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Application to Alzheimer’s Disease Risk

Brian S. Caffo, Ciprian M. Crainiceanu, Guillermo Verduzco, Stewart H.
Mostofsky, Susan Spear-Bassett, and James J. Pekar

Abstract

Functional connectivity is the study of correlations in measured neurophysiologi-
cal signals. Altered functional connectivity has been shown to be associated with
numerous diseases including Alzheimer’s disease and mild cognitive impairment.
In this manuscript we use a two-stage application of the singular value decompo-
sition to obtain data driven population-level measures of functional connectivity
in functional magnetic resonance imaging (fMRI). The method is computation-
ally simple and amenable to high dimensional fMRI data with large numbers of
subjects. Simulation studies suggest the ability of the decomposition methods
to recover population brain networks and their associated loadings. We further
demonstrate the utility of these decompositions in a case-control functional logis-
tic regression model. The method is applied to a novel fMRI study of Alzheimer’s
disease risk under a verbal paired associates task. We found empirical evidence
of alternative connectivity in clinically asymptomatic at-risk subjects when com-
pared to controls. The relevant brain network loads primarily on the temporal lobe
and overlaps significantly with the olfactory areas and temporal poles.
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Abstract

Functional connectivity is the study of correlations in measured neurophysiological

signals. Altered functional connectivity has been shown to be associated with numer-

ous diseases including Alzheimer’s disease and mild cognitive impairment. In this
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manuscript we use a two-stage application of the singular value decomposition to ob-

tain data driven population-level measures of functional connectivity in functional mag-

netic resonance imaging (fMRI). The method is computationally simple and amenable

to high dimensional fMRI data with large numbers of subjects. Simulation studies sug-

gest the ability of the decomposition methods to recover population brain networks

and their associated loadings. We further demonstrate the utility of these decomposi-

tions in a case-control functional logistic regression model. The method is applied to

a novel fMRI study of Alzheimer’s disease risk under a verbal paired associates task.

We found empirical evidence of alternative connectivity in clinically asymptomatic at-

risk subjects when compared to controls. The relevant brain network loads primarily

on the temporal lobe and overlaps significantly with the olfactory areas and temporal

poles.

1 Introduction

Functional connectivity is the study of correlations in measured neurophysiological sig-

nals. Disruptions in functional connectivity have been shown to be associated with many

clinical sequelæ. However, methods for evaluating covariate-adjusted population level

differences in functional connectivity associated with high throughput imaging modalities

remains under current development. Matrix decompositions are common methods to

summarize single-subject connectivity in functional magnetic resonance imaging (fMRI)

for subsequent use in regression modeling. In this manuscript, we follow this approach

and investigate a generalization of functional principal components for analyzing popu-
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lation fMRI-based connectivity data. We focus our analysis on distinguishing risk-status

between subjects at high familial risk for Alzheimer’s disease and matched controls.

Functional connectivity is formally defined as “statistical dependencies among spa-

tially remote neurophysiological events” (Friston et al., 2007). In practice, the study of

functional connectivity is inherently tied to the methods used to evaluate the dependen-

cies and the technology used for measurement (Horwitz, 2003). We focus entirely on

functional connectivity as measured by BOLD (blood oxygen level dependent) fMRI using

a two-stage singular value decomposition (SVD). The SVD is useful for summarizing the

enormous number of correlations available into major directions of variation. We use the

SVD to find major directions of both subject-specific and population-level variation in fMRI

measurements and relate these directions to familial risk status in Alzheimer’s disease

using a functional logistic regression model.

The SVD has been used frequently to study connectivity in fMRI. Friston (1994) states

that “[the] SVD and equivalent devices are simple and powerful ways of decomposing a

neuroimaging time-series into a series of orthogonal patterns that embody, in a stepdown

fashion, the greatest amounts of functional connectivity”. Unlike seed voxel or ROI-based

techniques, SVD based approaches do not require specifying a-priori anatomical regions

or seeds. Moreover, as shown below, the SVD can be implemented quickly on modest

computing infrastructures.

Below, we apply a nested application of the singular value decomposition to eval-

uate group differences in functional connectivity. This method is complimentary to ex-

isting factor-analytic group decompositions, such as independent components analysis

and its tensor extensions (ICA Calhoun et al., 2001; Lukic et al., 2002; Svensén et al.,
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2002; Beckmann and Smith, 2005). Our approach produces orthogonal bases in time

and space. These orthogonal bases permits us to connect these results to functional

logistic regression. The method follows four steps: i., a subject-specific SVD, ii. a popu-

lation level decomposition of aggregated subject-specific eigenvectors, iii. projecting the

subject level data onto the population eigenvectors to obtain subject-specific loadings, iv.

using the subject-specific loadings in a case-control functional logistic regression model.

