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A Flexible General Class of Marginal and

Conditional Random Intercept Models for Binary

Outcomes Using Mixtures of Normals

Brian Caffo, Ming-Wen An and Charles Rohde

Department of Biostatistics

Johns Hopkins Bloomberg School of Public Health

July 13, 2006

Abstract

Random intercept models for binary data are useful tools for addressing between-

subject heterogeneity. Unlike linear models, the non-linearity of link functions used for

binary data force a distinction between marginal and conditional interpretations. This

distinction is blurred in probit models with a normally distributed random intercept be-

cause the resulting model implies a probit marginal link as well. That is, this model is

closed in the sense that the distribution associated with the marginal and conditional

link functions and the random effect distribution are all of the same family. In this

manuscript we explore another family of random intercept models with this property.

In particular, we consider instances when the distributions associated with the con-

ditional and marginal link functions and the random effect distribution are mixtures

of normals. We show that this flexible family of models is related to several others

presented in the literature. Moreover, we also show that this family of models offers

considerable computational benefits. A diverse series of examples illustrates the wide

applicability of the approach.

Keywords: Probit-normal, logit-normal, marginalized multilevel models
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1 Introduction

Random intercept models for binary data are useful tools for addressing between subject

heterogeneity. Typically, random intercept models are implemented by adding a normally

distributed random effect into the linear predictor of a generalized linear model (or GLM,

see Nelder and Wedderburn, 1972; McCullagh and Nelder, 1989), giving rise to the gener-

alized linear mixed model (or GLMM, see Breslow and Clayton, 1993). Because of the non-

linearity of the link functions for binary GLMMs, such models force a distinction between

parameter interpretations conditional on the random effect and marginal interpretations

averaged over the random effect.

Random intercept models for binary outcomes with a probit link function and normally

distributed random intercept (probit-normal models) have the interesting property that the

marginal link function is the inverse of a normal cumulative distribution function (CDF).

In this case, we say the model is “closed” in the sense that the distributions associated with

the marginal and conditional link functions and the random effect distribution are all of

the same family.

In this manuscript we explore a general family of closed random intercept models. In

particular, we consider instances when the distribution associated with the conditional link

function and the random effect distribution are mixtures of normals. Simple properties of

mixture of normals then imply that the distribution function associated with the marginal

link function is also a mixture of normals. We emphasize both the conceptual and practical

benefits of this class of models. Notably, we explore models that yield conditional and

marginal interpretations of parameters.

To summarize results, the principal conceptual benefit of the proposed model is that it

contains a wide class of common models for binary data as either special or limiting cases.

Furthermore, we highlight three interesting practical advantages of these models:

i marginal link functions can be approximated easily given fitted values for conditional

models, without additional Monte Carlo or numerical integration,

ii marginalized multilevel models can be efficiently fit without the need for inverting a

numerical integral,
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iii simple and elegant Gibbs samplers can be applied for Bayesian modeling for arbitrary

link functions.

The manuscript is laid out as follows. In Section 2 we present the notation and the

model. In Section 3 we connect the mixture of normals model with several variants of

random effect models in the literature. In Section 4 we illustrate with a diverse collection

of useful applications of the mixture of normals approximation. Finally, in Section 5, we

provide a summary and discussion of future work.

2 Random intercept model for binary outcomes

2.1 Notation

Consider the data given in Table 3, which arose from a teratology experiment (Weil, 1970),

and was subsequently analyzed in Liang and Hanfelt (1994) and Heagerty and Zeger

(1996). The objective is to compare the survival of rat pups in 16 control litters with

that of the pups in the 16 treated litters. The treatment was a chemical agent adminis-

tered to the mothers of each treated litter. We use this data set and experiment to motivate

the model.

Assume that {Yij} are repeated binary responses for subject/cluster i = 1, . . . , I and

response j = 1, . . . , Ji. Therefore, in the Teratology data set, Yij represents mortality or

not (1 versus 0 respectively) for pup j from litter i. Let xij be a vector of covariates

associated with Yij. For the Teratology data xij = (1, xij1)
t, containing an intercept term

and a treatment indicator, respectively.

Let F−1
w be a link function (see McCullagh and Nelder, 1989) that relates the probability

of a success to a function of the covariates. As is typical for binary data, we assume that Fw

(the inverse link function) is a distribution function, referred to as the “link distribution”.

We assume that

Pr(Yij = 1 | Ui = ui) = Fw{∆ij − ui}, (1)

where the {Ui} are cluster-specific random effects, used to model correlation and hetero-

geneity arising from unmeasured covariates specific to a cluster. The {Ui} are assumed to

3
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be independent and identically distributed random variables, having distribution function

Fu. Throughout we assume that the {Yij} are conditionally independent given the {Ui}.

Users familiar with GLMMs will note two departures from common notation. First, the

“transfer function”, ∆ij, is typically omitted and replaced with a linear combination of the

covariates and slope parameters, such as

∆ij = x
t
ijβ

c. (2)

This departure is adopted to consider a broader class of marginal and conditional models,

which we describe in detail. Secondly, the random effect is subtracted in (1) rather than

added, a convention that will be discussed below.

2.2 Conditional models

A conditional model specifies ∆ij as in (2). The superscript c on the slope effects is used

to denote that the effects are conditional, having an interpretation on the conditional link

function’s scale.

Defining the ∆ij as such implies a marginal model. Specifically

Pr(Yij = 1) = Fq{∆ij}, (3)

where Fq is the distribution of the sum of independent random variables having distribu-

tion functions Fu and Fw. To prove this fact, let {Wij} be iid draws from Fw, then note

that

Pr(Yij = 1) = EUi
[Pr(Yij = 1 | Ui = ui)]

=

∫

Fw{∆ij − ui}dFu(ui)

=

∫

Pr(Wij ≤ ∆ij − ui | Ui = ui)dFu(ui)

= EUi
[Pr (Wij + ui ≤ ∆ij | Ui = ui)]

= Pr (Wij + ui ≤ ∆ij)

= Fq{∆ij}.

