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Abstract: Missing values in predictors are a common problem in survival analysis. In 

this paper, we review complete-case analysis and maximum likelihood estimation for 

accelerated failure time models with missing predictors, and apply a new method called 

subsample ignorable likelihood (Little and Zhang 2011) to this class of models. The 

approach applies a likelihood-based method to a subsample of observations that are 

complete on a subset of the covariates, chosen based on assumptions about the missing 

data mechanism. We give conditions on the missing data mechanism under which the 

subsample ignorable likelihood method is consistent, while both complete-case analysis 

and ignorable maximum likelihood are inconsistent. We illustrate the properties of the 

proposed method by simulation and apply the method to a real dataset. 
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1. Introduction 

The accelerated failure time model (AFT model; Kalbfleisch and Prentice, 2002) is a 

common form of regression analysis when the outcome is a (possibly censored) survival 

time, such as the time to develop a disease or death. The model is specified by 

( )log ,T

i i iT x β σε= +  ( )0
~ .
iid

i
Sε , 1, 2,...,i n= ,  

in which 
i

T ’s are the actual failure times, 
i

x ’s are vectors of covariates, β  is the vector 

of regression coefficients, σ is the scale parameter, and ( )0 .S is a known baseline 

survival distribution. We obtain the log-normal accelerated time model if 0S is the 

standard normal distribution, the log-logistic AFT model if 0S is the logistic distribution, 

and the Weibull AFT model if 0S is the extreme-value distribution (See Table 1). The 

actual failure time, 
i

T , is not observed if the study terminates before the failure happens. 

Let  
i
δ denote the censoring indicator, equal to 1 if failure is observed, and 0 if failure is 

censored. Given censored survival data {( , , ), 1,.. }
i i i

x t i nδ = , where 
i

t is the random 

observed time (failure or censoring), the likelihood function can be written as 
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Analysis of disease registry and mortality data are often complicated by incomplete 

covariate data, because a variable is not measured or the subject does not respond to 

certain questions. We consider the accelerated failure time model with missing 

covariates.  Common current approaches are:  

(a) Complete-case (CC) analysis, which excludes subjects with missing covariate 

data; 

(b) Ignorable likelihood (IL) methods, which base the inference on the observed 

likelihood for a model that does not include a distribution for the missing data 

mechanism of the missing covariates. The censoring mechanism for the outcome 

is strictly speaking non-ignorable but known, and is incorporated by including the 

censoring indicator in the likelihood – see for example Little and Rubin, 2002, 

Chapter 15. Examples of IL methods include ignorable maximum likelihood 

(IML; Meng and Schenker, 1999; Cho and Schenker, 1999; Lipsitz and Ibrahim, 

1996a; Lipsitz and Ibrahim, 1996b), Bayesian inferences (Chen, Ibrahim, and 

Lipsitz, 2002; Bedrick, Christensen, and Johnson, 2000), and multiple imputation 

(Giorgi et al., 2008; White and Royston, 2009),  

(c) Non-ignorable modeling methods, which jointly model the variables and the 

missing data mechanism for the covariates (Hemming and Hutton, 2010; Herring, 

Ibrahim, and Lipsitz, 2002). This approach is less common in practice, because it 

is difficult to specify the model for the missing data mechanism correctly, and 

problems with identifying the parameters (Little and Rubin (2002), Ch. 15). 
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Ignorable likelihood methods have the advantage of retaining all data, but they 

assume that the missing data are missing at random (MAR), in the sense that the 

missingness of the covariates does not depend on the missing values, after conditioning 

on the observed data (Rubin, 1976; Little and Rubin, 2002). Complete-case analysis 

involves a loss of information but has the advantage of yielding valid inference when the 

missingness depends only on the covariates, but not on the failure time. Little and Zhang 

(2011) provide a formal justification based on partial likelihood ideas.  