This results in a direct approach for covariate adjustments when relating functional con-

nectivity to group status. We apply these methods to a data set of subjects at high familial

risk for Alzheimer’s disease and matched controls.

Our analysis of the example dataset builds on extensive existing research demonstrat-

ing anatomical, functional and effective connectivity differences between subjects with

Alzheimer’s disease or cognitive impairment and non-diseased populations. Our study

differs from others by considering subjects at high familial risk for Alzheimer’s disease

that are clinically asymptomatic and matched controls (Bassett et al., 2006). In earlier

studies (see Bowman et al., 2008; Caffo et al., 2009), we found group differences in these

subjects when considering connectivity associated with regional task-related activation.

In this manuscript, we consider more classical voxel-based connectivity using variations

on the singular value decomposition. These methods do not rely on an anatomical par-

cellation of the brain. Moreover we connect the group SVD loadings to risk-status using a

new form of covariate-adjusted functional regression.
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2 Data

2.1 Study population

The data derive from an ongoing study of Alzheimer’s disease risk and biomarkers (Bas-

sett et al., 2006; Yassa et al., 2008). The data compare subjects at high familial risk for

Alzheimer’s disease and controls, usually low-risk spouses. Subjects were declared at

risk if at least one parent had an autopsy-confirmed diagnosis of AD and at least one first-

degree relative with a clinical diagnosis of probable AD. Control subjects had no affected

or diagnosed first degree relatives, screened negative on the Alzheimer Dementia Risk

Questionaire (Breitner and Folstein, 1984) and the Dementia Questionaire (Silverman

et al., 1986). Both control and at-risk subjects had no clinical AD symptoms. Specifically,

all subjects were free of self reported memory complaints or treatments and scored in a

normal range on the Telephone Interview for Cognitive Status (Brandt et al., 1988). At-risk

subjects were an average of 11 years younger than the age of diagnosis for the affected

parent. All subjects were over 50.

Two waves of data collection have been completed. Ninety five at-risk subjects and

90 controls were scanned in a first wave along with collection of important covariates,

accompanying cognitive testing and blood for genetic typing. A second wave of data

collection was performed approximately four years after baseline. A third wave of data

collection is currently underway. In our example data set, we consider the second wave

data.
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2.2 Imaging protocol

The fMRI images were obtained via a 1.5 T Philips Intera-NT scanner (Philips Medical

Systems, Best, The Netherlands) at the F.M. Kirby Functional Imaging Research Center

(Kennedy Krieger Institute, Baltimore, MD). The system utilizes a Galaxy gradient (66

mT/m at 110 mT/m/s). A standard head coil was used in image acquisition. A sagittal

localizer scan was collected for orientation. Two functional scans were acquired using

echo-planar imaging (EPI) and a blood oxygenation level-dependent (BOLD) technique

with repetition time (TR) = 1000 ms, echo time (TE) = 39 ms, flip angle = 90 degrees, field

of view (FOV) = 230 mm in the x-y plane and matrix size = 64 × 64 reconstructed to 128

× 128. Eighteen coronal slices were acquired with a 4.5 mm thickness and an interslice

gap of 0.5 mm, oriented perpendicular to the anteriorposterior commissure (ACPC) line.

Slices were acquired along the z-axis, yielding a total coverage of 90 mm. Two sessions

were performed, each with 370 time points. The data in this analysis considers only the

first session. Total fMRI acquisition time was 12 minutes and 20 seconds.

The paradigm, programmed in E-prime 1.1 (Psychology Software Tools, Inc., Pitts-

burgh, PA, USA), was an auditory word-pair association task consisting of two six minute

and ten second sessions. Each session consisted of six sets of three blocks. The types

of blocks included encoding, recall, and rest. In the encoding block, subjects were pre-

sented with seven unrelated word pairs. In the recall block, subjects were presented with

the first word of each pair and instructed to silently recall the second. In the baseline

block, subjects were presented with an asterisk.

Data pre-processing was performed using Statistical Parametric Mapping (SPM99,
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Wellcome Department of Imaging Neuroscience, University College, London, UK) under

MATLAB 7.0 (The Mathworks, Sherborn, MA, USA). Images were motion corrected by a

six-parameter rigid-body realignment with the mean image across sessions. This was fol-

lowed by re-slicing using a windowed-sinc interpolation. Non-linear normalization using 7

× 8 × 7 basis functions was used to warp each individual’s data into standard stereotaxic

space. Template space was defined by SPM’s standard EPI template (Montreal Neuro-

logic Institute, McGill University, Montreal, Canada). The template was manually cut to fit

each individual scan in order to improve the quality of normalization on the partial-brain

scans. Normalized scans were re-sliced to isotropic voxels (2 mm3), using trilinear in-

terpolation and spatially smoothed with a full-width at half-maximum (FWHM) Gaussian

kernel of 5 mm.