From this proof, we hope that the reason for the somewhat unusual convention of sub-

tracting the random intercept is now clear.
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We summarize the basic properties of the conditional model as

Conditional model Pr(Yij = 1 | Ui = ui) = Fw(∆ij − ui)

Transfer function ∆ij = x
t
ijβ

c

Random effect distribution Pr(Ui ≤ ui) = Fu(ui)

Implied marginal model Pr(Yij = 1) = Fq(x
t
ijβ

c).

As an example, consider again the Teratology data set. Assume that Fw is the standard

normal distribution, Fu is a normal distribution with 0 mean and variance σ2
u,1, and ∆ij is

defined as in Equation 2. This model then corresponds to a probit-normal GLMM. By the

standard properties of the normal distribution, the distribution of the sum of a standard

normal (Fw) and a normal with mean 0 and variance σ2
u,1 (Fu) results in Fq being a normal

distribution with 0 mean and variance 1 + σ2
u,1. Thus, using Equation 3, we have the well

known result (see Zeger et al., 1988, for example) that the induced marginal model is

Pr(Yij = 1) = Fq(∆ij) = Fq(β
c
0 + xij1β

c
1) = Φ

{

βc
0 + xij1β

c
1

(1 + σ2
u,1)

1/2

}

,

where Φ denotes the standard normal distribution function. Hence, the marginal link is

also a probit, with the marginal effects being scaled versions of the conditional effects,

βc/(1 + σ2
u1

)1/2.

2.3 Marginal Models

Consider again the Teratology probit-normal example from the previous section - i.e. Fw is

a standard normal and Fu is a normal with mean 0 and variance σ2
u,1. Had we defined

∆ij = (βm
0 + xij1β

m
1 )(1 + σ2

u,1)
1/2,

then the marginal probability of success would satisfy

Pr(Yij = 1) = Fq(∆ij) = Fq

{

(βm
0 + xij1β

m
1 )(1 + σ2

u,1)
1/2
}

= Φ(βm
0 + xij1β

m
1 ).

Therefore, the estimated slope parameters would have a marginal probit interpretation

without rescaling; hence the superscript m. That is, appropriately defining ∆ij results in

parameters with marginal interpretations.

5
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In fact, Heagerty and Zeger (2000) showed that this technique can be applied more

generally. Specifically, consider defining

∆ij = F−1
q {Fw(xt

ijβ
m)}. (4)

Under this definition for ∆ij and using (3), the marginal probability of success satisfies

Pr(Yij = 1) = Fq(∆ij) = Fq

[

F−1
q {Fw(xt

ijβ
m)}
]

= Fw(xt
ijβ

m)

That is, under an appropriate modification of ∆ij, the slope parameters can be given a

marginal interpretation with Fw as the link distribution. We summarize the marginal model

with

Conditional model Pr(Yij = 1 | Ui = ui) = Fw(∆ij − ui)

Transfer function ∆ij = F−1
q {Fw(xt

ijβ
m)}

Random effect distribution Pr(Ui ≤ ui) = Fu(ui)

Implied marginal model Pr(Yij = 1) = Fw(xt
ijβ

m).

Marginalized multilevel models defined as such offer several advantages over compet-

ing methods. Unlike generalized estimating equations (GEE, see Liang and Zeger, 1986),

they enjoy the benefits of a completely specified model, which includes the ability to plot

profile likelihoods, the availability of likelihood ratio tests and Bayesian analysis and the

relaxation on assumptions for missing data. Also, these models are more parsimonious

and extensible than other marginal likelihood based models (see Lang and Agresti, 1994).

2.4 Mixtures of normals

The distinction between the conditional and marginal approaches is especially interesting

for the probit-normal model, because of the fact that the probit-normal model is closed

- the conditional, random effect and marginal link distributions all belong to the same

family. In this manuscript we present another closed random intercept model for binary

data that is considerably more flexible than the probit-normal model. In particular, when

Fw and Fu are mixtures of normal distributions, then so is Fq.

To prove this, consider a model of the form

Fw(w) =
Lw
∑

l=1

πw,lΦ

(

w − µw,l

σw,l

)

and Fu(u) =
Lu
∑

l=1

πu,lΦ

(

u − µu,l

σu,l

)

,

6
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where, the {πw,l} and {πu,l} are each assumed to be greater than 0 and sum to one. Using

simple properties of mixtures of normals and Equation 3, we have that

Fq(q) =
Lw
∑

l=1

Lu
∑

l′=1

πw,lπu,l′Φ

(

q − µw,l − µu,l′

(σ2
w,l + σ2

u,l′)
1/2

)

. (5)

That is, under this model, the random effect, conditional and marginal link distributions

are all mixtures of normals. We summarize the model as

Conditional model Pr(Yij = 1 | Ui = ui) =
∑Lw

l=1 πw,lΦ
(

∆ij−ui−µw,l

σw,l

)

Transfer function ∆ij defined by either (2) or (4)

Random effect distribution Pr(Ui ≤ ui) =
∑Lu

l=1 πu,lΦ
(

ui−µu,l

σu,l

)

Implied marginal model Pr(Yij = 1) =
∑Lw

l=1

∑Lu

l′=1 πw,lπu,l′Φ

(

∆ij−µw,l−µu,l′

(σ2

w,l+σ2

u,l′
)1/2

)

.

(6)

To summarize, the model of interest in this manuscript combines the conditional and

marginal approaches, while adding the constraint that the conditional link and random

effect distributions are both mixtures of normals.

