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Abstract

Diffusion tensor images (DTI) differ from most medical images in that values at each

voxel are not scalars, but 3 × 3 symmetric positive definite matrices called diffusion

tensors (DTs). The anatomical characteristics of the tissue at each voxel are reflected by

the DT eigenvalues and eigenvectors. In this article we consider the problem of testing

whether two groups of DTIs are equal at each voxel in terms of the DT’s eigenvalues,

eigenvectors, or both. Because eigen-decompositions are highly nonlinear, existing

likelihood ratio statistics (LRTs) for testing differences in the set of eigenvalues or the

frame of eigenvectors assume an orthogonally invariant covariance structure between

the DT entries. While retaining the form of the LRTs, we derive new approximations

to their true distributions when the covariance between the DT entries is arbitrary

and possibly different between the two groups. The approximate distributions are

those of other similar LRT statistics computed at the tangent space to the parameter

manifold at the true value of the parameter, but plugging in an estimate for the point

of application of the tangent space. The resulting distributions, which are weighted

sums of χ2s, are further approximated by scaled χ2 distributions by matching the

first two moments. For application to DTI data, a log transformation that converts

positive definite matrices into real symmetric matrices is appropriate but not necessary.

Voxelwise application of the test statistics leads to a multiple testing problem, which

is solved by false discovery rate inference. The above methods are illustrated in a DTI

group comparison of boys vs. girls.

Keywords: diffusion tensor imaging, random matrix, likelihood ratio test, manifold-

valued data, Satterthwaite approximation, multiple testing

2

http://biostats.bepress.com/harvardbiostat/paper96



1 Introduction

Diffusion Tensor Imaging (DTI) is a novel modality of magnetic resonance imaging

that allows visualization in-vivo of the internal anatomical structure of the brain’s

white matter (Basser and Pierpaoli, 1996; LeBihan et al., 2001). DTI images are 3D

rectangular arrays that contain at every voxel (volume pixel) not a scalar but a 3 × 3

symmetric positive definite matrix, also called diffusion tensor (DT). The DT describes

the local pattern of water diffusion and can be thought of as the covariance matrix of

a 3D Gaussian distribution that models the Brownian motion of the water molecules

in the voxel. However, the displacement of the molecules is not observable. Instead,

the DT is reconstructed from measurements of the diffusion coefficient in at least 6

directions in space. The DT serves as a proxy for local anatomical structure. The

DT’s eigenvalues measure diffusivity and are indicative of the type of tissue and its

health, while the eigenvectors relate to the spatial orientation of the underlying neural

fibers.

A common statistical problem in DTI group studies is to find regions of the brain

whose anatomical characteristics differ between two groups of subjects. The analysis

typically consists of normalizing the images to a common template so that each voxel

corresponds to the same anatomical structure in all the images, and then applying

two-sample tests at each voxel. Because of familiarity with univariate statistics, anal-

yses are often restricted to scalar quantities derived from the DT such as trace and

fractional anisotropy (FA), both functions of the DT’s eigenvalues and related respec-

tively to the total diffusivity and the degree of anisotropy within a voxel. Current

multivariate approaches provide inference for the DT as a single multivariate unit, but

not for its eigenvalues and eigenvectors (Basser and Pajevic, 2003; Schwartzman, 2006;

Whitcher et al., 2007), or focus on the principal diffusion direction (PDD), the eigen-

vector corresponding to the largest eigenvalue, failing to take into account the role of
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the eigenvalues in the estimation (Jones et al., 2002; Wu et al., 2004; Schwartzman

et al., 2005, 2008a).

In this paper, we introduce a new practical multivariate approach to making in-

ferences about the DT’s eigenstructure in group DTI studies. Specifically, given two

groups of observed DTs, we consider a test of whether the two group means have the

same set of eigenvalues while treating the eigenvectors as nuisance parameters, and a

test of whether they have the same frame of eigenvectors while treating the eigenvalues

as nuisance parameters. These can be thought of as multivariate extensions of trace/FA

tests and principal diffusion direction tests, respectively. These tests are non-trivial as

they involve parameter sets that are submanifolds of the set of symmetric matrices

times itself.

Because eigenvalues and eigenvectors are highly nonlinear functions of the data,

likelihood ratio test (LRT) statistics for these cases have been derived elsewhere as-

suming an orthogonally invariant (OI) covariance structure between the matrix entries

and assuming that the covariances in the two groups are the same (Schwartzman et al.,

2008b). The eigenvector test assuming an OI covariance has been useful for identifying

white matter tracts affected by necrosis in a brain cancer survivor (Rauschecker et al.,

2009). However, to be used more generally in practical DTI analysis, an arbitrary

covariance structure between the tensor elements must be allowed. In this paper we

retain the form of the LRT statistics derived under the OI assumption but derive new

approximations to their distributions when the covariance between the DT entries is

arbitrary and possibly different in the two groups. The approximate distributions are

those of other LRT statistics obtained when the parameter manifolds are replaced by

their tangent spaces at the estimated value of the parameter. These distributions are

weighted mixtures of χ2’s, which are then further approximated by scaled χ2 distribu-

tions using the method of moments. The approximations are asymptotically valid as

the number of observations per voxel increases.

4

http://biostats.bepress.com/harvardbiostat/paper96



In the DTI literature, it has been proposed to analyze DTI data after a matrix log

transformation (Arsigny et al., 2005; Fletcher and Joshi, 2007; Schwartzman, 2006).

The matrix log, computed by taking the log of the eigenvalues and keeping the eigen-

vectors intact, maps the observed positive definite matrices to the set of symmetric

matrices. Technically, this is required for Gaussian modeling as the symmetric matri-

ces form a vector space while the positive definite matrices do not. In the statistics

literature, this idea was proposed earlier for modeling covariance matrices (Leonard and

Hsu, 1992; Chiu et al., 1996). Whether the log transform should be applied in practice

to DTI data is a subject of current debate (Whitcher et al., 2007). The methods de-

veloped in this paper are applicable in either case because the matrix log affects only

the eigenvalues in a one-to-one fashion, so the various hypotheses about eigenvalues

and eigenvectors can be equivalently stated in both domains. In addition, because the

inference is based on large-sample asymptotics, the positive definite restrictions are of

no practical importance. For simplicity, we assume that the data lives in the set of 3×3

symmetric matrices, regardless of whether the eigenvalues have been log-transformed

prior to the analysis.

Application of the test statistics at each voxel leads to a massive multiple testing

problem involving hundres of thousands of tests. To address this problem we use false

discovery rate (FDR) inference, now commonly used in the analysis of neuroimaging

data (Genovese et al., 2002; Logan and Rowe, 2004; Schwartzman et al., 2009).