3 Methods

Let Yi(v, t) represent the fMRI data for voxel v = 1, . . . , V and scan t = 1, . . . , T . Our goal

is to obtain a parsimonious decomposition

Yi(v, t) =
∑

j

∑
k

ψj(v)ξk(t)λijk,

where ψj(v) and ξk(t) represent orthonormal functional bases in space and time, respec-

tively. Notice that ψj(v) and ξk(t) are population level bases that do not vary by subject.

In contrast, the loadings, λijk, are subject-specific. We show how to use the λijk in subse-

quent analyses as summaries of functional connectivity that achieve a great deal of data

reduction.
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Our approach utilizes two stages, subject-specific SVDs followed by population-level

principal components analysis. This approach is particularly well suited to high-dimensional

neuroimaging data and we further demonstrate how calculations can be performed on

very modest computing resources. In the first stage, we obtain subject-specific decompo-

sitions

Yi(v, t) =
∑

j

∑
k

ψ̃ij(v)ξ̃ik(t)λ̃ijk,

where

λ̃ijk =

∫ ∫
ψ̃ij(v)ξ̃ik(t)dvdt.

In the second stage, we retain a small number (say L) of ψ̃ij(v) and consider the popula-

tions of spatial functionsA = {ψ̃ij(v)}i=1,...,N,j=1,...,L and time series B = {ξ̃ik(t)}i=1,...,N,k=1,...,L.

These collections of functions are then decomposed using functional principal compo-

nents. In specific, we obtain decompositions

ψ̃ij(v) =
∑

l

δijlψj(v) and ξ̃ik(t) =
∑

l

γijlξk(t).

Here, ψj(v) are the eigenfunctions associated with A and ξk(t) are the eigenfunctions

associated with B and δijl and γijl are associated eigenvalues. The eigenfunctions are

then used to obtain the subject-specific loadings: λijk =
∫ ∫

Yi(v, t)ψj(v)ξk(t)dvdt, where

λijk is the subject-specific loading onto the left eigenfuction j and right eigenfunction k.

The benefits of this approach for summarizing connectivity information over related

methods are numerous. Firstly, only standard matrix decompositions are needed to esti-

mate the λijk. This is in contrast with full tensor-based SVD methods (see Leibovici and

Sabatier, 1998). Secondly, the process is performed iteratively in two stages. Thus, it

mirrors standard two-stage random effect analyses of fMRI data and computing can be
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parallelized. Moreover, because of the two stage process, the method can be applied on

very low memory systems. Thirdly, the parameters are uniquely interpretable. The ψj(v)

are population-level eigenimages, summarizing areas of temporal synchronization across

subjects. The ξk(t) are population-level eigenvariates, summarizing times of spatial syn-

chronization. The λijk represent the loading of subject i onto population eigenimages j

and eigenvariates k. Hence we hypothesize that these loadings will be a useful summary

of connectivity, that may be useful as predictors. Moreover, we demonstrate how their

use in regression models connects to functional regression. The loadings achieve a great

deal of dimension reduction; in our example, we demonstrate interesting findings using

only 25 of the loadings.

3.1 Implementation

Here we discuss implementation issues in dealing with high dimensional fMRI data. First,

a brain mask is applied across subjects and only those voxels represented in all sub-

jects are retained. This removes both background voxels as well as boundary voxels

with incomplete data across subjects due to inexact registration. Let Yi be the V × T

data matrix for subject i. We assume that Yi is centered in both time and space; i.e.

Yi = {I − 1′(1′1)−11′}Ỹi{I − 1′(1′1)−11′} where Ỹi is the uncentered data matrix. We

define the global connectivity matrix as the V × V matrix YiY
′
i/T , which has (v1, v2) ele-

ment 1
T

∑T
t=1 Yi(v1, t)Yi(v2, t). This matrix completely summarizes temporally synchronous

behavior in the fMRI data. However, having
(

V
2

)
unique elements, it necessarily must be

summarized and is difficult to work with computationally. In contrast, Y′iYi is T × T ,
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where T is usually on the order of 500 or fewer. Consider the eigenvalue decomposition

of Y′iYi = ViD
2
i V
′
i where V′iVi = I and D2

i is a diagonal matrix of eigenvalues. Here, the

columns of Vi contain the subject-specific eigenvariates. Let Ui = YiViD
−1
i . Notice that,

performed in this order, Ui,Di and Vi can be obtained quickly, without having to reserve

memory or perform operations on the V × V global connectivity matrix. Defining Ui as

such implies Yi = UiDiV
′
i and 1

T
YiY

′
i = 1

T
UiD

2
i U
′
i.