For completeness, we add that the log-likelihood for (6) is

I
∑

i=1

log

∫

ui

Ji
∏

j=1

Fw(∆ij − ui)
yij{1 − Fw(∆ij − ui)}

1−yijdFu(ui), (7)

an equation that holds regardless of whether Fw and Fu are mixtures of normals.

To illustrate a potential use, consider the specific instance summarized by the following

Conditional model πw,1Φ {(∆ij − ui)/σw,1} + πw,2Φ {(∆ij − ui)/σw,2}

Transfer function ∆ij = x
t
ijβ

c

Random effect distribution πu,1Φ {(ui − µu,1)/σu,1} + πu,2Φ {(ui − µu,2)/σu,2}

Implied marginal model
∑2

l=1

∑2
l′=1 πw,lπu,l′Φ

{

(xt
ijβ

c − µu,l′)/(σ
2
w,l + σ2

u,l′)
1/2
}

.

One could specify πw,1 σw,1 and σw,2 to approximate the logistic distribution, which pro-

duces a model that retains the computational benefits of this mixture approach (discussed

later) while (approximately) retaining the convenient interpretation of the logit. Estimat-

ing πu,1, µu,1, µu,2, σu,1 and σu,2 leads to a more flexible random effect distribution than the

univariate normal.

Of course, Model 6 is excessively rich with all of the mixture probabilities, means and

variances left unspecified; estimating both the conditional link distribution and the random

7
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effect distribution is a hopeless cause for most binary data sets. However, by specifying

components of one or both of the free mixture distributions, one can achieve a variety of

important models. In what follows we explore these ideas.

3 Literature review

In this section we argue the principal conceptual benefit of the modeling framework (6).

That is, the proposed model contains several important random intercept models for binary

data as special or limiting cases.

GLM and GLMMs

Clearly if Fu is degenerate at 0 and ∆ij = x
t
ijβ, then the model yields a GLM for binary

data. Extending this setting so that Fu is not degenerate and Lu = 1 and µu,1 = 0 yields

a GLMM for binary data with a normally distributed random intercept (see Breslow and

Clayton, 1993; Agresti et al., 2000).

To be technical, only those GLM and GLMMs for binary data whose conditional link

distribution, Fw, is a mixture of normals are special cases of the model we have suggested.

However, all of the common link functions (logit, complementary log-log) can be obtained

as limiting cases. In Appendix C we provide an algorithm to solve for πw,l, σw,l and µw,l

that yields very accurate approximations for a finite number of mixture components.

As an example, consider a mixture of normals as an approximation of the logistic dis-

tribution. The results using the algorithm in Appendix C with 150 quadrature points and

{µw,j} = {0} yields the values given in Table 1. Figure 1 shows how accurate the approxi-

mation is, by depicting the exact logistic quantiles by a mixture of normals approximation.

The mixture of normals approximation, with 5 mixture components, is nearly exact to log-

its of ± 10. By comparison, the plot also shows the standard normal and T quantiles, both

of which are also used as approximations to the logit (see Caffo and Griswold, 2005). The

linearity of the probit approximations breaks down at logits of around ± 3, while the T

approximation around ± 5. Furthermore, we note that the mixture of normals approxima-

8
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tion applies generally, to links other than the logistic, and can be made more accurate by

simply adding more mixture components.

Approximating the logistic distribution with a single normal distribution or mixture of

normals has a rich history (see Demidenko, 2004, and the references therein). Perhaps

most relevant, Monahan and Stefanski (1992) used weighted Gaussian distributions to

explore the logistic-normal integral.

Latent variable models

Representing the link function by a latent variable was considered in the proof of Equa-

tion 3. In Section 4.3 we consider a much more ambitious latent variable representation

of Model 6, using latent variables to represent the normal mixture distributions as well.

The general latent variable approach to binary data was considered in Albert and Chib

(1993), who also introduced a Gibbs sampler that motivates the one presented in Section

4.3. Relevant extensions to multivariate settings were considered in Chib and Greenberg

(1998); however they focused on probit links and more general covariance structures than

the random intercept models considered here.

Marginalized multilevel models

Consider again the instance where Lu = 1, µu,1 = 0 (the random intercept is normally

distributed). As described in Section 2.3, Heagerty and Zeger (2000) defined the ∆ij to

be non-linear (see Equation 4), so that the slope parameters have linear interpretations

on the marginal link’s scale. These marginalized multilevel models for binary data are a

special case of the models presented (by appropriately defining ∆ij). Moreover, later we

demonstrate that using mixtures of normals for the link distribution can greatly facilitate

computing for these models.

A potentially negative aspect of this model is that, because ∆ij is defined non-linearly,

the conditional model is non-linear. The degree to which this is true depends on how

close to linear F−1
q Fw is. However, this may be of no concern whatsoever if only marginal

interpretations are required (though see Lee and Nelder, 2004).

9
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A clear generalization of the marginalized model would replace Fw in Equation 4 with

any other desired link distribution, thus, allowing the conditional and marginal link func-

tions to be different. This idea was explored in Griswold (2005) and extended to ordered

multinomial data in Caffo and Griswold (2005). Again, this approach easily fits into the

current framework by appropriately redefining ∆ij.

Estimating the link function

There has been a relatively small amount of research using mixtures of normals to estimate

the link distribution. Geweke and Keane (1997) used a mixture of normals as a link

function for dichotomous choice models. They presented an MCMC algorithm for fitting

the model, including estimating the mixture components. In related work, Erkanli et al.

(1993) used mixtures of normals to estimate the link function for ordinal data models

and also presented an MCMC algorithm for estimating the mixture components. These

approaches are conceptually related to the proposed model by forcing the random effect

distribution to be degenerate at 0 and estimating {πw,l}, {µw,l} and {σw,l}.