In this article, we apply the subsample ignorable likelihood method proposed in Little 

and Zhang (2011) to the accelerated failure time model (SILAFT). The method mitigates 

the information loss of CC analysis while retaining the property of allowing missingness 

of some covariate to depend on their underlying values, a nonignorable mechanism where 

IL methods are subject to bias. The key idea is to partition the covariates into three sets – 

one set (say Z) fully observed, one set (say W) for which the missingness is assumed to 

depend on covariates (including W) but not on the failure time, and one set (say X) for 

which the missingness are assumed MAR in the subsample of cases with W fully 

observed. The proposed SILAFT methods apply an IL method to the subsample of case 

with W fully observed. Particular forms of SILAFT methods include ignorable maximum 

likelihood, Bayesian inference, and multiple imputation. Conditions formalized in section 

4 indicate that SILAFT gives valid estimates in some circumstances where both CC and 

IL methods are biased.  

Section 2 presents a motivating problem based on data from the National 

Longitudinal Mortality Study (NLMS), where the AFT model is applied to study the 

relationship between mortality and education and income, adjusting for race, gender, and 
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marital status. In this application, gender and age are fully observed, but the other 

variables have missing values; it was thought that missingness of education, race, and 

marital status was at random, but missingness of household income was likely to depend 

on income. In this example, Z consists of age and gender, W consists of income and X 

consists of education, race and marital status. The SILAFT methods apply an IL method 

to the subsample of cases with income observed.  

Section 3 presents the proposed SILAFT method and describes conditions on the 

missing data mechanism under which it gives consistent estimates, but both IL and CC 

analyses are biased. We illustrate the properties of the SILAFT methods and alternatives 

in Section 4, using simulation studies. In Section 5, we apply the method to the 

motivating data from the NLMS (Sorlie et al., 1995). We conclude with some discussion 

in Section 6. 

 

2. Motivating problem: social inequalities in mortality 

Social inequalities, as measures in variables such as education and income, have been 

shown to be related to mortality (Antonovsky, 1967; Black et al., 1982; Hann et al., 1987; 

Sorlie et al., 1995). However, social inequalities are usually viewed as causally irrelevant 

“confounding variables” rather than risk factors of mortality (Rothman 1986). 

Accordingly, Link and Phelan (1995) proposed that socioeconomic status is a 

“fundamental cause” of disparity in mortality. In this paper, we use a dataset from the 

National Longitudinal Mortality Study (NLMS) (Sorlie et al., 1995) to study the 

relationship between income and education-related social inequality and  mortality. We 
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use 579,566 subjects who were at least 25 years old at baseline survey from the total of 

988,346 participants from the NLMS study and the following variables are extracted: 

(a) Time to event outcome: The length of follow-up period (in years) and the death 

indicator (0=Alive, 1=Dead); 

(b)  Two socioeconomic status measures at baseline: Adjusted household income and 

education; 

(c) Other covariates: Age at baseline, gender, race and marital status.  

The AFT model is used to study the effect of income and education on time to death.  

Some of the variables have missing values – see Table 2 for the number of missing values 

for each variable. CC analysis suffers from a loss of all observations that contain missing 

values. IL methods capture the partial information from the incomplete cases that is lost 

by CC analysis but assume that the missing values are MAR. It is reasonable to assume 

MAR for the missingness of education, race, and marital status, but the missingness of 

household income is thought to depend on the underlying value income – often 

individuals with high or low values of income are less likely to respond to income than 

others (David et al., 1986, Lillard et al., 1986, Yan et al., 2010). If these assumptions are 

correct, the IL methods yield biased estimates of the AFT model. This motivates 

SILAFT, which allows assumptions of missingness at random for some variables 

(Education, Race, and Marital status) and assumptions of missingness not at random for 

others (Adjusted household income), in a sense defined precisely in Section 4. 

 

Table 2 About Here 
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3.  Subsample Ignorable Likelihood AFT models 

We consider the missing data pattern in Table 3, which includes a set of 

completely observed covariates Z and two sets of covariates with missing values, namely 

W and X.  