The columns of Ui are referred to as eigenimages (Friston et al., 2007) and approx-

imate the ψi(v). Areas of the brain that load heavily within a column jointly explain

variation in the fMRI images and hence are often thought to represent brain networks

(Friston, 1994). This is further evidenced by noting that, the global connectivity matrix

satisfies 1
T
YiY

′
i = 1

T

∑
DijUijU

′
ij where Dij is the jth diagonal entry of Di and Uij is

column (eigenimage) j from Ui. That is, the global connectivity matrix decomposes into

a weighted sum of the outer products of the brain networks. The columns of Vi, referred

to as eigenvariates, estimate ξi(t). One can think of these as representing how the brain

networks mix over time.

Slightly abusing notation, suppose that Vi and Ui contain relatively few columns (say

L = 5). Let E be the (NL)× T matrix obtained by stacking the V′i across subjects and H

be the (NL)× V matrix obtained by stacking the U′i across subjects. Let Σ̂E be the sam-

ple variance matrix: E′{I−1(1′1)−11′}{I−1(1′1)−11′}E and Σ̂H = H′{I−1(1′1)−11′}{I−

1(1′1)−11′}H be the corresponding matrix for H. We consider the eigenvalue decompo-

sition of Σ̂E = VD2
EV′ and Σ̂H = UD2

HU′. Now the columns of V represent population

eigenvariates and the columns of U represent population eigenimages; hence estimating

ψj(v) and ξj(v) respectively. In practice, calculating U requires a similar technique as
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outlined above to avoid creating the V × V matrix ΣH .

We then project original subject specific data onto these bases. In specific, Let Λi =

[λijk]j,k = UYiV
′. Here element (j, k) of Λi represents the subject-specific loading onto

population eigenimage j and eigenvariate k. Hence, it represents the loading onto the

specific brain network given by column j of U for the particular time series represented

by column k of V. These our the proposed estimates for λijk.

3.2 Functional regression

We consider a retrospective-style analysis with case-status as the outcome and the fMRI

data and covariates as predictors. Let Di ∈ {0, 1} represent the risk status for subject i

with covariate values Xi. Consider the functional regression model:

logit{P (Dij = 1)} =

∫ ∫
Yi(v, t)β(v, t)dvdt+ Xiγ.

Let φj(v) and ξk(t) be eigenfunctions. Then we have

∫ ∫
Yi(v, t)β(v, t)dvdt =

∫ ∫ {∑
j

∑
k

φj(v)ξk(t)λijk

}
β(v, t)dvdt =

∑
j

∑
k

λijkτjk,

where τjk =
∫ ∫

φj(v)ξk(t)β(v, t). Hence our model becomes

logit{P (Dij = 1)} =
∑

j

∑
k

λijkτjk + X′iγ.

Here τjk represents the change in the log-odds for risk status for brain network j and time

series k.

To summarize, logistic regression models having the loadings as covariates result

in a form of functional regression involving the entire subject-specific fMRI time series
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integrated over the bases derived by the population eigenimages and variates. In this way,

covariate-adjusted regression relationships associated with connectivity can be explored

easily. Moreover, to account for matching generalized linear mixed effect models (see

McCulloch and Searle, 2004) with a fixed effect design matrix comprised of the λijk and

Xi and pair-specific random effects can be used.

3.3 Simulation study

To evaluate the ability of the two-stage decomposition method to recover population eigen-

images and variates, we conducted a simulation study. Figure 1 displays five population

eigenimages and eigenvariate time series. For the eigenimages, each gray scale repre-

sents a different network. The eigenvariates were a set of orthogonal cosine functions

with different periods. Let U and V be matrices with columns representing the eigenim-

ages and variates, respectively. We then simulated 200 a 5× 5 matrices Λ̃i = [λijk]j,k with

each λijk ∼ N
(
0, 216

2i3j

)
. Then we defined subject-specific data matrices as Yi = U′ΛiV.

The two-stage decomposition method was then applied to obtain estimates of the popu-

lation eigenimages and variates. We then calculated the maximum of absolute value of

the correlation between the first five estimated population eigenImages and variates with

each of the actual eigenImages and variates. This entire process was then repeated 100

times.
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4 Results

4.1 Simulation data

Table 1 displays the median, maximum and range of the maximum absolute value of the

correlation between the estimated population eigenimages and eigenvalues and the ones

used for simulation. That is, we found the correlation between the estimated eigenimage

and variate that agrees best with the true values. The results show that the method recov-

ers the eigenvariates extremely well and recovers the eigenimages fairly well. The results

were similar over a range of simulation settings. In the discussion we illustrate settings

where the method obtains mixtures of the eigenimages and was unable to separate them.