Estimating the random effect distribution

In contrast, using mixtures to estimate the random effect distribution has received much

more attention. Perhaps most relevant, Magder and Zeger (1996) used mixtures of nor-

mals as the random effect distribution and estimated the mixture parameters with an

MCMC algorithm. This corresponds to estimating the {µu,l}, {σu,l} and {πu,l}. Aitkin

(1999) and Follmann and Lambert (1989) used discrete mixtures to non-parametrically

estimate the random effect distribution using maximum likelihood. Such models are ob-

tained under the current framework as the {σu,j} tend to 0 and {µu,j} and {πu,j} are

estimated.

10
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Summary

It is our goal that this literature review demonstrates that many of the primary models

for binary data are closely related to the mixture of normals model (6). The fact that

the model can synthesize so many other approaches is its main conceptual benefit. We

now present a battery of examples that illustrates the practical utility of using mixtures of

normals to approximate link functions.

4 Examples

In addition to synthesizing many common models, Model 6 offers many practical benefits

as well. In this section we explore a subset of these practical considerations illustrated

through four data sets. We explore two marginal and one conditional modeling settings,

where computations are significantly simplified by using mixtures of normals. Moreover,

we consider a case where mixture modeling of the random effect offers additional protec-

tion against model misspecification.

We consider four well studied data sets for illustration:

1. The Teratology data, introduced in Section 2.1.

2. The Approval Rating data set given in Table 2. This 2×2 contingency table cross-

classifies approval ratings of the British Prime Minister collected at two occasions.

Here, Yij represents approval (1) or not (0) for individual i on occasion j, where

j = 1, 2 for the two sampling occasions. The covariate vector, xij = (1, xij)
t, contains

an intercept term and an indicator function representing occasion, taking the value

1 when j = 2.

3. The Crossover data, given in Table 4, concerns a well-studied crossover study from

Jones and Kenward (1987). Here, Yij represents an abnormal (1) or a normal (0)

response for subject i during period j for j = 1, 2. The objective is to study the

response in relation to the treatment and period. Thus, xij = (1, xij1, xij2)
t contains

an intercept term, a treatment indicator and a period indicator, taking the value 1

for the second period.

11
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4. The Item Response data, given in Table 5, concerns subjects’ response to three sce-

narios (given in the table) on abortion stratified by gender. We let Yij be the response

of subject i on question j, where a response of 1 is supportive of legalized abortion

(and 0 is not). The covariate vector, xij = (1, xij1, xij2, xij3)
t, contains an intercept

term, an indicator for male gender, an indicator for Scenario 1, and an indicator

for Scenario 2, respectively. We use the Item Response data to illustrate an instance

where a mixture random effect distribution is warranted.

To focus this discussion, we assume that the principal parameter of interest for each data

set is: the (marginal or conditional) log odds-ratio comparing treated to controls in the

Teratology data, the log odds-ratio comparing time 2 to time 1 for the Approval Rating

data, the log odds-ratio comparing treated to controls in the Crossover data and the log

odds-ratio comparing males to females in the Item response data. Therefore, in each case

the regressor corresponding to the effect of interest is xij1.

4.1 Post-hoc calculation of marginal effects

Given results from a conditional random effect model, an obvious question asks, “What is

the corresponding marginal effects and link distribution?”. Such a question is especially

relevant in situations such as in interpreting published results, where only effect estimates

(and not the original data) are available. Model 6 allows one to approximate the necessary

calculations easily.

Consider the conditional logit model

logit {Pr(Yij = 1 | Ui = ui)} = x
t
ijβ

c − ui and Ui ∼ N(0, σ2
u,1). (8)

If we are willing to accept the approximation that Fw is the 5 component mixtures of

normals, then Model 8 is simply a special case of Model 6. Hence, we have that

Pr(Yij = 1) = Fq(x
t
ijβ̂

c
) =

Lw
∑

l=1

πw,lΦ

(

x̂
t
ijβ̂

c
− µw,l

(σ2
w,l + σ2

u,1)
1/2

)

, (9)

where {πw,l}, {µw,l} and {σw,l} are from Table 1.

12
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Below we use this approximation to obtain marginal logit interpretations from condi-

tional logit models. However, before doing so, we emphasize the benefits of Equation 9

over Monte Carlo and numerical integration, which can also give very accurate approx-

imations of marginal effects. For example, unlike numerical integration or Monte Carlo

approximations, the approximation (9) can be performed quickly and easily. In addition,

obtaining delta method estimates of standard errors is also easy. Furthermore, the method

applies to any conditional link function, provided the relevant mixture components are

known. Finally, and perhaps most importantly, we note that this method leads to an accu-

rate and simple approximation to the marginal link distribution, Fq, whereas quadrature

or Monte Carlo approximations only yield Fq for specific values of the covariates.

Table 7 gives estimated marginal logit effects for the four data sets calculated using (9).

To illustrate the calculations, consider the Teratology dataset. The fitted values (SE) from

Model 8 using the SAS procedure NLMIXED are β̂c
0 = 2.63 (0.48), β̂c

1 = −1.08 (0.63) and

σ̂u,1 = 1.35 (0.33). Plugging the estimated parameters into (9) yields a marginal probability

of death of 0.76 for the treated and 0.88 for the untreated. Then, the marginal log odds

ratio of death (SE) comparing the treated to the control litters is logit(0.76)− logit(0.88) =

−0.86 (0.51) (see Appendix D for details about obtaining standard errors).

Table 7 applies these techniques to the three other data sets as well, each time taking

the conditional estimates output by SAS (Table 6). Because of the additional covariates

in the Crossover and Item Response data sets, the estimated marginal logit effects are

reported within strata.

4.2 Easier marginalized multilevel models

The previous section addressed the issue of obtaining marginal effects from conditional

results, which is useful when interpreting published results without access to the underly-

ing data. However, when the data are available and marginal interpretations are desired,

direct fitting is preferable. This section illustrates how the mixture of normals modeling

framework can ease the calculations required to directly obtain marginal estimates.