We demonstrate the above methods in data from an observational study of brain

anatomy in children (Dougherty et al., 2007). Here we focus on a cross-sectional analysis

whose goal is to find brain regions that differ significantly between boys and girls at

age 10. The most important test for this data analysis is the two-sample eigenvector

test, which reveals differences in neural fiber orientation between boys and girls mostly

in the posterior left hemisphere.
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2 Theory

2.1 A Gaussian signal-plus-noise model

Let Sp denote the set of p × p symmetric matrices (p ≥ 2). For observed Y ∈ Sp, let

Y = M + Z, (1)

where M ∈ Sp (capital µ) is a mean parameter and Z ∈ Sp has zero mean. In DTI,

p = 3, Y is the observed diffusion tensor (or its matrix logarithm) at a particular voxel,

M represents the population mean at that voxel, and Z incorporates both inter-subject

variability and measurement noise at that voxel. The effect of measurement noise (Zhu

et al., 2007) is not given separate treatment here as it may be assumed to be negligible

in comparison to the anatomical variability between subjects.

An arbitrary covariance between the entries of Y may be specified via the operator

vecd(Y ) = (diag(Y )′,
√

2offdiag(Y )′)′,

defined as a column vector of length q = p(p + 1)/2 where diag(Y ) is a p × 1 vector

containing the diagonal entries of Y and offdiag(Y ) is a (q − p) × 1 vector containing

the off-diagonal entries of Y copied from below the diagonal columnwise (or above

the diagonal rowwise). In DTI, vecd(Y ) = (Y11, Y22, Y33,
√

2Y12,
√

2Y13,
√

2Y23)
′ and

q = 6. The operator vecd(·) was chosen for the convenient property that it converts

the Frobenius norm of symmetric matrices into the Euclidean norm for vectors, that is

‖Y ‖2 = tr(Y 2) = vecd(Y )′vecd(Y ) = ‖vecd(Y )‖2. (2)

If Z is non-degenerate Gaussian, the distribution of Y , denoted Y ∼ Npp(M,Σ), may be

called symmetric-matrix-variate normal and written as the multivariate normal density

Y ∼ Npp(M,Σ) ⇔ vecd(Y ) ∼ Nq(vecd(M),Σ) (3)

where Σ is a q × q positive definite matrix.
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Schwartzman et al. (2008b) derive various LRTs for the mean parameter M when

M is restricted to subsets of Sp defined in terms of eigenvalues and eigenvectors of M .

The LRT statistics derived there assume that the covariance Σ in (3) is OI. Briefly,

Σ is called OI if the distribution of Z = Y − M is the same as that of QZQ′ for any

Q ∈ O(p), the set of p × p orthogonal matrices (Q′Q = QQ′ = Ip). An OI Σ can be

parametrized by two scalar parameters, one that controls the dependence between the

diagonal entries and a global variance parameter (Mallows, 1961). A special case for

independent entries is the spherical covariance, corresponding to the distribution known

in random matrix theory as Gaussian orthogonal ensemble (GOE) (Mehta, 1991).

While restrictive for data, the OI assumption has the advantage that it avoids the

need to vectorize the data matrices and therefore allows obtaining closed-form solutions

to the maximum likelihood estimates (MLEs) and LRTs for many hypotheses defined in

terms of eigenvalues and eigenvectors of M . Moreover, Schwartzman et al. (2008b) show

that in many cases this covariance structure is the only one that allows derivation of

closed-form expressions that do not depend on estimates of the covariance parameters.

In this article we are interested in applying the LRT statistics derived by Schwartzman

et al. (2008b) when the true covariance Σ in the data is not necessarily OI.

2.2 Two-sample tests

Let Y1, . . . , Yn1
and Yn1+1, . . . , Yn, n = n1 +n2, be two independent i.i.d. samples from

Npp(M1,Σ1) and Npp(M2,Σ2), respectively. We consider three tests.

The first test, referred to hereafter as the eigenvalue test, is a test of whether M1

and M2 have the same eigenvalues, while the eigenvectors are unrestricted and treated

as nuisance parameters. The test is H0 : (M1,M2) ∈ M2,D vs. HA : (M1,M2) /∈ M2,D,

where

M2,D = {(M1,M2) : M1 = U1DU ′

1,M2 = U2DU ′

2} (4)
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for unspecified D ∈ Dp, the set of p × p diagonal matrices, and U1, U2 ∈ Op. For

simplicity, D is assumed to have p distinct eigenvalues.

The second test, referred to hereafter as the eigenvector test, is a test of whether

M1 and M2 have the same eigenvectors, when the eigenvalues are treated as nuisance

parameters and assumed equal between the two populations. The test is H0 : M1 = M2

vs. HA : (M1,M2) ∈ M2,D, where M2,D is given by (4).

For comparison, we also consider the test H0 : M1 = M2 vs. HA : M1 6= M2,

referred to hereafter as the full matrix test, where no particular attention is paid to the

eigenstructure. In this case, the Yi’s can be seen as multivariate samples of dimension

q from model (3). Since Σ1 and Σ2 are not assumed equal, this is a multivariate

Behrens-Fisher problem. Defining the group averages Ȳ1 = (1/n1)
∑n1

i=1 Yi and Ȳ2 =

(1/n2)
∑n

i=n1+1 Yi, Hotelling’s T 2 statistic is given by

T 2 = d′S−1d, d = vecd(Ȳ1 − Ȳ2), S =
S1

n1
+

S2

n2
(5)

where

S1 =
1

n1 − 1

n1
∑

i=1

vecd(Yi − Ȳ1)vecd(Yi − Ȳ1)
′

S2 =
1

n2 − 1

n
∑

i=n1+1

vecd(Yi − Ȳ2)vecd(Yi − Ȳ2)
′

(6)

are the group sample covariances. The null distribution of (5) may be approximated

by redefining

TF =
f − q + 1

qf
T 2 ·∼

H0

F (q, f − q + 1) (7)

where f is the approximate number of degrees of freedom of Yao (1965) given by

1

f
=

1

n1 − 1

(

d′S−1S1S
−1d

n1d
′S−1d

)2

+
1

n2 − 1

(

d′S−1S2S
−1d

n2d
′S−1d

)2

.

2.3 LRT statistics

Computation of the LRT statistic in both the eigenvalue and eigenvector tests involves

estimation of the pair M = (M1,M2) under the hypothesis M ∈ M2,D. The set M2,D
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(4) is a curved submanifold of Sp × Sp. Assuming Σ1 = Σ2 = Σ, Schwartzman et al.

(2008b) showed that estimation of M ∈ M2,D is analytically tractable and separable

from the estimation of Σ if and only if Σ is OI. In such case, the MLE of M is the same

that would be obtained if Σ were assumed spherical with variance one, i.e. Σ = Iq.