Table 3 About Here 

The columns 
iw

R  and 
ix

R  represents vectors of response indicators for 
i

w  and 
i

x , 

the values of W and X for unit i, with entries 1 if a variable is observed and 0 if a variable 

is missing. To describe missing data patterns for a set of variables (say v), it is convenient 

to write (1,...,1)
v

u =  to denote a vector of 1’s of the same length as the vector v, and 
v

u  

to denote a vector of 0’s and 1’s of the same length as v for which at least one entry is 

zero. In Table 3, ,
iw w x x

R u R u= =  for the complete cases in Pattern 1, ,
iw w x x

R u R u= =  

for the cases in Pattern 2, where W is fully observed and X has at least one missing value, 

and 
iw w

R u=  for the cases in Pattern 3, where W has at least one missing value. The 

pattern of missing values will typically vary for cases within these three sets, but we do 

not need to distinguish them for the present discussion. Interest concerns the parameters 

φ  of the distribution of ( , )t δ given (Z, W, X), say (( , ) | , , , )
i i i i i

p t z w xδ φ . We propose 

SILAFT, which discards data in Pattern 3 and applies an IL method to the subsample of 

cases in Patterns 1 and 2 with both Z and W observed. The division of covariates into W 

and X for SILAFT  is determined by assumptions about the missing data mechanism. 

Specifically, the method is valid under the following two assumptions: 

(a) Covariate missingness of W: the probability that W is fully observed depends only on 

the covariates and not ( , )t δ , that is: 
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( ) ( )| , , , ( , ), ) | , , , )  for all ( , )
i iw w i i i i i w w w i i i w i ip R u z w x t p R u z w x tδ ψ ψ δ= = =  (1) 

(b) Subsample MAR of X: Missingness of X is MAR within the subsample of cases for 

which W is fully observed, that is: 

 
obs, mis,

( | , , , ( , ), )

( | , , ( , ), , )   for all ,

i i

i i

x i i i i i w w

x i i i i i w w i

p R z w x t R u

p R z w t x R u x

δ

δ

= =

=
 (2) 

 The validity of SILAFT under (1) and (2) follows from similar arguments to those 

in Little and Zhang (2011). We first consider the conditional likelihood for a set of 

parameters ζ based on the joint distribution of , ( , ),
X

X t Rδ  given W and Z and 
iw w

R u= , 

that is, restricted to cases i with W fully observed: 

( )cc,w obs,

1

( ) ( , ), , | , , ;
i i

m r

i i i x i i w w

i

L p t x R w z R uζ δ ζ
+

=

= =∏ , 

where ( , )ζ θ ψ= . By a direct application of Rubin's (1976) theory, under the subsample 

MAR condition (6), this likelihood factorizes as 

( ) ( )cc,w obs, obs,

1 1

( ) ( , ), | , , ( , ), ; | , , ( , ), , ;
i i i

m r m r

i i i i i i i w w x i i i i i w w

i i

L p t x w z t R u p R w x t z R uζ δ δ θ δ ψ
+ +

= =

= = × =∏ ∏
, 

where the second component on the right side does not involve θ , and the first 

component on the right side, namely  

( )ign,w obs, obs,

1

( ) , | , , ;
i

m r

i i i i w w

i

L p x y w z R uθ θ
+

=

= =∏ , 

is the likelihood for the subsample with 
i

w  observed, ignoring the distribution of 

the missing data indicators 
ix

R . Thus inference about θ , the parameter of the distribution 

(X, ( , )t δ ) given (W, Z), based on 
ign,w

( )L θ  is valid. Now factorize 
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( )
( ) ( )

, ( , ) | , , ;

( , ) | , , , ; | , , ; .

i

i i

i i i i i w w

i i i i i w w i i i w w

p x t w z R u

p t x w z R u p x w z R u

δ θ

δ θ θ

= =

= × =
 

By assumption (1), ( ) ( )( , ) | , , , ; ( , ) | , , ,
ii i i i i w w i i i i ip t x w z R u p t x w zδ θ δ φ= = , where 

( )φ φ θ=  is the parameter of the regression of interest, and the conditioning on the cases 

with W observed is removed. Thus, under assumptions (1) and (2), we can base 

inferences about θ  on 
ign,w

( )L θ , and then derive likelihood inferences about ( )φ φ θ=  as 

in Section 3.  

The missing data mechanism defined by conditions (1) and (2) is suitable in 

empirical studies where it is natural to assume covariate-dependent missingness for some 

covariates and subsample MAR missingness for others. For example, in the motivating 

example concerning the time to mortality on socioeconomic variables in Section 2.2, 

Income may be covariate-dependent and the Education and Race may be subsample 

MAR. Generally, SILAFT methods are based on a partial likelihood (Cox 1972) with the 

component 
ign,w

( )L θ discarded from the analysis, and hence involve a loss of efficiency 

relative to full likelihood methods. However, they are more efficient than CC analysis, 

and avoid the need to specify the form of the missing data mechanism beyond 

assumptions (1) and (2). 