We consider the marginal Model 6 where ∆ij is given by Equation 4. Furthermore,

13
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assume that the Ui ∼ N(0, σ2
u,1) and Fw is the 5 component mixtures of normals approxi-

mation to the logistic distribution function.

The benefit of using the Fw as a mixture of normals rather than the exact logistic

distribution is that there is a closed form for Fq (see Equation 4); also its quantiles can

easily be calculated using Newton’s method. Hence, representing the logistic distribution

as such eliminates the difficult task of numerically approximating the convolution integral

defining Fq and its inverse. It should be emphasized that while defining Fw as a mixture

of normals eases the calculation of Fq and hence ∆ij, calculation of the likelihood (7) still

requires numerical integration, for which we employed Gauss/Hermite quadrature.

We implemented this model for the four data sets. We highlight the use of profile

likelihoods - the functions obtained by maximizing the likelihood for each value of the

parameter of interest. See Royall (1997) for more information regarding the benefits and

interpretation of profile likelihoods.

The results of the model fits are given in Table 8. For example, for the Teratology

data, −0.86 (the estimate for βm
1 ) estimates the change in the marginal log-odds of death

comparing a treated pup to a control. For each of the data sets, Figure 2 shows the profile

likelihood with 1/8 and 1/16 reference lines see (see Royall, 1997) for the parameter of

interest (βm
1 ) and the variance component (σu,1) for each of the four models.

4.3 Bayesian analysis

In this section, we illustrate how specific instances of Model (6) are particularly well suited

for Bayesian analysis via MCMC. We note that similar methods utilizing latent variables

have been proposed to simulate from the posterior distributions of parameters for binary

and multinomial responses (see Albert and Chib, 1993; McCulloch and Rossi, 1994; Chib

et al., 1998; Imai and van Dyk, 2005). In addition, close variants of the sampling schemes

can be used for the Monte Carlo EM algorithm (see Chib et al., 1998; Natarajan et al.,

2000).

We apply these methods to binary responses with random effects, using the mixture

of normals link approximation (similar to Geweke and Keane, 1997; Erkanli et al., 1993).

14
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Consider the latent variable representation of Model (6) given by

1. {Du,i} are iid discrete random variables with support 1, . . . , Lu so that Pr(Du,i = l) =

πu,l,

2. the {Ui} given that the {Du,i = du,i} are independent N(µdu,i
, σ2

u,du,i
),

3. the {Dw,ij} are discrete iid random variables with support 1, . . . , Lw so that Pr(Dw,ij =

l) = πw,l,

4. the {Mij} given that the {Dw,ij = dw,ij} and {Ui = ui} are independent Normals with

mean µw,dw,ij
+ ui − ∆ij and variance σ2

w,dw,ij
,

5. the {Yij} are 1 iff Mij ≤ 0 and 0 otherwise,

6. each ∆ij = x
t
ijβ

c,

To summarize the model, items 1 and 2 yield the mixture model for Fu, items 3-5 yield the

conditional model for the yij and item 6 forces a conditional interpretation for the βc. To

prove that 3-5 induces the mixture of normals model for the yij, consider

Pr(Yij = 1 | Ui = ui) = Pr(Mij ≤ 0 | Ui = ui)

=
Lw
∑

l=1

Pr(Mij ≤ 0 | Ui = ui, Dw,ij = l)Pr(Dw,ij = l)

=
Lw
∑

l=1

Φ

{

∆ij − ui

σw,l

}

πw,l.

We complete the Bayesian model by specifying that βc ∼ Normal(µβc ,Σ), σ2
u,l ∼

IG(ν, τ). In the examples where the random effect mixture distribution had more than

one component, the {µu,l} were independent normals with mean η and variance θ and

{πu,l} were Dirichlet with shape parameters α. We note a small complication is that the

mean of the random effect distribution is aliased with an intercept parameter. Therefore,

throughout this section we assume that the intercept term is excluded and instead the

random effect mean is estimated. A second complication could potentially arise when

the random effect mixture distribution has more than one component, because of the

non-identifiability of the parameters due to permutation invariance. In the examples we
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considered, however, imposing identifiability constraints (see Jasra et al., 2005) did not

impact results.

The benefit of this model specification is that all of the full conditionals are common dis-

tributions and an elegant Gibbs sampler, which does not employ any Metropolis/Hastings

steps, is available for exploring the posterior. We emphasize that the algorithm can be used

for any link function whose associated distribution function can be represented as a mix-

ture of normals. Moreover, this approach accommodates general modeling of the random

effect distribution.

The full conditionals are as follows:

1. the full conditional for Du,i is discrete so that the probability Du,i takes value l is

σ−1
u,l exp

{

−(ui − µu,l)
2/2σ2

u,l

}

πu,k
∑

k σ−1
u,k exp

{

−(ui − µu,k)2/2σ2
u,k

}

πu,k

;

2. the full conditional for Ui is normal with mean

(

∑

j

σ−2
w,dw,ij

+ σ−2
u,du,i

)

−1(
∑

j

mij − µw,dw,ij
+ ∆ij

σ2
w,dw,ij

+
µdu,i

σ2
u,du,i

)

and variance
(

∑

j

σ−2
w,dw,ij

+ σ−2
u,du,i

)

−1

;

3. the full conditional for Dw,ij is discrete so that the probability Dw,ij takes value l is

σ−1
w,l exp{−(mij − µw,l − ui + ∆ij)

2/2σ2
w,l}πw,l

∑

k σ−1
w,k exp{−(mij − µw,k − ui + ∆ij)2/2σ2

w,k}πw,k

;

4. the full conditional for Mij is truncated normal with mean µw,dw,ij
+ui−∆ij and variance