In other words, the MLE is the same as the least squares solution and is found by

orthogonal projection.

Specifically, let M1 = U1D1U
′
1 and M2 = U2D2U

′
2, Ȳ1 = V1Λ1V

′
1 , Ȳ2 = V2Λ2V

′
2 and

Ȳ = V ΛV ′ be eigendecompositions, all with eigenvalues in decreasing order. Assuming

spherical covariances Σ1 = Σ2 = Iq, the MLE of M = (M1,M2) when M ∈ M2,D is

given by

M̂ = (M̂1, M̂2) = (Û1D̂Û ′

1, Û2D̂Û ′

2) ∈ M2,D, (8)

where D̂ = Λ̄ = (n1Λ1+n2Λ2)/n and Û1 and Û2 are any matrices of the form Û1 = V1Q1

and Û2 = V2Q2, where Q1 and Q2 are diagonal matrices with diagonal entries equal to

±1 (Schwartzman et al., 2008b, Theorem 5.1).

LRT statistics are constructed as follows. More generally, suppose M0 ⊂ MA ⊂

Sp×Sp are nested hypotheses about the pair M = (M1,M2). Assuming Σ1 = Σ2 = Iq,

the LRT statistic, defined as minus twice the log ratio of the maximized likelihoods

under MA and M0 respectively, is given by

T = ‖Ȳ − M̂0‖2 − ‖Ȳ − M̂A‖2 (9)

where Ȳ = (Ȳ1, Ȳ2), M̂0 and M̂A are the MLEs of M under M0 and MA, respectively,

and the norm ‖ · ‖2
2 in Sp × Sp is defined in terms of the Frobenius norm (2) by

‖Ȳ − M̂‖2 = n1‖Ȳ1 − M̂1‖2 + n2‖Ȳ2 − M̂2‖2 (10)

For the eigenvalue test, the MLE M̂0 under H0 : (M1,M2) ∈ M2,D is equal to (8).

Under HA : (M1,M2) /∈ M2,D, the MLE is M̂A = (Ȳ1, Ȳ2). Replacing in (9) gives that,

9
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when Σ1 = Σ2 = Iq, the LRT statistic is

TD =
n1n2

n
‖Λ1 − Λ2‖2 (11)

and is asymptotically χ2(p) under H0 as n1, n2 → ∞ (Schwartzman et al., 2008b,

Corollary 5.1). Not surprisingly, the test statistic measures the distance between the

eigenvalue matrices of the two group averages. The number of degrees of freedom

corresponds to the fact that p eigenvalues are being tested.

Similarly, for the eigenvector test, the MLE under H0 : M1 = M2 is M̂0 = (Ȳ , Ȳ ),

where Ȳ = (n1Ȳ1 + n2Ȳ2)/n. Under HA : (M1,M2) ∈ M2,D, the MLE M̂A is equal to

(8). Replacing in (9) gives that, when Σ1 = Σ2 = Iq, the LRT statistic is

TU =
2n1n2

n

[

tr(Λ1Λ2) − tr(Ȳ1Ȳ2)
]

(12)

and is asymptotically χ2(q − p) under H0 as n1, n2 → ∞ (Schwartzman et al., 2008b,

Corollary 5.2). The number of degrees of freedom in this case corresponds to the fact

that the set of eigenvectors being tested has dimension q−p. The functional form of the

test statistic (12) is interesting. When the eigenvectors of Ȳ1 and Ȳ2 are equal, the test

statistic is equal to zero. As the angles between the eigenvectors of Ȳ1 and Ȳ2 increase,

with the eigenvalues remaining constant, the inner product tr(Ȳ1Ȳ2) decreases, thus

increasing the value of the test statistic.

2.4 Distributions under arbitrary covariance

The null distributions given above of the eigenvalue and eigenvector LRT statistics (11)

and (12) are asymptotic and valid only under the assumption that Σ1 = Σ2 = Iq. The

goal of this section is to derive approximate asymptotic null distributions for those LRT

statistics when the true Σ1 and Σ2 are arbitrary. This task presents two difficulties.

First, the LRT statistics are highly nonlinear functions of the data, a consequence of

the curvature of the parameter sets involved. Second, the eigenvectors of the true

covariance matrices may be oblique to the parameter sets.
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Our general approach is as follows. For large n, Ȳ = (Ȳ1, Ȳ2) is close to M =

(M1,M2) with high probability and the effect of the curvature of the parameter mani-

folds MA and M0 near M becomes negligible. Therefore the distribution of the LRT

statistic (9) is close to the distribution of another LRT statistic T ∗(M) computed on

the tangent spaces to MA and M0 at M . Denote these tangent spaces by T0(M) and

TA(M), respectively, and notice that T0(M) ⊂ TA(M). Similar to the derivation of

(9), the tangent LRT statistic for testing T0(M) vs. TA(M) under the assumption of

spherical covariance is

T ∗(M) = ‖Ȳ − M̂
∗

0 ‖2 − ‖Ȳ − M̂
∗

A‖2 = ‖M̂∗

A − M̂
∗

0 ‖2 (13)

where M̂
∗
0 and M̂

∗

A are the MLEs of Ȳ on T0(M) and TA(M) respectively, obtained

by orthogonal projection (see Figure 1). Define Z = Ȳ − M . Since the segment

M̂
∗

A − M̂
∗
0 ⊂ TA(M) is orthogonal to the segment M̂

∗
0 − M ⊂ T0(M) ⊂ TA(M), the

tangent LRT statistic (13) may also be written as

T ∗(M) =
∥

∥

∥Proj
T ⊥

0
(M)

(

ProjTA(M)Z

)∥

∥

∥

2
(14)

where T ⊥
0 (M) is the subspace orthogonal to T0(M) and Proj(·) denotes orthogonal

projection.