Assumptions (1) and (2) differ from the assumptions under which IL and CC 

methods are valid. Specifically, IL inference assumes the data are MAR, that is: 

 
obs, obs,

mis, mis,

( , | , , , ( , ), ) ( , | , , , ( , ), ) 

                                                                          for all , .

i i i iw x i i i i i w x i i i i i

i i

p R R z w x t p R R z w x t

w x

δ ψ δ ψ=
 (3) 
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where missingness of both 
i

w  and ( , )
i i

x y  can depend on missing components of 
i

w . CC 

analysis yields valid inferences if the probability that an observation is complete does not 

depend on the outcomes, that is: 

 
( )

( )
, | , , , ( , ), )

, | , , , )   for all ( , ).

i i

i i

w w x x i i i i i

w w x x i i i i i

p R u R u z w x t

p R u R u z w x t

δ ψ

ψ δ

= = =

= =
 (4) 

This differs from the assumption (2) in that missingness of 
i

x  in (2) can depend 

on ( , )
i i

t δ . If this is not the case, then CC yields valid inferences but is less efficient than 

SILAFT, since SILAFT uses the data in Pattern 2, which are discarded by CC. 

 

4. Simulation Study 

As a numerical illustration of this theory, we simulate data for the pattern of Table 

3, under a variety of missing data mechanisms. For each of 1000 replications, 1000 

observations ( , , , ( , ))
i i i i i

z w x t δ  , i = 1,…,1000 on Z, W, X and ( , )t δ  were generated as 

follows: 

~ (0,1), ~ (0.5), ~ (0,1), 1,...,1000,
i i i

z N w Bernoulli x N i =  

and  

( ) ind| , , ~ (1 ,1)i i i i i i iy z w x LN z w x+ + + , 

where ( )logi iy T= and LN denotes log-normal distribution. 
i

T  is censored at 30, which 

produces roughly 15% of censoring.  

Missing values of W and X were then generated from the following two logistic 

models: 
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( )
( )

( ) ( ) ( ) ( ) ( )

0

( ) ( ) ( ) ( ) ( )

0

logit ( 0 | , , , ( , ))

logit ( 0 | 1, , , , ( , ))

i

i i

w w w w w

w i i i i i z i w i x i t i

x x x x x

x w i i i i i z i w i x i t i

P R z w x t z w x t

P R R z w x t z w x t

δ α α α α α

δ α α α α α

= = + + + +

= = = + + + +
     

with 
i

x fully observed when 
i

w is missing. 

For the missing data generation schemes above, CC analysis is valid if both ( )w

t
α

and ( )x

t
α are zero; IL is valid if ( )w

w
α , ( )w

x
α and ( )x

x
α are zero; SILAFT is valid if ( )w

t
α and 

( )x

x
α are zero. Four missing data mechanisms were created using different sets of values 

for the regression coefficients such that, in mechanism (I) all three methods (CC, IL and 

SILAFT) are consistent, while in mechanisms (II), (III) and (IV), just one of the three 

methods is valid. The simulation setup is summarized in Table 4.  

Table 4 About Here 

These missing data mechanisms all generate approximately 30% and 20% values 

missing in W and X, respectively.  

Four specific versions of the methods are applied to estimate the regression 

coefficients: 

(1) CC: Complete-case analysis, using; 

(2) IML: ignorable ML  for the whole dataset; 

(3) SILAFT: IML for the subsample with W observed; 

(4) BD: least squares estimates from the regression before deletion (BD), as a 

benchmark method.  

For each method, Table 5 summarizes the root mean squared errors (RMSEs) of 

estimates of all the regression coefficients, and Tables 6 reports respectively the 

empirical bias, RMSE and coverage probability of estimates of the individual regression 
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coefficients. Results in bold type reflect situations where the method is consistent based 

on the theory of Section 4, and hence should do well. The results are based on 1000 

repetitions in each simulation.  