σ2
w,dw,ij

with Mij ≤ 0 when yij = 1 and Mij > 0 when yij = 0; that is, the distribution

function is
Φ
{

(mij − µw,dw,ij
− ui + ∆ij)/σw,dw,ij

}

Φ
{

(−µw,dw,ij
− ui + ∆ij)/σw,dw,ij

} I(mij ≤ 0)

when yij = 1 and

Φ
{

(wij − µw,dw,ij
− ui + ∆ij)/σw,dw,ij

}

− Φ
{

(−µw,dw,ij
− ui + ∆ij)/σw,dw,ij

}

1 − Φ
{

(−µw,dw,ij
− ui + ∆ij)/σw,dw,ij

} I(mij ≥ 0)

when yij = 0;
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5. the full conditional for βc is multivariate normal with mean

(

Σ
−1 + X

t
W

−1
X
)

−1 (
Σ

−1µβc + X
t
W

−1η
)

where X is the design matrix, W is a diagonal matrix of the σ2
w,dw,ij

and η is a vector

with elements µw,dw,ij
+ ui − mij and variance

(

Σ
−1 + X

t
W

−1
X
)

−1
;

6. the full conditional for σ2
u,l is inverted gamma with shape parameter

ν +
∑

i

I(du,i = l)/2

and rate parameter

τ +
∑

i

I(du,i = l)(ui − µu,l)
2/2,

7. the full conditional for µu,l is normal with mean

(

∑

i

I(du,i = l)
1

σ2
u,du,i

+
1

θ

)

−1(
∑

i

I(du,i = l)
ui

σ2
u,du,i

+
η

θ

)

and variance
(

∑

i

I(du,i = l)
1

σ2
u,du,i

+
1

θ

)

−1

,

8. the full conditional for the {πu,l} is Dirichlet with shape parameter

α +
∑

{I(du,i = 1), . . . , I(du,i = Lu)}
t.

We apply the Gibbs sampler to the four datasets employing diffuse priors with a single

normal random intercept. Throughout we assume that Fw is the five component mixture of

normals approximation to the logistic distribution. Figures 3 shows the estimated posterior

distributions the the parameter of interest after 20, 000 simulations for each of the data sets

employing 1, 2 and 3 mixture components for the random effect distribution. For each of

the examples we set ν = 10−6, τ = 10−4, α = (1, . . . , 1)t, µβc = (0, . . . , 0)t, Σ as a diagonal

matrix with entries 10. Though the results are not reported, the impact of hyperparameter

specification was investigated by varying the diffuseness of the priors.
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The benefit of allowing for a small number of discrete mixture components for the

random effect distribution is to protect against the impact of misspecification (see Agresti

et al., 2004). This is particularly interesting for the Item Response data, since a three level

random effect distribution makes practical sense in this situation. Specifically, it is likely

that three populations, one opposed to abortion under any circumstance, one in favor of

abortion rights regardless of the circumstance, and a more heterogeneous group dominate

the random effect distribution.

Regardless, for the parameter of interest for these four data sets, misspecification of

the random effect distribution does not appear to be impacting results. The estimated

posterior densities appear to be the same regardless of the number of mixture components

implemented (Figure 3).

5 Discussion

In this manuscript, we discussed the conceptual and computational benefits of using mix-

tures of normals as the conditional link distribution and random effect distribution for

random intercept models for binary outcomes. The principal conceptual benefits are that

this representation unifies many of the existing models for analyzing binary data. This

includes models for estimating random effect distributions and link functions.

In addition, the mixture of normals representation makes the connection between the

conditional and marginal link functions explicit. Like the probit-normal model, these mix-

ture models represent a closed class with the conditional link, marginal link and random

intercept distributions being all from the same family.

We also demonstrated some of the computational benefits of approximating links with

mixtures of normals. First, it was demonstrated how they allow for simple post-hoc calcu-

lations of marginal effects from conditional estimates. Second, it was shown how they can

greatly ease the computation of the “transfer function” for Heagerty and Zeger’s marginal-

ized models. Finally, for a specific class of Bayesian models, the mixture of normals ap-

proximation leads to common distributions for all of the full conditionals, rendering the

coding of a Gibbs sampler almost trivial.
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The use of mixtures of normals could be exploited for further generalizations of the

random intercept model. In particular, the extension to multivariate random effects, us-

ing mixtures of multivariate normals, is plausible. Furthermore, this mixture approach

is potentially very useful for jointly modeling discrete and continuous outcomes. Finally,

further work may also explore how the mixture approach facilitates description of the

“bridge” random effect distribution as introduced by Wang and Louis (2003) and Wang

and Louis (2004).

In closing we note that we have put all of the relevant code to reproduce all of the

results, and the derivations of the Bayesian full conditionals at

http://www.biostat.jhsph.edu/~bcaffo/downloads.htm

References

Agresti, A. (2002). Categorical Data Analysis. Wiley, second edition.

Agresti, A., Caffo, B., and Ohman-Strickland, P. (2004). Examples in which misspecifica-

tion of a random effects distribution reduces efficiency, and possible remedies. Compu-

tational Statistics and Data Analysis, 47(3):639–653.

Agresti, A. A., Booth, J., Hobert, J., and Caffo, B. S. (2000). Random effects modeling of

categorical response data. Sociological Methodology, 30:27–80.

Aitkin, M. (1999). A general maximum likelihood analysis of variance components in

generalized linear models. Biometrics, 55:117–128.

Albert, J. and Chib, S. (1993). Bayesian analysis of binary and polychotomous response

data. Journal of the American Statistical Association, 88(422):669–678.

Breslow, N. E. and Clayton, D. G. (1993). Approximate inference in generalized linear

mixed models. Journal of the American Statistical Association, 88:9–25.

Caffo, B. and Griswold, M. (2005). A user-friendly tutorial on link-probit-normal models.

Technical report, Johns Hopkins University, Department of Biostatistics.