Given that Z = (Z1, Z2) = (Ȳ1−M1, Ȳ2−M2), define the 2q×1 multivariate normal

vector

vecd(Z) =







vecd(Z1)

vecd(Z2)






∼ N2q













0

0






,







Σ1/n1 0

0 Σ2/n2












(15)

Theorems 1 and 2 below show that T ∗(M) is a quadratic form of vecd(Z) and give

expressions for the specific two-sample tests of interest. For simplified notation, define

the elementary matrices Eij = (eie
′
j + eje

′
i)/2, where ei and ej denote column vectors

with a single 1 in positions i and j, respectively. Specifically, if i = j, Eii contains a

single 1 in position (i, i), and if i 6= j, Eij = Eji contains 1/2 in positions (i, j) and

(j, i), and zeros elsewhere.
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Theorem 1. Consider the test H0 : (M1,M2) ∈ M2,D vs. HA : (M1,M2) /∈ M2,D,

where M2,D is given by (4). The tangent LRT statistic (14) is

T ∗(M) = vecd(Z)′Ω(M)vecd(Z), Ω(M) =
n1n2

n

p
∑

i=1

ωiω
′

i (16)

where

ωi =







vecd(U1EiiU
′
1)

−vecd(U2EiiU
′
2)







Theorem 2. Consider the test H0 : M1 = M2 vs. HA : (M1,M2) ∈ M2,D, where

M2,D is given by (4). The tangent LRT statistic (14) is

T ∗(M) = vecd(Z)′Ω(M)vecd(Z), Ω(M) =
n1n2

n

p
∑

i=1

p
∑

j=1

ωijω
′

ij (17)

where

ωij =







vecd(Eij) − J(U1)hij

−vecd(Eij) + J(U2)hij







J(U) =

(

vecd(UE11U
′) vecd(UE22U

′) · · · vecd(UEppU
′)

)

hij = diag(n1U
′

2EijU2 + n2U
′

1EijU1)/n

In both (16) and (17), T ∗(M) has the same form and its distribution is the same

as that of a weighted sum of χ2 variables, given by Proposition 1 below. Notice that

since the distribution of vecd(Z) does not depend on M , the dependence on M is only

through Ω(M). Further, Ω(M) is a function of the eigenvectors of M1 and M2 only,

not their eigenvalues.

Proposition 1. Let Σ be the covariance matrix of vecd(Z) given by (15) and let k be

the rank of Ω(M). Then the distribution of T ∗(M) = vecd(Z)′Ω(M)vecd(Z) is the

same as that of z′Λz =
∑k

i=1 λiz
2
i , where z ∼ N2q(0, I2q) and Λ is a diagonal matrix

containing the k nonzero eigenvalues of Σ1/2Ω(M)Σ1/2.

The distribution of T ∗(M) can be further approximated as the distribution of a

scaled χ2 variable aχ2
ν matching their first two moments and then solving for a, ν > 0,

12
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an idea generally known as Welch-Satterthwaite approximation (Stuart and Ord, 1994;

Kuonen, 1999; Casella and Berger, 2002). Applying this to the equivalent quadratic

form z′Λz in Proposition 1 gives that the first two moments of T ∗(M) are the same as

those of a aχ2
ν variable with

a =
tr(Λ2)

tr(Λ)
=

tr(ΣΩΣΩ)

tr(ΣΩ)
, ν =

(trΛ)2

tr(Λ2)
=

(trΣΩ)2

tr(ΣΩΣΩ)
.

In practice, both Σ and Ω(M) are unknown. We therefore use a plug-in estimate

of a and ν where the required covariances Σ1 and Σ2 in (15) are replaced by the sample

covariances (6) and Ω(M) is replaced by Ω(M̂), computed according to (16) and

(17) but using the empirical eigenvectors V1 and V2 of Ȳ1 and Ȳ2 instead of the true

eigenvectors U1 and U2 of M1 and M2. Given T from (16) or (17), appropriate â and

ν̂ are found as explained above and the p-value is computed as 1 − F̂ (T ), where F̂ is

the cumulative distribution function of âχ2(ν̂).

3 Numerical Studies

3.1 Distribution

In order to evaluate the accuracy of the approximate distributions derived above, the

following simulations were conducted. Taking p = 3, two groups of n1 = n2 = 50 i.i.d.

samples were generated according to model (3) with M0 = Diag(1, 2, 4), i.e. diagonal

with diagonal entries 1, 2, and 4, and Σ1 = Σ2 chosen at random as Wishart(I6, 6). The

eigenvalue and eigenvector test statistics (11) and (12) were computed as well as their

approximate distributions as described at the end of Section 2.4. The above procedure

was repeated 10000 times, resulting in 10000 test statistic values and 10000 estimated

values of a and ν in both cases.

Figure 2 shows the distribution of the p-values for both test statistics. The prox-

imity of the distribution to the 45◦ line is an indicator of the goodness of the approxi-
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Hosted by The Berkeley Electronic Press



mation. Similar results were obtained for various instances of the randomly generated

Σ.

3.2 Power

The goal of the following simulations is to assess the power of the proposed test statistics

against various alternative hypotheses. Two groups of n1 = n2 = 50 i.i.d. samples for

p = 3 were generated, under the null hypothesis with M0 = Diag(1, 2, 4) and Σ1 = Σ2

chosen at random as 0.5Wishart(I6, 6), and under each alternative as described below.

Eigenvalue and eigenvector test statistics were computed as well as their approximate

tangent space distributions. The above procedure was repeated 10000 times, resulting

in 10000 test statistic values and 10000 estimated a and ν for each case. P-values and

statistical power were computed.

The first set of alternatives is defined by changes in the eigenvalues of M0 only.

These are of the form M = M0 + ∆M , where ∆M is diagonal. Figure 3 summarizes

the results for various alternatives in increasing order of difficulty. Alternatives are

more difficult to detect when ∆M is smaller, but also when the eigenvalues of M are

closer to one another. Interestingly, the eigenvalue test is more powerful than the full

matrix test in the harder cases but not in the easiest case. By design, the eigenvector

test has very little power here, but is still a little sensitive to changes in eigenvalues

which, with noise, can be mistaken for rotations. It should be noted that the results

are strongly dependent on the noise covariance Σ and how aligned are its eigenvectors

with the direction of change of ∆M . Further simulations show that depending on Σ,

the full matrix test may be more powerful than the eigenvalue test in all four cases

above.

The second set of alternatives is defined by changes in the eigenvectors. These are
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of the form M = QM0Q
′, where Q ∈ O3 is given by Rodrigues’ rotation formula

Q = exp













θ













0 −a3 a2

a3 0 −a1

−a2 a1 0

























Here, a = (a1, a2, a3) is a unit vector indicating the axis of rotation and θ is the rotation

angle around that axis. Figure 4 summarizes the results for various alternatives in

increasing order of difficulty. In all panels, the eigenvector test is more powerful than

the full matrix test. In panel (a), the axis of rotation is oblique to all the eigenvectors

of M . In panels (b) and (c), rotations are around the axis corresponding to the smallest

eigenvalue and corresponding to the largest eigenvalue. Panel (d) is the same as panel

(a) but with noise amplified by a factor of 4. By design, the eigenvalue test has no

power here. In fact, it is sometimes counterproductive depending on the particular

orientation of the eigenvectors of Σ. In general, the results depend on Σ and further

simulations show that the full matrix test can be sometimes more powerful than the

eigenvalue test.