4.2 Analysis of the AD data set

Table 2 displays demographic data for the AD At-risk data set. In this second wave of

study there are 81 at-risk subjects and 68 controls. The groups are well matched on

gender, age and education level. Unsurprisingly, there is a significant difference in the

number of ε4 alleles of the Apolipoprotein E gene, as the number of such alleles has been

associated with late onset Alzheimer’s disease (see Strittmatter and Roses, 1996, for a

review).

We then applied the two-stage decompositions outlined above with one caveat. The

population eigenimages and eigenvariates were heavily dominated by overall subject-

specific signal changes from mean shifts being the first component of the subject-specific

decompositions. This heterogeneity represent technological variation, such as scanner
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gain, that is not of interest when comparing group connectivity. Subtracting the row means

of E and H above (i.e. forcing the first level eigenimages and variates to have mean zero)

removed any overall shifts from the population level eigenimages and variates.

Figure 2 displays the percentage of the population variation in the first level eigenim-

ages and eigenvariates explained by the second level principal components decomposi-

tion. Both of these curves have a fairly slow rate of decay, suggesting a large degree of

population-level heterogeneity in the subject-specific decompositions.

Figure 3 displays three-D renderings of the first ten population eigenimages. For con-

text, Figure 4 gives regions of interest (based on the anatomical parcellation given in

Tzourio-Mazoyer et al., 2002) that have over 20% of their area overlapping with the eigen-

image. Recall, eigenimages and variates are unique only up to scalings and therefore

positive and negative values could be reversed with no loss of information.

We summarize a subset of the population eigenimages. The first loads primarily on

the superior portion of the temporal lobe. The second covers the majority of the imaging

area. The third loads heavily on the temporal lobe and limbic substructures, such as the

para-hippocampal gyrus. The fourth covers temporal and limbic areas and intersects with

the small portion of the cerebellum in the imaging area. The eighth, which we will see is

one of the more important eigenimages, loads specifically on temporal and limbic areas,

especially covering olfactory areas. This is of interest as deficits in olfaction have been

hypothesized to be connected with neurodegenerative disorders and AD in particular (see

Mesholam et al., 1998, for a meta analysis and review).

Figure 5 displays the first ten population eigenvariates and their associated spectrum.

The first eigenvariate represents a drift in the signal, which could represent biological
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or technological trends, such as learning effects or scanner drift. We reiterate that one

must remember that the signs of such analysis are arbitrary and could represent either

and increase or decrease in the signal over the session. The following two population

eigenvariates represent slowly varying functions. The remaining have spectra that include

spikes at the same frequency as the paradigm (see Figure 6), but also include higher

frequency information. We further investigated if the eigenvariates separate between the

two components of the task (encoding versus recall), which have the same spectra, but

different phases. The fourth eigenvariate time is more correlated with the recall paradigm

rather than encoding (-.02 versus .23). Eigenvariates 6 and 9 are more correlated with

encoding than recall (correlations of -.14 versus -.04 and .19 versus .02, respectively).

Eigenvariate 8, which is the most obviously associated with the paradigm, was more

correlated with encoding (-.45 versus -.25), but retained significant correlation with the

recall blocks. To elaborate, the peaks of this eigenvariate occur between the encoding

and recall blocks, though are slightly closer to the recall blocks.

We next considered the use of the subject-specific loadings in functional logistic re-

gression models. Before fitting fixed effect regression models, we first considered random

effect models that accounted for spousal matching and familial aggregation. Fitted results

suggested little or no correlation due to spousal matching or family. Therefore, we omit

addressing this potential correlation in subsequent analyses.

Table 3 displays P-values for predicting risk-status treating each population loading

in a separate model. Figure 7 shows 25th, 50th and 75th percentiles by risk group for

the ten most significant loadings. Of these, the most significant is the fourth population

eigenimage and eighth eigenvariate. This appears to incorporate variation associated

15
Hosted by The Berkeley Electronic Press



with the paradigm in the temporal poles. The next most significant loads heavily on the

eighth population eigenimage and sixth eigenvariate. This eigenvariate includes slower

variation contrasted between the superior temporal lobe and the olfactory areas of the

temporal lobe. Given that the estimates are entirely empirical without a-priori hypotheses,

multiplicity issues demand that these results must be interpreted with a grain of salt. To

address this issue, we refit the models and retained the smallest P-value 1,000 times,

permuting risk status each time (thus breaking any potential association between risk

status and loadings). A histogram estimate of the minimum P-value is given in Figure 8.