19

Hosted by The Berkeley Electronic Press



Chib, S. and Greenberg, E. (1998). Analysis of multivariate probit normals. Biometrika,

85(2):347–361.

Chib, S., Greenberg, E., and Chen, Y. (1998). MCMC methods for fitting and comparing

multinomial response models. Economics Working Paper Archive Econ WPA: Econometrics.

http://econwpa.wustl.edu:80/eps/em/papers/9802/9802001.pdf.

Demidenko, E. (2004). Mixed Models Theory and Applications. Wiley.

Erkanli, A., Stangl, D., and Mueller, P. (1993). A bayesian analysis of ordinal data using

mixtures. American Statistical Association Proceedings of the Section on Bayesian Statisti-

cal Science, pages 51–56.

Follmann, D. A. and Lambert, D. (1989). Generalizing logistic regression by nonparametric

mixing. Journal of the American Statistical Association, 84:295–300.

Geweke, J. and Keane, M. (1997). Mixture of normals probit model. Technical Report 237,

Federal Reserve Bank of Minneapolis.

Griswold, M. (2005). Complex Distributions, Hmmmm... Hiearchical Mixtures of Marginal-

ized Multilevel Models. PhD thesis, Johns Hopkins University.

Heagerty, P. J. and Zeger, S. L. (1996). Marginal regression models for clustered ordinal

measurements. Journal of the American Statistical Association, 91:1024–1036.

Heagerty, P. J. and Zeger, S. L. (2000). Marginalized multilevel models and likelihood

inference. Statistical Science, 15(1):1–26.

Imai, K. and van Dyk, D. (2005). A Bayesian analysis of the multinomial probit model

using marginal data augmentation. Journal of econometrics, 124:311–334.

Jasra, A., Holmes, C., and Stephens, D. (2005). Markov chain Monte Carlo methods and

the label switching problem in Bayesian mixture modeling. Statistical Science, 20(1):50–

61.

Jones, B. and Kenward, M. (1987). Modelling binary data from a three ponit cross-over

trial. Statistics in Medicine, 6:555–564.

20

https://biostats.bepress.com/jhubiostat/paper98



Lang, J. B. and Agresti, A. (1994). Simultaneously modeling joint and marginal distribu-

tions of multivariate categorical responses. Journal of the American Statistical Associa-

tion, 89:625–632.

Lange, K. (1999). Numerical Analysis for Statisticians. Springer-Verlag.

Lee, Y. and Nelder, J. (2004). Conditional and marginal models: Another view. Statistical

Science, 19(2):219–238.

Liang, K. and Hanfelt, J. (1994). On the use of the quasi-likelihood method in teratolgy

experiments. Biometrics, 50:872–880.

Liang, K. and Zeger, S. L. (1986). Longitudinal data analysis using generalized linear

models. Biometrika, 73:13–22.

Magder, L. and Zeger, S. (1996). A smooth nonparametric estimate of a mixing distribution

using mixtures of Gaussians. Journal of the American Statistical Association, 91:1141–

1151.

McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models. Chapman & Hall,

London, second edition.

McCulloch, R. and Rossi, P. (1994). An exact likelihood analysis of the multinomial probit

model. Journal of Econometrics, 64:207–240.

Monahan, J. and Stefanski, L. (1992). Normal scale mixture approximations to f ∗(z) and

computation of the logistic-normal integral. In Balakrishnan, editor, Handbook of the

Logistic Distribution, pages 529–540. Marcel Dekker.

Natarajan, R., McCulloch, and Kiefer, N. (2000). A Monte Carlo EM method for estimating

multinomial probit models. Computational Statistics and Data Analysis, 34:33–50.

Nelder, J. A. and Wedderburn, R. W. M. (1972). Generalized linear models. Journal of the

Royal Statistical Society, Series A, General, 135:370–384.

Royall, R. (1997). Statistical Evidence: A Likelihood Paradigm. Chapman and Hall.

21

Hosted by The Berkeley Electronic Press



Wang, Z. and Louis, T. (2003). Matching conditional and marginal shapes in binary ran-

dom intercept models using a bridge distribution function. Biometrika, 90(4):765–775.

Wang, Z. and Louis, T. (2004). Marginalized binary mixed-effects with covariate-

dependent random effects and likelihood inference. Biometrics, 60(4):884–891.

Weil, C. (1970). Selection of the valid number of sampling units and a consideration

of their combination in toxicological studies involving reproduction, teratogenisis or

carcinogenisis. Food and cosmetics toxicology, 8:177–182.

Zeger, S., Liang, K., and Albert, P. (1988). Models for longitudinal data: a generalized

estimating equation approach. Biometrics, 44:1049–1060.

A Tables

π1 π2 π3 π4 π5

0.126840496 0.543170220 0.261711982 0.066181589 0.002066853

σ1 σ2 σ3 σ4 σ5

2.8420536 1.8257138 1.1943048 1.0757749 0.5631853

µ1 µ2 µ3 µ4 µ5

0 0 0 0 0

Table 1: Mixing probabilities, standard deviations and means of the mixture components

for a mixture-of-normals approximation to the logistic distribution.

First Second Survey

Survey Approve Disapprove

Approve 794 150

Disapprove 86 570

Table 2: Prime minister approval rating. Source Agresti (2002).
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(number survived,number dead)

Control (13, 0) (12, 0) (9, 0) (9, 0) (8, 0) (8, 0) (12, 1) (11, 1)

(9, 1) (9, 1) (8, 1) (11, 2) (4, 1) (5, 2) (7, 3) (7, 3)

Treatment (12, 0) (11, 0) (10, 0) (9, 0) (10, 1) (9, 1) (9, 1) (8, 1)

(8, 1) (4, 1) (7, 2) (4, 3) (5, 5) (3, 3) (3, 7) (0, 7)

Table 3: Teratology data. Numbers are (number survived, number dead) in each litter by

treatment arm. For example, in the first control litter, all thirteen pups survived. Source

Weil (1970).