4 Data Example

4.1 Data description

Our dataset concerns an observational study of brain anatomy in children (Dougherty

et al., 2007). A total of 55 children were recruited for the study and brain scans were

taken about once a year. The children were between the ages of 8 and 12 years old at

the time of the first measurment. For the purposes of this paper, we extracted a subset

of the data consisting of DTI images from only the ten-year-old children. This subset

contains 34 brain images (one per child) and included 12 boys and 22 girls. The goal of

the analisys is to find regions of anatomical difference between the boys and the girls.
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Voxelwise analysis requires that each voxel corresponds to the same brain struc-

ture across all subjects. To this end, the DTI images were normalized to a common

coordinate system based on a custom pediatric template (Dougherty et al., 2005).

Normalization resulted in each image being a voxel array of size 81 × 106 × 76 in a

rectangular grid with 2 × 2 × 2 mm regular spacings. The coordinate axes are defined

so that the x, y and z axis point respectively to the right, front and top of the brain.

Neuroimaging investigators often restrict their analyses to a relevant subset of the

brain, called search region or mask. Here we take a liberal approach and do not restrict

the search region to any particular region inside the brain. A whole-brain mask that

defines all voxels inside the brain was computed by segmenting each subject’s spatially

normalized brain and taking the intersection of all such segmentations. The final mask

contains m = 105822 voxels.

4.2 Data analysis

In order to eliminate the positive definite constraints before analysis, the eigenvalues

of the DT data were log-transformed voxelwise. Next, at each voxel, the two-sample

test statistics (7), (11) and (12) were computed, as well as their approximate null

distributions and corresponding p-values, as described by (7) and Section 2.4. For our

data, p = 3, q = p(p + 1)/2 = 6, n1 = 12, and n2 = 22.

Figure 5a shows the empirical distribution of the p-values for the three test types.

The eigenvector test produces the highest number of low p-values, as indicated by the

slope of the distribution function at zero. This suggests that the eigenvector test may

be more powerful for finding differences between the two groups in this dataset.

Figure 6 shows maps of the p-values at a transverse slice 36 mm above the an-

terior commisure, an anatomical landmark commonly used for spatial normalization

(Talairach convention). At this slice some of the most prominent differences between

the two groups appear. Some regions are highlighted by the threee tests to different
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extents, but the eigenvector test shows the strongest signal.

Determining significance of the above p-values is a multiple testing problem in-

volving N = 105822 tests. For simplicity, a single threshold was obtained using the

classical BH FDR procedure (Benjamini and Hochberg, 1995) at FDR level 0.02. Table

1 summarizes the results for the eigenvalue and eigenvector tests. Reported are the

p-value thresholds and the fraction of discoveries R/m, where R denotes the number

of rejected null hypotheses at that threshold. Here we see again that the eigenvector

test produces many more discoveries.

Figure 7a shows the interesting voxels at this FDR level obtained from the eigen-

vector test at the same slice as Figure 6. The interesting regions extend to other slices

beyond the one shown. For reference, Figure 7b shows a map of the total variance at

each voxel, i.e. the trace of the covariance matrix S given by (5). In comparison with

the underlying anatomy in panel a, it is apparent that the lowest variance is observed

in the highly coherent neural fibers of the white matter.

Taking advantage of the spatial structure of the data to increase power, the entire

analysis above was repeated after spatially convolving the log-transformed DT data

entry-by-entry with a uniform box kernel of size b×b×b for b = 5. Voxels with neighbors

outside the mask were eliminated, resulting in a smaller mask with N = 73462 voxels.

Test statistics, approximate distributions and p-values were recomputed at each voxel.

The new distribution of p-values is shown in Figure 5b and the new FDR thresholds

are summarized in the last two columns of Table 1. Both results suggest an increase in

power for the eigenvector test, but not necessarily for the eigenvalue test. The p-value

map and corresponding interesting regions are shown in Figure 8 for the same slice as

above. Notice the difference in texture with Figures 6c and 7a.

In terms of model checking, a test of was applied to the original data in order

to check whether the covariance matrices Σ1 and Σ2 could have been modeled as OI

(Schwartzman et al., 2008b, Proposition 3.1). The null hypothesis of orthogonal invari-
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ance was rejected at the 0.05 level for 83.8% of the voxels, thus warranting the need

for the approximations developed in Section 2.4. In addition, a Wilks’ Lambda test

was applied at each voxel in order to test the null hypothesis that the group covariance

matrices Σ1 and Σ2 are equal. The null hypothesis was rejected at the 0.05 level for

88.6% of voxels, thus warranting the need to assume different covariances between the

groups.

5 Discussion

This article has presented tests for detecting differences in eigenvalues and/or eigen-

vectors of symmetric matrices between the means of two groups and has demonstrated

their application to comparison of groups of DTs with arbitrary covariance between the

DT entries. Of the three tests considered, the eigenvector test was the most powerful

for detecting differences between the two groups in the analyzed dataset. It is remark-

able that the eigenvector test was able to find many regions of difference despite the

large multiple testing problem over 105822 voxels in the entire brain.

The tests in this paper were applied after a matrix log transformation that maps

positive definite matrices to real symmetric matrices. Since the matrix log transforma-

tion is bijective and only affects the eigenvalues, the conclusions of the tests are directly

interpretable in the original domain. The matrix log transformation is required for va-

lidity of the signal-plus-noise model. In practice, however, it may be argued that as

n increases, the distributions of the group DT averages become more concentrated

around their means and the log transformation has less of an effect. This depends on

the Mahalanobis distance from the DT means to the boundaries of the positive definite

cone, which is determined by the DT’s smallest eigenvalue. Since the trace of the DT

is more or less constant over the brain, the matrix log transformation may be more

important for highly anisotropoic voxels.
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The χ2 null distributions used in this paper were derived assuming a Gaussian noise

model. A Lilliefors test at each voxel revealed that the distribution across subjects of

both the DT entries and the log-DT entries at each voxel is never normal. However,

it is easy to see from the derivations that in reality not the data but only the group

averages are required to be normally distributed. Asymptotically, this is guaranteed

by the central limit theorem, and may not be an unreasonable assumption for the

moderate sample size in this dataset. Another option not explored here is to estimate

the null distribution from the data using an empirical null (Efron, 2007b; Schwartzman,

2008).

An advantage of the methodology presented in this paper is that test statistics have

a closed form and are easy to compute for hundreds of thousands of voxels in the brain.

A disadvantage has been the need to find approximations to their null distribution,

which we have done with both theoretical and empirical tools. An alternative approach

is to directly compute the LRT statistics numerically at each voxel by numerically

maximizing the full likelihood. While much more computationally costly, it might

provide better statistical power and it is worth exploring in future work.