Tables 5 and 6 About Here 

In general, the simulation results are in line with theoretical expectations. All 

methods are valid in mechanism I. In mechanism II, CC is valid but IL and SILAFT are 

inconsistent; IL is consistent in mechanism III but CC and SILAFT are biased.  In 

mechanism IV, SILAFT is consistent but CC and IL are inconsistent, and in this case 

SILAFT has small empirical bias and generally performs best, except for some individual 

coefficients where the gain in efficiency of IL compensates for the bias of that method. 

We now describe results in a bit more detail. 

For mechanism I, all three methods yield consistent estimates, IL is best since it 

makes full use of the data, CC is the worst since it discards the most information, and 

SILAFT lies between CC and IL, since it retains some incomplete cases and drops others.  

For mechanism II, CC is valid and in general has the lowest RMSEs, while both 

IL and SILAFT are biased. However, IL yield comparable or even smaller RMSEs than 

CC for 
z

β and 
w
β , reflecting gains in efficiency that compensate for bias in these 

parameter estimates.  

For mechanism III, IL is the only valid method among the three, and is clearly the 

best method. Both CC and SILAFT lead to biased estimates, as shown in Table 5, with 

SILAFT being better than CC since it is incorporates features of IL as a method. 
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In mechanism IV, SILAFT is valid while CC and IL are biased. The RMSEs from 

SILAFT are generally the smallest, except that IL yields a smaller RMSE than SILAFT 

for 
w
β and 

x
β . 

In some of these situations, supporters of IL may note that it competes well with 

other methods, despite its theoretical inconsistency and the quite sizeable sample size. 

This suggests a degree of robustness for IL, which has the virtue of retaining all the data. 

 

5. Application to motivating example 

We now apply the proposed method to the data from the NLMS study that were 

presented in Section 2. We fit log-linear models of the follow-up period (in years) on the 

adjusted household income (in 1000 dollars per year) and education, adjusting for race, 

gender, marital status, and baseline age (in years). Adjusted household income data are 

categorical in NLMS, and we use the median of the corresponding category as a proxy to 

the true adjusted household income. Education is dichotomized to be greater than high 

school and high school or less.  

Age and gender are fully observed, whereas adjusted household income, 

education, race, and marital status are subject to missing data, with the percentage shown 

in Table 1. We assume covariate missingness for adjusted household income, given 

evidence that people with high or low income are more likely to fail to report it, and we 

assume subsample missingness at random for other covariates.  

With those plausible assumptions, SILAFT on the subsample with adjusted 

household income observed yields consistent estimates of the regression, whereas IL on 

the whole sample may be biased. CC analysis is also valid since there is little evidence to 
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believe that missingness of covariates depends on the follow-up period; however, 

SILAFT is preferred over CC analysis since it uses more information in the incomplete 

cases than does CC analysis. 

Table 7 About Here 

The results of CC analysis, IL and SILAFT are shown in Table 7. All three 

methods yield similar estimates because the missing proportions of the variables are 

small. The IL method gives smaller standard errors than CC because it uses more sample 

than CC. SILAFT is a hybrid of CC and IL, yielding standard errors of SILAFT that lie 

between CC and IL. There is positive effect of adjusted household income and education, 

with survival time increasing as adjusted household income and education increases. 

Race and gender are significant, with white and female having significantly longer 

survival time than black and male, respectively. Marriage seems to have a protective 

effect, with married people more likely to live longer. 

 

6. Discussion 

We propose subsample ignorable likelihood for accelerated failure time model 

(SILAFT), which applies an analysis that assumes MAR to a subsample of the data that is 

complete on a subset of covariates. The methods work for a class of missing data 

mechanisms, defined in eq. (1) and (2), where both IL and CC fail to give consistent 

estimates. It is easy to implement, since existing software for ignorable likelihood 

methods is all that is required. This extends the class of models for data MNAR that can 

be handled by a selective use of MAR data methods and allows combinations of MAR 

and MNAR data mechanisms for difference variables in the data set.  
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The general rationale of SILAFT is partial likelihood (Cox, 1972). This involves a 

loss of efficiency relative to full modeling, but it is much simpler, since the latter requires 

specifying a precise form of the missing data mechanism via a model for the missing data 

indicator, which is vulnerable to model misspecification. An important topic is how much 

efficiency is lost by SILAFT relative to full likelihood methods. SILAFT involves 

minimal loss when the fraction of cases in the subsample with the MNAR subset W 

observed is relatively high, and hence the method is most beneficial relative to CC 

analysis when the fraction of information in the pattern with W complete but other 

variables incomplete is relatively high. We present the subsample ignorable likelihood 

idea in the accelerated failure time model setting, but the general idea of subsample 

ignorable likelihood can be applied to other models of failure time, such as the Cox 

proportional hazard regression model.  