Response Treatment sequence

Period 1 Period 2 Drug-Placebo Placebo-Drug

Normal Normal 22 18

Abnormal Normal 0 4

Normal Abnormal 6 2

Abnormal Abnormal 6 9

Table 4: Crossover data, frequency of responses by treatment regimen. Source Jones and

Kenward (1987).

Sequence of Responses

Gender 111 110 011 010 101 100 001 000

male 342 26 6 21 11 32 19 356

female 440 25 14 18 14 47 22 457

Table 5: Response to questions on abortion stratified by gender from Agresti (2002). A

response of “1” was in favor of legalized abortion in a specific scenario while a response of

“0” was not. The scenarios are i if the family has a very low income ii the woman is not

married and does not want to marry the man iii for any reason.
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Parameter

Data Set σ̂u,1 β̂c
0 β̂c

1 β̂c
2 β̂c

3

Teratology 1.35 (0.33) 2.63 (0.48) −1.08 (0.63)

Approval 5.16 (0.35) 1.24 (0.19) −0.56 (0.14)

Crossover 4.94 (1.91) 2.22 (1.17) 1.86 (0.93) −1.04 (0.82)

Item Response 8.75 (0.54) −0.61 (0.34) −0.013 (0.49) 0.83 (0.16) 0.29 (0.16)

Table 6: Conditional Estimates (standard errors) for multilevel models from Section 4.2.

Data Set Marginal Estimate (β̂m
1 )

Teratology −0.86 (0.51)

Approval −0.16 (0.04)

Period 1 Period 2

Crossover 0.59 (0.31) 0.58 (0.29)

Question 1 Question 2 Question 3

Item Response −0.002 (0.03) −0.002 (0.03) −0.002 (0.03)

Table 7: Marginal logit estimates (standard errors) for the examples from Section 4.1.

Parameter

Data Set σ̂u,1 β̂m
0 β̂m

1 β̂m
2 β̂m

3

Teratology 1.35 (0.33) 2.03 (0.39) −0.87 (0.51)

Approval 5.16 (0.35) 0.36 (0.05) −0.16 (0.04)

Crossover 4.94 (1.91) 0.68 (0.28) 0.58 (0.23) −0.32 (0.23)

Item Response 8.71 (0.54) −0.048 (0.054) 0.004 (0.074) 0.150 (0.028) 0.053 (0.028)

Table 8: Estimates (standard errors) for marginalized multilevel models from Section 4.2.
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Figure 1: Quantile-quantile plot of the logistic distribution (vertical axis) by three approx-

imations: the mixture of normals (green), the probit (red), the T (blue). A reference

identity line is depicted in grey. The corresponding probability scale is given on the right

and upper axes.
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Figure 2: Profile likelihood plots with 1/8 and 1/16 reference lines, see (Royall, 1997)

for βm
1 and σu,1 for the marginalized multilevel model from 4.2. The rows from top to

bottom correspond to the Teratology, Approval, Crossover and Item Response data sets

respectively.
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Figure 3: Estimated posterior densities using for the examples from Section 4.3 using

one (solid), two (dashed) and three (dotted) component mixtures for the random effect

distributions.
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C Approximating link functions with mixtures of normals

In this section we give an estimation procedure for approximating a distribution with a

mixture of normals. For a given number of mixture elements, we chose to minimize the

Kullback/Liebler distance between the mixture approximation and the true density. That

is, if g is the density associated with the link function of interest and f is the mixture

approximation, we minimize Eg[log{f(X)/g(X)}]. The algorithm was obtained as the limit

of the standard EM algorithm for estimating normal mixture components as the number

of observed data points goes to infinity.

Let π
(t)
j , σ

(t)
j and µ

(t)
j be the current estimates,

P
(t)
j (x) =

π
(t)
j φ{(x − µ

(t)
j )/σ

(t)
j }/σ

(t)
j

∑

l π
(t)
l φ{(x − µ

(t)
l )/σ

(t)
l }/σ

(t)
l

π
(t+1)
j = Eg

[

P
(t)
j (X)

]

µ
(t+1)
j = Eg

[

XP
(t)
j (X)

]

/π
(t+1)
j

σ
(t+1)
j =

{

Eg

[

X2P
(t)
j (X)

]

/π
(t+1)
j −

(

µ
(t+1)
j

)2
}1/2

.

The expected values generally need to be evaluated numerically. In this manuscript we use

Gauss/Hermite quadrature (see Lange, 1999).

D Obtaining standard error estimates of marginal param-

eters using the Multivariate Delta Method

In this section, we detail how to obtain the standard error estimate for β̂m
1 when there is

one binary covariate. Note that β̂m
1 is a function of β̂c

0 and β̂c
1:

β̂m
1 = g





βc
0

βc
1



 = log

{

Fq(β̂
c
0 + β̂c

1)

1 − Fq(β̂c
0 + β̂c

1)

}

− log

{

Fq(β̂
c
0)

1 − Fq(β̂c
0)

}

,

with gradient

∇gt =





fq(β̂c
0
+β̂c

1
)

Fq(β̂c
0
+β̂c

1
)[1−Fq(β̂c

0
+β̂c

1
)]
−

fq(β̂c
0
)

Fq(βc
0
)[1−Fq(βc

0
)]

fq(β̂c
0
+β̂c

1
)

Fq(β̂c
0
+β̂c

1
)[1−Fq(β̂c

0
+β̂c

1
)]




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Since (β̂c
0, β̂

c
1)

t is normally distributed with covariance matrix Σβ, we can apply the multi-

variate Delta Method to obtain a standard error estimate of βm
1 :

SE(β̂m
1 ) = ∇g Σβ ∇gt.
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