For simultaneous inference across the brain, FDR was chosen for its interpretability

and simplicity. As usual in FDR inference, our analysis was based on the marginal

distribution of the test statistics. Other approaches such as random field corrections,

common in fMRI studies, make explicit use of the spatial correlation in the data (Wors-

ley et al., 2004). Unlike fMRI data, which has implicit physiological blurring, the

tensor measurements are mostly independent by design with minimal spatial blurring

introduced during image acquisition and preprocessing. The distinct patterns of the

underlying anatomy, such as fiber tracts, are features of the brain, not artifacts of the

measurement. Other recent statistical analyses of DTI data model voxels independently

(Zhu et al., 2007).

While some dependency may exist between neighboring voxels, it is of a local nature
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and qualifies as weak dependence so FDR control is still guaranteed (Storey et al.,

2004). Here, the spatial structure was used by reanalyzing the data after local spatial

smoothing of the log-DT data. By borrowing information from neighboring voxels,

smoothing helped increase the power of the eigenvector test for some regions, an effect

seen before in DTI data by (Schwartzman et al., 2008a). However, in other regions,

smoothing reduces the power by conflating the different eigenvector frames of distinct

neighboring anatomical structures.

For an anatomical interpretation of the data analysis results, Figures 9 and 10 show

respectively the first and second eigenvectors of the average log-DTs for both groups

at the same slice as the previous figures. Since the eigenvector test tests for differences

in the full frame of eigenvectors, detected differences may be in the first or second

eigenvector (the third is fixed once the first and second are fixed). Many of the regions

identified in Figures 7a and 8b correspond to boundaries between anatomical structures.

In the PDD map (first eigenvector), some differences in the crossing paterns can be

seen in the left hemisphere between the superior longitudinal fasciculus (SLF) (green)

and the corona radiata (blue/purple). Some differences in the crossing paterns can be

seen also in this region in the second eigenvector map, which indicate the influence of

neural fibers that are not parallel to the PDD. Previous DTI studies of FA have found

asymmetries between the two brain hemispheres, particularly in the SLF (Büchel et al.,

2004). Our findings encourage further study of the neural connectivity involving this

region, possibly by means of DTI tractography.

Although the methods in this paper have been illustrated in a voxelwise comparison

of two groups of subjects, other potential applications include analysis of symmetry

comparing contralateral brain hemispheres, and assessment of error in fiber tracing

and spatial registration/normalization.
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A Proofs

In this section, Diag(A) denotes a diagonal matrix with the same diagonal entries as

A, and Offdiag(A) = A−Diag(A) denotes a matrix with the same off-diagonal entries

A and zero diagonal.

Lemma 1.

Denote by TM(M2,D) the tangent space to the manifold M2,D given by (4) at an

arbitrary point M = (U1DU ′
1, U2DU ′

2) ∈ M2,D. Then TM(M2,D) coincides with the

set of all pairs X = (X1,X2) ∈ Sp × Sp such that

X = (U1B1U
′

1 + U1CU ′

1, U2B2U
′

2 + U2CU ′

2)

where B1, B2 ∈ Sp have diag(B1) = diag(B2) = 0 and C ∈ Dp.

Proof of Lemma 1.

(i) Let

M(t) =
(

U1e
A1t(D + Ct)e−A1tU ′

1, U2e
A2t(D + Ct)e−A2tU ′

1

)

be an arbitrary curve in M2,D passing through M at t = 0, where C ∈ Dp and

A1, A2 ∈ Ap, the set of p × p antisymmetric matrices. This parametrization relies on

the fact that eAt parametrizes O(p) (Edelman et al., 1998; Lang, 1999; Moakher, 2002).

Taking the derivative with respect to t and evaluating at t = 0 gives that any tangent

vector X ∈ TM(M2,D) has the form

X =
(

U1(A1D − DA1)U
′

1 + U1CU ′

1, U2(A2D − DA2)U
′

2 + U2CU ′

2

)

.

Letting B1 = A1D − DA1 and B2 = A2D − DA2, it is easy to see that both B1, B2

are symmetric matrices with zero diagonal.

Conversely, the X’s span the tangent space. This is because for every B symmetric

with zero diagonal, there exists an antisymmetric A such that B = AD − DA. To see
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this, observe that the entry (i, j), i 6= j, of AD − DA is

(AD − DA)ij = e′i(AD − DA)ej = e′iAdjjej − e′idiiAej = (djj − dii)aij

where ei denotes a column vector with a single 1 in position i, dii are the diagonal

entries of D, and aij are the entries of A. Therefore, for every B with entries bij , the

corresponding A has entries aij = bij/(djj − dii), i 6= j.

Proof of Theorem 1.

For this test, T0(M) = TM(M2,D) and TA(M) = Sp×Sp, so (14) reduces to T ∗(M) =

‖Proj
T ⊥

0
(M)Z‖2. By Lemma 1, the projection of Z onto TM(M2,D) is the minimizer

of the square distance

‖Z − X‖2 = ‖(Z1, Z2) − (U1B1U
′

1 + U1CU ′

1, U2B2U
′

2 + U2CU ′

2)‖2

= n1‖U ′

1Z1U1 − B1 − C‖2 + n2‖U ′

2Z2U2 − B2 − C‖2

For simplicity, let W1 = U ′
1Z1U1 and W2 = U ′

2Z2U2. We can write

‖Z − X‖2 = n1‖Diag(W1 − C)‖2 + 2n1‖Offdiag(W1 − B1)‖2

+ n2‖Diag(W2 − C)‖2 + 2n1‖Offdiag(W2 − B2)‖2

This is minimized over B1, B2 and C for

B̃1 = Offdiag(W1), B̃2 = Offdiag(W2), C̃ = [n1Diag(W1) + n2Diag(W2)] /n (18)

The norm T ∗(M) of the projection of Z onto the space orthogonal to TM(M2,D)

is the same as the minimal distance of Z to TM(M2,D). Replacing the optimal X̃ with

B̃1, B̃2 and C̃ in the expression of the distance gives that T ∗(M) = ‖Z − X̃‖2 is equal
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to

T ∗(M) = ‖Z − X̃‖2 = n1‖Diag(W1 − C̃)‖2 + n2‖Diag(W2 − C̃)‖2

=
n1n2

n
‖Diag(W1 − W2)‖2

=
n1n2

n

p
∑

i=1

{

tr
[

e′i(W1 − W2)ei

]}2

=
n1n2

n

p
∑

i=1

[

tr(Z1U1eie
′

iU
′

1) − tr(Z2U2eie
′

iU
′

2)
]2

=
n1n2

n

p
∑

i=1

[

vecd(Z1)
′vecd(U1eie

′

iU
′

1) − vecd(Z2)
′vecd(U2eie

′

iU
′

2)
]2

which yields the result.

Proof of Theorem 2.