These results suggests that there is a 50% chance of obtaining a minimum P-value as

small as 0.01 and hence the possibility that the results may be due to chance associations

can not be ruled out.

5 Discussion

This paper shows the utility of two-stage decompositions for the analysis of population

based fMRI data. Our approach first used the singular value decomposition to obtain

subject-specific eigenimages (networks) and eigenvariates (time series). A small num-

ber of these are retained and aggregated. Separate second-level eigenvalue decom-

positions for the collections of eigenvariates and eigenimages, respectively, are used to

form population-level brain networks and time series. We project the subject-level data

onto these population eigenvectors to obtain a matrix of loadings onto each network/time

series combination. We further showed how these loadings can be used in a general-

ized functional regression. We applied then in a matched case/control style analysis of
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Alzheimer’s disease familial risk status.

The two-stage decomposition approach has several notable benefits as an exploratory

method for discovering population brain networks and major directions of functional varia-

tion. Foremost is computational ease. Subject-specific decompositions are relatively eas-

ily obtained and, by retaining only a few of the networks and time series, the population

values are similarly easily computed. We further explicitly demonstrated how calculations

can be approached so that a high dimensional full connectivity matrix is never required

to be loaded into memory. In addition, first level calculations can be easily made embar-

rassingly parallel. Thus, this methodology will scale to next-generation studies involving

hundreds or thousands of subjects. Another alternative would be the use of tensor ex-

tensions of the SVD and factor analysis (Leibovici and Sabatier, 1998; Kolda and Bader,

2009; De Lathauwer et al., 2000). While these methods offer more theoretically complete

alternatives, they lack the simplicity and easy execution of two-stage decompositions.

By using the SVD as the basis for the decomposition, the most variable aspects of the

population of fMRI data are used in the ensuing functional regression. This is useful, as

more variable predictors will have lower standard errors. Our simulation studies highlight

the ability of these methods to recover population-level networks and time series and

effectively incorporate them into functional regression models.

We also demonstrate the inferential potential of these population networks and time

series by projecting subject level data onto these bases. We then show how functional

regression modeling can be used to assess significance of the loadings. Our work is

influenced by work in functional regression for non-functional neuroimaging in Reiss and

Ogden (2008a), Reiss and Ogden (2008b) and Reiss et al. (2005).
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A potential point of criticism is the difficulty in the choice of the number of components

to be included from the subject-specific decompositions in the second level analysis. Our

current approach uses visual inspection of the collection of scree plots and we stiplulate

that this could be improved upon. A second point of criticism is the lack of accounting for

the multiple observations per subject contributing to the population level decomposition.

We are less concerned with this aspect of the analysis, as this would affect inference

based on the population eigenvectors more than estimation. However, in this manuscript,

we focus on estimation and the use of the eigenvectors as predictors in functional regres-

sion models and do not make use of their measurement variation (though see Crainiceanu

et al., 2009a). A final point of criticism is the lack of use of the variance ordering of subject-

specific eigenvectors in the subsequent population analysis. That is, a subject’s first and

fifth eigenvectors are treated equally in the population decomposition. We hypothesize

that this criticism can be addressed by a weighting using the inverse of the associated

eigenvalues. However, we relegate this approach to future research.

This manuscript addresses decomposition methods to evaluate cross-sectional vari-

ation in brain networks. However, longitudinal functional imaging studies are becom-

ing increasingly common. We have developed multilevel functional principal component

methods for functions of one variable (time, for example) and are currently generalizing

methods to consider hierarchical imaging data. However, the extension to extremely high

dimensional imaging data remains a difficult task. Furthermore, connecting these decom-

position methods with outcomes via functional regression is an area of active research

(see Di et al., 2009; Crainiceanu et al., 2009b).

It is also worth noting limitations of using SVD to study brain networks. First, these

18
http://biostats.bepress.com/cobra/art62



decompositions guarantee orthogonal eigenimages and eigenvariates, which may or may

not reflect actual biology. Our simulation study specifically assumed orthogonal networks

and time series. Moreover, our simulation study imposed a large amount of variation

when mixing over the time-series and images, also creating an ideal setting for the SVD.

The method would struggle if signals were mixed largely in equal parts. In contrast, other

methods, such as ICA, are more robust to these assumptions and hence are popular for

analyzing brain connectivity (see Calhoun et al., 2003). However, unlike ICA, this two-

stage SVD does not force a distinction between spatial and temporal decompositions. In

addition, our two-stage method avoids the question of whether to stack rows or columns

for group analysis (Calhoun et al., 2001; Lukic et al., 2002; Svensén et al., 2002; Guo and

Pagnoni, 2008). More analogous tensor versions of ICA have been proposed (Beckmann

and Smith, 2005); however, it is not clear whether computations will scale to large fMRI

studies. Finally, though imposing orthogonality is rigid, it is very useful for creating a basis

to decompose the fMRI signal for subsequent use in regression models.

