the

interaction between the T-cell receptor complex and the antigens. This stimulates a network of signal-

ing molecules, including kinases, phosphatases and adaptor proteins that parallel the stimulatory sig-

nals received by the nucleus to control the gene transcription events. In the lab experiment, the calcium

ionophore ionomycin and the PKC activator phorbol ester PMA were used to activate signaling transduc-

tion pathways leading to T-cell activation. Microarray measurements of 58 genes relevant to the immune

response were taken at 10 consecutive time points. In our analysis, to satisfy the assumption of homoge-

neous Markov process, we used only the first five equally spaced time points after the treatment: 0, 2, 4,

6, 8 hour. At each time point, there were 44 replicated measurements for each gene. This data set is a one-

sample scenario with only one experimental condition. We used a mixture of two Gaussian distributions

corresponding respectively to the down-regulated and up-regulated states to model the emission distri-

bution of the expression level for each gene. Three genes showed little variation across the time points

and were considered as not involving with the response process, and thus they were excluded from the

analysis. We employed the CLEM method detailed in Section 3 to simultaneously estimate the marginal

transition matrices, λg, for all the 55 genes, and the bivariate transition matrices, Λgg′ , from all the 1485

pairs of genes. To assess the significance of the dependency for each pair of genes, we formed a Pear-

son’s chi-square test statistic for independence based on the estimated expected numbers of transitions

between all the bivariate states. We then generated bootstrap samples of the whole 55-gene network by

first simulating the hidden paths according to the marginal transition matrices under the null hypoth-

esis of independency, and then simulating the expression values using the estimated Gaussian mixture

distributions. In total we sampled 100 bootstrap data sets which gave 148, 500 null statistics. Pooling all

the null statistics together enabled us to form the empirical null distribution of the chi-square statistic. By

comparing the observed statistics with the empirical null distribution, among the 1485 pairs, there existed

17 edges having p-values less than the chosen significant level of 10−4.
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Figure 1 demonstrates a core dependency network of 16 genes found by the CLEM method. Among

the 17 edges, nine edges can be verified by the existing literature, which are marked by the pathway

names. The edges that appear in certain known pathways, such as FAS pathway, Androgen-receptor

NetPath 2, T cell receptor Netpath 11, IL-5 Netpath 17, are labelled by the pathway names. For more

information regarding the labelled edges, readers are referred to http://www.wikipathways.org and

http://www.netpath.org. For the other red edges, the supporting literature includes Gudi et al. (2006),

Salon et al. (2006), Zheng et al. (2003), and Shin et al. (2006). By examining the network architecture, it is

easy to see that CASP8 and JUND emerge as two major hubs that play important roles in the early period

(0-8 hr) of the T cell activation.

Figure 1 is inserted here.

For comparison, we employed the dynamical correlation method proposed by Opgen-Rhein and

Strimmer (2006) to analyze the same data set. This competing method treats the observed gene expression

time series as realizations of random curves. Under the assumption of network sparsity, they proposed a

shrinkage estimator of dynamical pairwise correlation matrix that takes account of the functional nature

of the observed data. The dependency network was then determined according to the inverse matrix of

the dynamical correlation matrix. Using static or dynamic correlation with or without shrinkage, we ap-

plied their method that produced four resulted network structures while controlling local false discovery

(FDR) rate at 0.20 (Benjamini and Hochberg, 1995). See Figure 2. Each of the four identified networks

found merely two edges. Only one edge is verified by the existing literature to be involved in Apoptosis

pathway. The edge with biological evidence is marked with the pathway name.

Figure 2 is inserted here.

In comparison to Opgen-Rhein and Strimmer’s approach with the FDR rate control level at 0.20,

the CLEM method used a p-value cutoff of 10−4, which corresponds to the FDR control rate less than

0.1485. Nevertheless, the CLEM method identified more biologically meaningful edges than the com-

peting method. such high sensitivity is due to two-fold of reasons: First, the transition probabilities

can reveal dependency patterns beyond linear correlation; Secondly, the CLEM-based inference does not

make sparse network assumption. This is more appealing for this specific set of genes that were selected

through a pre-screening procedure according to their active involvement in the T cell response process. It

is naturally anticipated that these genes have high connectivity among them.

The CLEM algorithm also estimated all the pairwise bivariate transition matrices, Λgg′ . For example,

the pair of genes CASP8 and CDC2 in Androgen-receptor NetPath 2 pathway are connected by a sig-

nificant edge with a p-value less than 6.73e-06. The corresponding estimated bivariate transition matrix

13 Hosted by The Berkeley Electronic Press



given below can provide interesting biological interpretations.

Λ̂CASP8,CDC2 = (st, s̃t)

(st+1, s̃t+1)

(0, 0) (0, 1) (1, 0) (1, 1)

(0, 0) 0.5728 0.0691 0.0020 0.3561

(0, 1) 0.2064 0.0139 0.0053 0.7743

(1, 0) 0.0398 0.1529 0.0033 0.8039

(1, 1) 0.2191 0.2056 0.0063 0.5690

where the estimated cell transition probability is

P̂(CASP8t+1 = st+1, CDC2t+1 = s̃t+1|CASP8t = st, CDC2t = s̃t), (st, s̃t) ∈ S2.