In the computation of (14) for this test, T0(M) is the tangent space to the set M2,M =

{M = (M,M) : M ∈ Sp}, which can be identified with M2,M itself, while TA(M) =

TM(M2,D). From the proof of Theorem 1 we have that the projection of Z on TA(M)

is

ProjTA(M)Z = (X̃1, X̃2) = (U1B̃1U
′

1 + U1C̃U ′

1, U2B̃2U
′

2 + U2C̃U ′

2)

where B̃1, B̃2 and C̃ are given by (18). By Lemma 1, the projection of ProjTA(M)Z

onto TA(M) = TM(M2,M ) is the minimizer of the square distance

‖(X̃1, X̃2) − (M,M)‖2 = n1‖X̃1 − M‖2 + n2‖X̃2 − M‖2

This is minimized over M ∈ Sp for M̃ = (n1X̃1 + n2X̃2)/n. The norm T ∗(M) of

the projection of ProjTA(M)Z onto the space orthogonal to T0(M) is the same as the

minimal distance of ProjTA(M)Z to T0(M). Replacing the optimal M̃ in the expression

of the distance gives

T ∗(M) = ‖(X̃1, X̃2) − (M̃, M̃ )‖2 = n1‖X̃1 − M̃‖2 + n2‖X̃2 − M̃‖2 =
n1n2

n
‖X̃1 − X̃2‖2

23

Hosted by The Berkeley Electronic Press



Replacing X̃1 and X̃2 using (18), and adding and subtracting U1Diag(W1)U
′
1 and

U2Diag(W2)U
′
2, we get that T ∗(M) can be written as

T ∗(M) =
n1n2

n
‖Z1 − H(W1) − Z2 + H(W2)‖2 (19)

where

H(W1) = (n2U1Diag(W1)U
′

1 + n1U2Diag(W1)U
′

2)/n

H(W2) = (n2U1Diag(W2)U
′

1 + n1U2Diag(W2)U
′

2)/n

The entries of H(W1) are

tr(e′iH(W1)ej) = tr
[

Diag(W1)(n2U
′

1eje
′

iU1 + n1U
′

2eje
′

iU2)/n
]

= diag(W1)
′hij

where hij is the p × 1 vector

hij = diag(n1U
′

2EijU2 + n2U
′

1EijU1)/n

Furthermore, we can write diag(W1) = J(U1)
′vecd(Z1), where

J(U) =

(

vecd(UE11U
′) vecd(UE22U

′) · · · vecd(UEppU
′)

)

This can be verified by checking that the entries of the p × 1 vector diag(W1) are

e′iDiag(W1)ei = tr(e′iU1Z1U
′

1ei) = tr(U ′

1eie
′

iU1Z1) = vecd(U ′

1EiiU1)
′vecd(Z1)

Similar expressions are btained for H(W2). Going back to (19) we have that

T ∗(M) =
n1n2

n

p
∑

i=1

p
∑

i=1

[

tr
(

e′iZ1ej − e′iH(W2)ej − e′iZ2ej + e′iH(W2)ej

)

]2

=
n1n2

n

p
∑

i=1

p
∑

i=1

[

vecd(Z1)
′vecd(eje

′

i) − vecd(Z1)
′J(U1)hij

− vecd(Z2)
′vecd(eje

′

i) − vecd(Z2)
′J(U2)hij

]2

which gives the result.

Proof of Proposition 1.
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This can be seen as a special case of Theorem 3.4.4a of Mardia et al. (1979), but can

also be proven directly as follows. Let z = Σ−1/2vecd(Z) ∼ N2q(0, I2q). We have

T ∗ = vecd(Z)′Ωvecd(Z) = z′Σ1/2ΩΣ1/2z = (Qz)′Λ(Qz)

where Λ and C are respectively the eigenvalue and eigenvector matrices of Σ1/2ΩΣ1/2.

The result follows because Qz ∼ N2q(0, I2q).
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C. Büchel, T. Raedler, M. Sommer, M. Sach, C. Weiller, and M. A. Koch. White

matter asymmetry in the human brain: a diffusion tensor MRI study. Cereb Cortex,

14(9):945–951, 2004.

Georege Casella and Roger L. Berger. Statistical Inference. Duxbury, Pacific Grove,

California, 2nd edition, 2002.

25

Hosted by The Berkeley Electronic Press



Tom Y. M. Chiu, Tom Leonard, and Kam Wah Tsui. The matrix-logarithmic covariance

model. J Amer Statist Assoc, 91(433):198–210, 1996.

Robert F. Dougherty, Michal Ben-Shachar, Gayle K. Deutsch, Polina Potanina, and

Brian A. Wandell. Occipital-callosal pathways in children: Validation and atlas

development. Ann N Y Acad Sci, 1064:98–112, 2005.

Robert F. Dougherty, Michal Ben-Shachar, Gayle K. Deutsch, Arvel Hernandez,

Glenn R. Fox, and Brian A. Wandell. Temporal-callosal pathway diffusivity pre-

dicts phonological skills in children. PNAS, 104(20):8556–8561, 2007.

Alan Edelman, Tomás A. Arias, and Steven T. Smith. The geometry of algorithms

with orthogonality constraints. SIAM J Matrix Anal Appl, 20(2):303–353, 1998.

Bradley Efron. Large-scale simultaneous hypothesis testing: The choice of a null hy-

pothesis. J Amer Statist Assoc, 99(465):96–104, 2004.

Bradley Efron. Correlation and large-scale simultaneous hypothesis testing. J Amer

Statist Assoc, 102(477):93–103, 2007a.

Bradley Efron. Size, power and false discovery rates. Ann Statist, 35(4):1351–1377,

2007b.

P. Thomas Fletcher and Sarang Joshi. Riemannian geometry for the statistical analysis

of diffusion tensor data. Signal Processing, 87(2):250–262, 2007.

Christopher R. Genovese, Nicole A. Lazar, and Thomas E. Nichols. Thresholding of sta-

tistical maps in functional neuroimaging using the false discovery rate. Neuroimage,

15:870–878, 2002.

Derek K. Jones, Lewis D. Griffin, Daniel C. Alexander, Marco Catani, Mark Horsfield,

Robert Howard, and Steve C. R. Williams. Spatial normalization and averaging of

diffusion tensor MRI data sets. Neuroimage, 17:592–617, 2002.

26

http://biostats.bepress.com/harvardbiostat/paper96



D. Kuonen. Saddlepoint approximations for distributions of quadratic forms in normal

variables. Biometrika, 86(4):929–935, 1999.

Serge Lang. Fundamentals of Differential Geometry. Springer-Verlag, New York, 1999.

Denis LeBihan, Jean-François Mangin, Cyril Poupon, Chris A. Clark, Sabina Pap-

pata, Nicolas Molko, and Hughes Chabriat. Diffusion tensor imaging: Concepts and

applications. J Magn Reson Imaging, 13:534–546, 2001.

Tom Leonard and John S. J. Hsu. Bayesian inference for a covariance matrix. Ann

Statist, 20(4):1669–1696, 1992.