The validity of the SILAFT methods rests on the assumptions (1) and (2), 

concerning which variables are considered covariate-dependent MNAR and which are 

considered subsample MAR. The choice requires an understanding about the missing 

data mechanism in the particular context. It is aided by learning more about the missing 

data mechanism, e.g. by recording reasons why particular values are missing. In cases 

where a choice cannot be made, an alternative strategy is simply to see whether key 

results are robust of alternative methods. Thus, one might apply CC analysis, IL and 

SILAFT for the subsample judiciously chosen on the basis of assumptions (1) and (2), to 

assess sensitivity of key inferences to alternative assumptions about the missing data 

mechanism. 
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Table 1. Baseline survival distribution 

Baseline Distribution ( )0f u  ( )0S u  

Normal ( )
21 0.52 ueπ − −  ( )1 u−Φ  

Logistic ( )2

/ 1u ue e+  ( ) 1

1 ue
−

+  

Extreme value log(2)log(2)
uu e

e e
−  log(2) u

e
e
−  

 

 

 

Table 2: Missingness in the National Longitudinal Mortality Study (NLMS)  

 

Variables 

# of subject missing 

(n = 579,566) 

# of subject missing in the 

subsample with income observed 

( n = 559,517) 

Income 20,049 0 

Education 2,229 185 

Race 2124 1997 

Gender 0 0 

Marital Status 2610 502 

Age at baseline 0 0 
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Table 3: General Missing Data Structure for Section 3 

Pattern Observation, i 
i

z  
i

w  
i

x  ( , )
i i

t δ
 

iw
R  

ix
R  

1 i  = 1,…,m √ √ √ √ 
w

u  
x

u  

2 i  = m +1,…,m+r √ √ x √ 
w

u  
x

u  

3 i  = m +r+1,…,n √ x ? √ 
w

u  
x

u  or 
x

u   

 

Key: √ denotes observed, x denotes at least one entry missing, ? denotes observed or missing 

 

Table 4: Missing data mechanisms generated in the simulations 

Mechanisms 
( )

0

wα  
( )w

z
α  

( )w

w
α  

( )w

x
α  

( )w

t
α  

( )

0

xα  
( )x

z
α  

( )x

w
α  

( )x

x
α  

( )x

t
α  

I: All valid -1 1 0 0 0 -1 1 0 0 0 

II: CC valid -1.7 1 1 1 0 -1.7 1 1 1 0 

III: IL valid -4 1 0 0 0.25 -2.5 1 1 0 0.25 

IV: SILAFT valid -1.5 1 1 0 0 -3.5 1 1 0 0.25 

 
Missing value of W and X are generated based on the following logistic models: 

( )
( )

( ) ( ) ( ) ( ) ( )

0

( ) ( ) ( ) ( ) ( )

0

logit ( 0 | , , , ( , ))

logit ( 0 | 1, , , , ( , ))

i

i i

w w w w w

w i i i i i z i w i x i t i

x x x x x

x w i i i i i z i w i x i t i

P R z w x t z w x t

P R R z w x t z w x t

δ α α α α α

δ α α α α α

= = + + + +

= = = + + + +

. 

In particular, for the four missing data mechanisms: 

I: Missingness of W = f(Z), Missingness of X = f(Z|W observed), all four methods are valid; 

II: Missingness of W = f(Z,W, X), Missingness of X = f(Z,W,X|W observed), only CC valid; 

III: Missingness of W = f(Z), Missingness of X = f(Z,W|W observed), only  IL valid; 

IV: Missingness of W= f(Z,W,(t,δ)), Missingness of X = f(Z,W,(t,δ),W observed), only SILAFT valid. 
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Table 5. Summary RMSEs*1000 of Estimated Regression Coefficients for Before 