If both genes are down-regulated, they will have high probability to both remain down-regulated (0.5728)

or both change to up-regulated (0.5690); If one of the genes is up-regulated, there is a high probability to

stimulate the other one and both become up-regulated (0.7743 or 0.8039); if both of the genes are up-

regulated, there is about half of the chance to remain the current state (0.5690), or have a quarter of the

chance to down regulate CASP8 only (0.2056), and another quarter of chance to down regulate both genes

(0.2191). One interesting finding is that all the probabilities in the third column of the matrix appear very

close to zero. This implies that for this pair of genes transition to the states of CASP8’s up-regulation

and CDC2’s down-regulation seldomly happens in the early stage of the T-cell activation. In comparison,

the Pearson’s product-moment correlation for this pair of genes was estimated as −0.3082, with p-value

equal to 3.16e− 06. Such a one-number summary contains much less information to unveil the underlying

mechanism of molecular activities than the estimated transition matrix.

5 CONCLUDING REMARKS

In this paper we presented an extension of the full likelihood EM algorithm to the setting of the compo-

sition likelihood. We established theoretical properties of the proposed CLEM algorithm. The proposed

CLEM is advantageous to deal with high-dimensional data with complex dependence structures. The

dimension reduction for the high-dimensional likelihood function invoked by the composite likelihood

allows us to gain both computational feasibility and computational efficiency.

We have applied the proposed CL in the multivariate hidden Markov model to dissect regulatory gene

network. The multivariate hidden Markov model is capable of detecting nonlinear dependencies and is

applicable to describe network structures. Inference on the multivariate HMM is accomplished through

the CL, which addresses the problem of high dimensionality and effectively reduces the computational
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complexity from O(22N) to O(N2), with N genes involved in the network construction. The proposed

methodology is not restricted to the example demonstrated in this paper. It can be viewed as a general

approach to analyze high-dimensional incomplete data with complicated dependence structures.
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APPENDIX

This appendix is devoted to the detailed proofs of the results stated in Section 2.1.

Proof of Lemma 1: The result holds by a direct application of the Jensen’s inequality.

Proof of Theorem 1: By definition, lc(θ(r); y) = Qc(θ(r)|θ(r−1))−Hc(θ(r)|θ(r−1)). Since θ(r) maximizes Qc(θ|θ(r−1)),

it implies that Qc(θ(r)|θ(r−1)) ≥ Qc(θ(r−1)|θ(r−1)). Combining with the fact in Lemma 1 that Hc(θ(r)|θ(r−1)) ≤
Hc(θ(r−1)|θ(r−1)), we obtain that lc(θ(r)|y) ≥ lc(θ(r−1)|y).

Proof of Lemma 2: For part (a), note that

∇(10)Hc(θ|θ) = ∑
a∈A

waE
{

∂ log f (za|ya; θ)
∂θ

|ya; θ

}
= 0.

For part (b), we have

∇(11)Hc(θ|θ) = ∑
a∈A

waE

{(
∂ log f (za|ya; θ)

∂θ

)2

|ya; θ

}

= ∑
a∈A

wavar
{

∂ log f (za|ya; θ)
∂θ

|ya; θ

}
.

Proof of Theorem 2: The proof of this theorem is given by a slight modification to that of Theorem 2 in

Wu (1983). From the given assumptions, lc(θ(r−1)) is bounded from above. Define the solution set Ω =

{the set of stationary points in the interior of Θ}. In light of the smoothness assumption of Q function, the

point-to-set map ω determined by θ(r) = ω(θ(r−1)) is closed under the complement of Ω. Furthermore, for

any θ(r−1) /∈ Ω, we have∇(10)Hc(θ(r−1)|θ(r−1)) = 0, and∇(10)Qc(θ(r−1)|θ(r−1)) = ∇(10)lc(θ(r−1)|θ(r−1)) �= 0.

Thus, lc(θ(r)) ≥ lc(θ(r−1)). According to the Global Convergence Theorem (Wu, 1983), the convergence

result of this theorem follows.

Proof of Theorem 3: The proof utilizes similar arguments to those given in the proof of Theorem 4 by Demp-

ster et al. (1977). By Lemma 2, limr→∞ ∂lc(θ(r))/∂θ = limr→∞∇(10)Qc(θ(r)|θ(r−1))−∇(10)Hc(θ(r)|θ(r−1)) =
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0. Thus, θ∗ is a stationary point. Expanding ∇(10)Qc(θ2|θ1) about θ∗, we obtain

∇(10)Qc(θ2|θ1) = ∇(10)Qc(θ∗|θ∗) +∇(20)Qc(θ∗|θ∗)(θ2 − θ∗) +∇(11)Qc(θ∗|θ∗)(θ1 − θ∗) + · · · .