Brent R. Logan and Daniel B. Rowe. An evaluation of thresholding techniques in fMRI

analysis. Neuroimage, 22:95–108, 2004.

C. L. Mallows. Latent vectors of random symmetric matrices. Biometrika, 48(1):

133–149, 1961.

K. V. Mardia, J. T. Kent, and J. M. Bibby. Multivariate Analysis. Academic Press,

San Diego, California, 1979.

Madan Lal Mehta. Random Matrices. Academic Press, San Diego, California, 2nd

edition, 1991.

Maher Moakher. Means and averaging in the group of rotations. SIAM Matrix Anal

Appl, 24(1):1–16, 2002.

Andreas M. Rauschecker, Gayle K. Deutsch, Michal Ben-Shachar, Armin Schwartzman,

Lee M. Perry, and Robert F. Dougherty. Reading impairment in a patient with

missing arcuate fasciculus. Neuropsychologia, 47(1):180–194, 2009.

Armin Schwartzman. Empirical null and false discovery rate inference for exponential

families. Ann Appl Statist, 2(4):1332–1359, 2008.

27

Hosted by The Berkeley Electronic Press



Armin Schwartzman. Random ellipsoids and false discovery rates: statistics for diffu-

sion tensor imaging data. PhD thesis, Stanford University, June 2006.

Armin Schwartzman, Robert F. Dougherty, and Jonathan E. Taylor. Cross-subject

comparison of principal diffusion direction maps. Magn Reson Med, 53:1423–1431,

2005.

Armin Schwartzman, Robert F. Dougherty, and Jonathan E. Taylor. False discovery

rate analysis of brain diffusion direction maps. Ann Appl Statist, 2(1):153–175, 2008a.

Armin Schwartzman, Walter Mascarenhas, and Jonathan E. Taylor. Inference for

eigenvalues and eigenvectors of Gaussian symmetric matrices. Ann Statist, 36(6):

2886–2919, 2008b.

Armin Schwartzman, Robert F. Dougherty, Jongho Lee, Dara Ghahremani, and

Jonathan E. Taylor. Empirical null and false discovery rate analysis in neuroimaging.

Neuroimage, 44(1):71–82, 2009.

John D. Storey, Jonathan E. Taylor, and David Siegmund. Strong control, conservative

point estimation and simultaneous conservative consistency of false discovery rates:

a unified approach. J R Statist Soc B, 66(1):187–205, 2004.

Alan Stuart and J. Keith Ord. Kendall’s Advanced Theory of Statistics. Edward

Arnold, London, 6th edition, 1994.

Brandon Whitcher, Jonathan J. Wisco, Nouchine Hadjikhani, and David S. Tuch.

Statistical group comparison of diffusion tensors via multivariate hypothesis testing.

Magn Reson Med, 57:1065–1074, 2007.

Keith J. Worsley, Jonathan E. Taylor, F. Tomaiuolo, and J. Lerch. Unified univariate

and multivariate random field theory. Neuroimage, 23:S189–195, 2004.

28

http://biostats.bepress.com/harvardbiostat/paper96



Yu-Chien Wu, Aaron S. Field, Moo K. Chung, Benham Badie, and Andrew L. Alexan-

der. Quantitative analysis of diffusion tensor orientation: theoretical framework.

Magn Reson Med, 52:1146–1155, 2004.

Ying Yao. An approximate degrees of freedom solution to the multivariate behrens

fisher problem. Biometrika, 52(1/2):139–147, 1965.

Hongtu Zhu, Heping Zhang, Joseph G. Ibrahim, and Bradley S. Peterson. Statistical

analysis of diffusion tensors in diffusion-weighted magnetic resonance imaging. J

Amer Statist Assoc, 102(480):1085–1102, 2007.

29

Hosted by The Berkeley Electronic Press



Table 1: Thresholds and fraction of rejected hypotheses R/m at FDR level 0.05.

unsmoothed data smoothed data, b = 5

test type threshold R/m threshold R/m

eigenvalue 7.1 × 10−5 0.0014 4.5 × 10−5 0.0009

eigenvector 1.1 × 10−3 0.0225 4.5 × 10−3 0.0895

http://biostats.bepress.com/harvardbiostat/paper96



�

�

�

�

M

M̂
∗

0

M̂
∗

A

Ȳ
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Figure 1: The tangent spaces T0(M) ⊂ TA(M) to M0 and MA at M and the corre-

sponding MLEs. The nested underlying manifolds M0 ⊂ MA are not shown.
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Figure 2: Null distribution of p-values for the two-sample eigenvalue and eigenvector

test statistics, for n1 = 50, n2 = 50.
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Figure 3: ROC curves for fixed changes in eigenvalues, n1 = 50, n2 = 50, Σ =

0.5Wishart(I6, 6). (a) ∆M = Diag(0.2, 0.4, 0.8). (b) ∆M = Diag(0.2, 0.4,−0.8). (c)

∆M = Diag(0.4, 0.4,−0.4). (d) ∆M = Diag(0.4,−0.4,−0.4).
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Figure 4: ROC curves for fixed changes in eigenvectors, n1 = 50, n2 = 50, Σ =

0.5Wishart(I6, 6). (a) a = (1, 1, 1)/
√

3, θ = 0.5. (b) a = (1, 1, 1)/
√

3, θ = 0.5. (c)

a = (1, 0, 0), θ = 0.5. (d) a = (0, 0, 1), θ = 0.5.
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Figure 5: Empirical distribution of p-values for the three test types: (a) unsmoothed

data, N = 105822 voxels; (b) smoothed data with b = 5, N = 73462 voxels.
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Figure 6: P-value maps in scale −log10(p) at a transverse slice 36 mm above the anterior

commisure: (a) full matrix test; (b) eigenvalue test; (c) eigenvector test.
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Figure 7: (a) Transverse slice 36 mm above the anterior commisure: Interesting voxels

according to eigenvector test at FDR level 0.05. (b) Trace of the empirical covariance

S = S1/n1 + S2/n2.
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Figure 8: Spatial smoothing of the data with b = 5, transverse slice 36 mm above the

anterior commisure: (a) P-value map in scale −log10(p). (c) Interesting voxels at FDR

level 0.05.
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Figure 9: First eigenvector of DT mean for boys (a) and girls (b) at a transverse slice

36 mm above the anterior commisure. Colors indicate coordinate directions: right-left

(red) and anterior-posterior (green) and superior-inferior (blue). Mixed colors represent

directions that are oblique to the coordinate axes. The intensity is weighted by FA, so

brighter regions have higher anisotropy.
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Figure 10: Second eigenvector of DT mean for boys (a) and girls (b) at the same slice

and using the same color scheme as Figure 9.
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