The analysis of the AD risk data set yields interesting findings on altered connectivity

in subjects with high familial risk for Alzheimer’s disease. The atypically large sample size

for a functional imaging study and pre-clinical population including subjects at high familial

risk are unique aspects of this study. This analysis corroborates differences in connectivity

found using other methods on the same data (Caffo et al., 2009; Bowman et al., 2008). It

is also of interest to note that, unlike the first wave (Bassett et al., 2006), group differences

in paradigm-related activity were unremarkable in the second wave (see Caffo et al., 2009;

Bowman et al., 2008). This change in paradigm-related activity may be due to a variety

of reasons, including learning effects, differential attention to the task between the groups
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across visits and so on. A benefit of the study of functional connectivity is the lack of

reliance on the paradigm, and hence potential robustness to these effects.

We demonstrate evidence for altered connectivity between asymptomatic at-risk sub-

jects. Of primary interest is group segregation for the network encompassing the tem-

poral poles and the olfactory areas of the temporal lobe. However, we caution over-

interpretation of these results, as connectivity differences were not a primary a-priori hy-

pothesis of the study and this effect did not survive multiplicity adjustment. For future

work, we are investigating the robustness of the networks over time, both in the earlier

phase and the third phase currently being collected. Further, potential weakness of our

study is the narrow imaging area, which ignores possible long-range connectivity. How-

ever, we note that the imaging area focused on a band surrounding the medial temporal

lobe, an area believed to be associated with AD (see the discussion in Bassett et al.,

2006).

Our study compliments existing research on altered anatomical and functional connec-

tivity between mild AD and mild cognitive impairment subjects and controls. Grady et al.

(2001) studied 21 health elderly subjects and 11 mildly demented subjects using rCBF

PET. They reported decreased correlations for the demented group between task-related

areas in the prefontal cortex and hippocampus. Stam et al. (2007) considered small-world

network hypotheses using EEG comparing 15 Alzheimer’s patients and 13 control sub-

jects. They report decreased complexity of the network for the diseased group. Greicius

et al. (2004) used ICA and fMRI to study default mode network differences between 13

mild AD cases and matched controls. They found decreased activation in the default

mode network for the AD group in the posterior cingulate and hippocampus. Wang et al.
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(2006) studied connectivity between the hippocampus and other regions in 13 mild AD

cases and matched controls and found disrupted and increased connectivity for the AD

and control groups. Wang et al. (2007) considered inter-regional correlations between

14 AD subjects and matched controls in PET and found both increased and decreased

inter-group connectivity differences.

In summary, the two-stage applications of the singular value decomposition along with

functional logistic regression can shed considerable light on group fMRI studies. Es-

timates are easily calculated and computations scale to large studies. The functional

logistic regression model allows for easy consideration of covariate effects, subject-level

matching. This method of analysis, though exploratory, raises the possibility of novel

associations between altered connectivity and Alzheimer’s disease risk status.
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Figure 1: Eigenimages (left) and eigenvariates (right) used for the simulation study.
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Figure 2: Percent of the population variation in first level-eigenvariates (left) and eigenim-

ages (right) explained by second-level eigenvalue decomposition. The horizontal axis has

been transformed by log base 2 with the natural scale percentages displayed on the tick

marks.
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Figure 3: Three-D rendering of thresholded versions of the first six eigen images overlaid

on a template. Red areas load positively while blue areas load negatively. The upper left

is the first eigen image, the upper middle is the second, and so on.
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Figure 4: Regions with over 20% overlap with the specified eigenimage. Red areas load

positively, blue negatively, purple have partial volumes loading positively and negatively.

Abbreviations: Amyg. = Amygdala, Cer. = Cerebellum, Fr. = Frontal, Fus. = Fusiform

gyrus, Inf. = Inferior, Ins. = Inusla, L. = Left, Mot. = Motor Area, Olf. = Olfactory, Op.

= Opercular part, PHG = Para-Hippocampal Gyrus R. = Right, Rol. = Rolandic, Sup. =

Superior, Supp. = Supplementary, Temp. = Temporal .

29
Hosted by The Berkeley Electronic Press



0 100 200 300

−
0.

05
0.

05

Seconds

E
ig

en
va

ria
te

−40 0 20 40

0
40

80

mHz

S
pe

ct
ru

m

0 100 200 300

−
0.

10
0.

00

Seconds

E
ig

en
va

ria
te

−40 0 20 40

0
50

15
0

mHz

S
pe

ct
ru

m

0 100 200 300

−
0.