As θ(r) = ω(θ(r−1)), and θ∗ = ω(θ∗), we obtain

0 = {∂M(θ∗)/∂θ∗}∇(20)Qc(θ∗|θ∗) +∇(11)Qc(θ∗|θ∗).

Since Qc(θ2|θ1) = lc(θ2) + Hc(θ2|θ1), we have ∇(11)Qc(θ2|θ1) = ∇(11)Hc(θ2|θ1). The result in Theorem 3

follows.
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Figure 1: A core network of 16 genes in the T cell response identified by the CLEM method.
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Figure 2: Networks of gene pairs in the T cell response identified by the dynamic correlation method.
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Table 1: 3-variate HMM: Average CLEM estimates and empirical standard deviations in the parentheses

for the bivariate transition probabilities over 1,000 simulation runs. The true values of probabilities are

also listed aside for reference.

Matrix Estimate True Estimate True Estimate True Estimate True

Λab 0.1560 0.1558 0.1132 0.1131 0.3804 0.3797 0.3504 0.3514

(0.0225) (0.0201) (0.0288) (0.0288)

0.1519 0.1521 0.1485 0.1502 0.3285 0.3273 0.3711 0.3704

(0.0229) (0.0233) (0.0289) (0.0304)

0.3949 0.3953 0.3537 0.3528 0.1331 0.1344 0.1183 0.1174

(0.0304) (0.0306) (0.0222) (0.0207)

0.3270 0.3273 0.3628 0.3629 0.1682 0.1675 0.1421 0.1423

(0.0301) (0.0301) (0.0234) (0.0221)

Λbc 0.2946 0.2962 0.2283 0.2282 0.3054 0.3036 0.1716 0.1719

(0.0285) (0.0267) (0.0296) (0.0248)

0.2082 0.2076 0.3322 0.3327 0.1977 0.1970 0.2620 0.2627

(0.0256) (0.0295) (0.0245) (0.0266)

0.2743 0.2734 0.2285 0.2285 0.3161 0.3166 0.1810 0.1815

(0.0281) (0.0266) (0.0291) (0.0250)

0.2068 0.2063 0.2656 0.2652 0.1896 0.1902 0.3380 0.3384

(0.0265) (0.0279) (0.0250) (0.0305)

Λac 0.1582 0.1586 0.0934 0.0935 0.4864 0.4846 0.2620 0.2633

(0.0232) (0.0198) (0.0329) (0.0290)

0.1199 0.1204 0.1949 0.1954 0.2836 0.2833 0.4017 0.4010

(0.0205) (0.0251) (0.0275) (0.0299)

0.4253 0.4256 0.3226 0.3217 0.1236 0.1238 0.1285 0.1174

(0.0306) (0.0288) (0.0207) (0.0208)

0.2586 0.2579 0.4310 0.4323 0.1401 0.1397 0.1703 0.1702

(0.0282) (0.0305) (0.0217) (0.0246)
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Table 2: 21-variate HMM: Average CLEM estimates for the bivariate transition probabilities over 100

simulation runs. The true values of probabilities are also listed aside for reference. The empirical standard

deviations from 100 data sets are in parenthesis and the estimated standard deviation from bootstrap on

one data set are in brackets.

Matrix Estimate True Estimate True Estimate True Estimate True

Λ12 0.2799 0.2800 0.1233 0.1200 0.1175 0.1200 0.4793 0.4800

(0.0288) (0.0202) (0.0166) (0.0354)

[0.0314] [0.0180] [0.0185] [0.0353]

0.3664 0.3600 0.0420 0.0400 0.2440 0.2400 0.3476 0.3600

(0.0492) (0.0187) (0.0356) (0.0371)

[0.0561] [0.0231] [0.0291] [0.0430]

0.3907 0.3200 0.2116 0.1800 0.0664 0.0800 0.3313 0.4200

(0.0453) (0.0351) (0.0186) (0.0519)

[0.0396] [0.0348] [0.0190] [0.0468]

0.5017 0.4200 0.0971 0.0800 0.1445 0.1800 0.2567 0.3200

(0.0361) (0.0138) (0.0190) (0.0336)

[0.0393] [0.0133] [0.0186] [0.0390]

Λ23 0.2185 0.2100 0.1955 0.1900 0.1851 0.1900 0.4008 0.4100

(0.0150) (0.0120) (0.0110) (0.0203)

[0.0138] [0.0154] [0.0133] [0.0196]

0.3008 0.2900 0.1140 0.1100 0.3042 0.3100 0.2810 0.2900

(0.0195) (0.0098) (0.0171) (0.0167)

[0.0178] [0.0113] [0.0122] [0.0145]

0.3106 0.2900 0.3260 0.3100 0.0988 0.1100 0.2646 0.2900

(0.0197) (0.0175) (0.0109) (0.0213)

[0.0221] [0.0235] [0.0147] [0.0247]

0.4332 0.4100 0.2020 0.1900 0.1722 0.1900 0.1925 0.2100

(0.0172) (0.0127) (0.0131) (0.0144)

[0.0229] [0.0111] [0.0164] [0.0128]

http://biostats.bepress.com/cobra/art61