Deletion (BD), Complete Cases (CC),  Ignorable Likelihood (IL) and Subsample 

AFT model, under Four Missing Data  Mechanisms 

 

  I II III IV 

BD 92 96 95 91 

CC 133 125 564 441 

IL 109 140 117 138 

SILAFT 125 157 420 119 

 

*Four missing data mechanisms: 

I: Missingness of W = f(Z), Missingness of X = f(Z|W observed), all four methods are valid; 

II: Missingness of W = f(Z,W, X), Missingness of X = f(Z,W,X|W observed), only CC valid; 

III: Missingness of W = f(Z), Missingness of X = f(Z,W, ( , )t δ |W observed), only  IML valid; 

IV: Missingness of W= f(Z,W), Missingness of X = f(Z,W, ( , )t δ |W observed), only SILAFT valid. 

RMSE estimates ( )2
1000*

r TRUE
E β β− , with r denoting the 

thr repetition.  

Bold values are for methods consistent for the mechanism generating the data 
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Table 6. RMSE, Empirical Bias, and 95% confidence coverage for Individual Regression Coefficients under Four Missing 

Data Mechanisms (1000 replications) 

 

RMSE*1000 

  Mechanism I Mechanism II Mechanism III Mechanism IV 

Method β0 βz βw βx β0 βz βw βx β0 βz βw βx β0 βz βw βx 

BD 42 37 65 35 46 33 69 35 47 34 67 35 45 34 64 33 

CC 65 57 90 45 56 46 89 47 371 264 262 206 263 208 234 165 

IL 51 40 79 37 93 45 82 48 60 37 85 39 87 58 82 38 

SILAFT 61 53 85 43 93 60 99 50 255 218 180 178 54 49 83 45 

Bias*1000 

Method β0 βz βw βx β0 βz βw βx β0 βz βw βx β0 βz βw βx 

BD -3 -3 3 1 -7 1 14 -1 -4 1 4 1 -2 4 1 0 

CC -7 -4 4 0 -4 3 9 -2 -367 -259 -250 -201 -258 -201 -219 -159 

IL -3 -2 3 0 79 24 25 29 -3 1 3 2 70 44 8 1 

SILAFT -8 -4 6 0 76 42 54 16 -249 -214 -164 -173 0 4 -4 -1 

95% Confidence coverage 

Method β0 βz βw βx β0 βz βw βx β0 βz βw βx β0 βz βw βx 

BD 95.7 94.1 94.8 94.8 95.4 95.0 95.4 94.6 95.9 94.1 94.3 95.2 94.6 93.5 95.4 95.4 

CC 93.9 94.1 94.1 96.0 95.6 94.8 95.2 95.5 0.0 0.0 13.2 0.2 0.4 1.1 4.0 19.6 

IL 95.5 93.6 95.5 94.9 63.5 90.6 94.3 87.5 94.4 95.6 93.8 95.0 71.4 81.8 94.5 94.2 

SILAFT 95.5 93.3 94.1 94.1 74.0 84.4 91.3 91.3 0.3 0.0 42.2 1.9 95.0 93.9 96.2 94.7 
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Table 7. Estimates of AFT models: National Longitudinal Mortality Study 

  CC   IL   SILAFT  

Parameter Estimate S.E. p-value Estimate S.E. p-value Estimate S.E. p-value 

Intercept 7.02 .0206 <.0001 7.03 .0203 <.0001 7.02 .0206 <.0001 

Education: > HS vs. HS or less .15 .0082 <.0001 .15 .0081 0.299 .15 .0082 <.0001 

Adjusted Income .08 .0018 <.0001 .08 .0018 0.0005 .08 .0018 <.0001 

Race: Black vs. White -.20 .0112 <.0001 -.19 .0111 0.0173 -.20 .0112 <.0001 

Race: Other vs. White .15 .0247 <.0001 .15 .0244 0.2138 .15 .0246 <.0001 

Gender: Female vs. Male .59 .0069 <.0001 .59 .0068 <.0001 .59 .0069 <.0001 

Marital Status: Married vs. Other .21 .0075 <.0001 .21 .0074 0.1715 .21 .0075 <.0001 

Age at baseline -.08 .0003 <.0001 -.07 .0003 <.0001 -.07 .0003 <.0001 
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