10
0.

00

Seconds

E
ig

en
va

ria
te

−40 0 20 40

0
20

40
60

mHz

S
pe

ct
ru

m

0 100 200 300

−
0.

10
0.

00

Seconds

E
ig

en
va

ria
te

−40 0 20 40

0
40

80

mHz

S
pe

ct
ru

m

0 100 200 300

−
0.

10
0.

05

Seconds

E
ig

en
va

ria
te

−40 0 20 40

0
20

60

mHz

S
pe

ct
ru

m

0 100 200 300

−
0.

10
0.

00

Seconds

E
ig

en
va

ria
te

−40 0 20 40

0
40

80

mHz

S
pe

ct
ru

m

0 100 200 300

−
0.

10
0.

05

Seconds

E
ig

en
va

ria
te

−40 0 20 40

0
40

80

mHz

S
pe

ct
ru

m

0 100 200 300

−
0.

10
0.

05

Seconds

E
ig

en
va

ria
te

−40 0 20 40

0
40

80

mHz

S
pe

ct
ru

m

0 100 200 300

−
0.

10
0.

05

Seconds

E
ig

en
va

ria
te

−40 0 20 40

0
40

80

mHz

S
pe

ct
ru

m

0 100 200 300

−
0.

10
0.

05

Seconds

E
ig

en
va

ria
te

−40 0 20 40

0
20

40
60

mHz

S
pe

ct
ru

m

Figure 5: First ten population eigenvariates for the at-risk AD data set. To the right of each

plot is the associated spectrum in the -50 to 50 millihertz (mHz) range.
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Figure 6: Haemodynamically convolved encoding (top) and recall (bottom) design vectors

with associated spectrum.
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Figure 7: Normalized loadings’ 25th, median and 75th percentiles by group. Diamonds are

at-risk, controls are squares. The (eigenimage, eigenvalue) pair are depicted to the left

and gray bars are used to highlight groups.
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Figure 8: Resampled distribution of minimum P-values with a reference line at 0.01.
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B Tables

Eigenimages

1 2 3 4 5

Med 0.819 0.633 0.625 0.917 0.917

Min 0.990 0.889 0.897 0.985 0.994

Max 1.000 0.998 0.999 0.999 0.999

Eigenvariates

1 2 3 4 5

Med 0.945 0.917 0.914 0.964 0.980

Min 0.996 0.991 0.990 0.992 0.996

Max 1.000 1.000 1.000 1.000 1.000

Table 1: Summary of maximum absolute correlation between true population eigenimages

and eigenvariates and the first five estimated eigenimages and variates. Numbers are

Median (Range).
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At-risk Control P-value

Count 81 68

Gender No. Male (%) 33 (41%) 36 (53%) .19

Age Mean (SD) 62 (6.68) 62 (7.5) .90

APOE No. Any 4 (%) 28∗ (35%) 12 (18%) .04

Years of Educ. No. < 12 (%) 5 ( 6%) 2 ( 3%)

No. 12 (%) 18 (22%) 12 (18%)

No. (12, 16) (%) 16 (20%) 11 (16%)

No. 16 (%) 16 (20%) 12 (18%)

No. > 16 (%) 26 (32%) 31 (46%)

.51

Table 2: Demographic data by risk status. ∗ One at-risk and one control subjects missing

APOE status. Age P-values based on two group t-test while remaining were based on

Chi-squared tests.
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Eigenvariate

EigIm 1 2 3 4 5 6 7 8 9 10

1 0.822 0.779 0.264 0.791 0.850 0.235 0.210 0.200 0.379 0.987

2 0.759 0.734 0.792 0.326 0.329 0.699 0.265 0.735 0.076 0.692

3 0.774 0.528 0.361 0.579 0.507 0.189 0.240 0.981 0.512 0.183

4 0.710 0.603 0.900 0.549 0.696 0.166 0.953 0.010 0.153 0.186

5 0.819 0.754 0.767 0.774 0.381 0.417 0.162 0.525 0.512 0.849

6 0.735 0.721 0.716 0.483 0.941 0.303 0.091 0.931 0.715 0.398

7 0.582 0.686 0.706 0.818 0.996 0.314 0.910 0.713 0.560 0.474

8 0.305 0.930 0.165 0.968 0.743 0.050 0.354 0.681 0.262 0.299

9 0.684 0.742 0.675 0.097 0.718 0.052 0.822 0.053 0.348 0.674

10 0.945 0.678 0.529 0.145 0.845 0.574 0.996 0.078 0.158 0.828

Table 3: P-values comparing At-risk and control subject for each loading from functional

linear models with a covariate term indicating the presence of any four APOE alleles.
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