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Bivariate Binomial Spatial Modelling of Loa loa
Prevalence in Tropical Africa

Ciprian M. Crainiceanu∗ Peter J. Diggle † Barry Rowlingson ‡

March 21, 2006

Abstract

We present a state-of-the-art application of smoothing for dependent bivariate bi-
nomial spatial data to Loa loa prevalence mapping in West Africa. This application is
special because it starts with the non-spatial calibration of survey instruments, con-
tinues with the spatial model building and assessment and ends with robust, tested
software that will be used by the field scientists of the World Health Organization
for online prevalence map updating. From a statistical perspective several important
methodological issues were addressed: (a) building spatial models that are complex
enough to capture the structure of the data but remain computationally usable; (b)
reducing the computational burden in the handling of very large covariate data sets;
(c) devising methods for comparing spatial prediction methods for a given exceedance
policy threshold.

Keywords: Geostatistics, low–rank, thin–plate splines

1 Introduction

The African Programme for Onchocerciasis Control (APOC) administers mass-treatment
with the drug Ivermectin, which is highly effective in eliminating onchocerciasis parasites
from the blood of infected individuals. However, in areas of high Loa loa prevalence, some
individuals treated with Ivermectin develop severe, and occasionally fatal, adverse reactions
to the drug. Hence, APOC policy is that before implementing mass-treatment in areas with
high Loa loa prevalence, precautionary measures should be put in place to enable prompt
treatment of any cases of serious adverse reaction to the drug. The official policy is that
precautionary measures should be taken in areas where Loa loa prevalence exceeds 20%.
Hence, there is a need to estimate the spatial distribution of Loa loa prevalence in potential
treatment areas, which include a large part of central Africa.

Prevalence is traditionally estimated by parasitological sampling, i.e. by taking blood-
samples from selected village communities and using the observed proportion of positive
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results as an estimate of the local prevalence. However, it is not feasible to undertake
parasitological sampling in every community where Ivermectin treatment is envisaged.

Geostatistical modelling provides a way of using community-level results to estimate
continuous spatial variation in prevalence and express the results as an “exceedance map,”
i.e. a map of the probability that local prevalence exceeds the 20% policy intervention
threshold. Diggle, Moyeed, and Tawn (1998) and Diggle et al. (2006) proposed the following
univariate binomial geostatistical model for describing village level parasitology data

{
Y (x)|P (x) ∼ Binomial {N(x), P (x)}
logit {P (x)} = µ(x) + S(x)

. (1)

In (1) Y (x) is the number of positive blood-test results out of N(x) people sampled in the
village identified by location x. P (x) denotes prevalence, µ(x) is a function of elevation and
greenness of vegetation as determined from satellite data and S(x) is a stationary Gaussian
process.

Collecting additional prevalence data is needed to improve the accuracy of prediction,
but parasitological sampling is expensive and resources are scarce. Therefore, World Health
Organization (WHO) researchers have developed a questionnaire instrument, RAPLOA,
which for a given total cost enables many more communities to be surveyed than would
be possible using parasitological sampling (Tako et al. (2002)). In order to validate the
RAPLOA methodology, surveys were carried out in which both methods of determining
prevalence were used. In this paper, we formulate a class of bivariate geostatistical models
for data of this kind and describe a method for fitting a sub-class of these models using
random coefficient thin-plate splines to represent a bivariate counterpart of the unobserved
spatial process S(·) in (1). We consider two inferential approaches: Bayesian predictive
inference implemented via Markov chain Monte Carlo (MCMC) and a computationally fast
approximation to Bayesian inference. The rationale for this dual approach is that when a new
survey is undertaken, field-workers may need to construct a local exceedance map quickly,
whereas on completion of each survey the authoritative, region-wide exceedance map can be
updated off-line by incorporating the new data in an optimal manner.

In Section 2 we present a non-spatial exploratory analysis of the validation data, which
demonstrates the potential value of the RAPLOA instrument as a low-cost alternative to
parasitological sampling. Section 3 describes the formulation of the bivariate geostatistical
model which forms the basis for our proposed solution of the Loa loa mapping problem.
Sections 4 and 5 give the the results obtained using Bayesian predictive inference, and our
proposed computationally fast approximation, respectively. Section 6 contains a realistic
simulation study comparing the Bayesian predictive inference with the simpler frequentist
approximation. Section 7 discusses practical problems related to software implementation
and testing and Section 8 provides the conclusion.

2 Exploratory analysis of the validation data

The validation data relate to a series of surveys conducted with the specific purpose of cali-
brating estimates of community-level Loa loa prevalence obtained by two different methods,
RAPLOA and parasitological sampling. In the RAPLOA methodology, each person in the
survey is classified as a positive case if they answer “yes” to all three of the following ques-
tions. Have you ever suffered from eye-worm? Did it look like this photograph? Did it
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Survey Location Number of Subjects/village
villages min mean max

0 Cameroon 74 24 117.3 268
1 DRC West 49 47 81.8 102
2 DRC East 50 46 81.8 96
3 Congo 50 27 66.5 100

Table 1: Location and size of each of the four calibration surveys.

last less than one week? In parasitological sampling, each person in the survey provides a
finger-prick sample of blood, the blood-sample is smeared onto a glass slide, and positive
cases are those whose blood-samples contain visible microfilariae at 10 times magnification.
Data from four surveys are available, each including a sample of villages within a defined
area. Table 1 summarizes the amount of data available.

For a preliminary assessment of the calibration relationship between prevalence as as-
sessed by parasitology and by RAPLOA, we analyzed the data as follows. We assume that,
after applying an empirical logit transformation, the data within each of the four surveys
can be regarded as a random sample from a bivariate Gaussian distribution. We then com-
pute the sample mean vector and covariance matrix of each sample, and derive the principal
axis of each fitted bivariate Gaussian distribution as the eigenvector associated with the
larger of the two eigenvalues of the sample covariance matrix. Finally, we back-transform
the principal axis onto the prevalence scale.

For each datum, if n denotes the number of persons surveyed and y the number of posi-
tives, the raw estimated prevalence is y/n and the empirical logit is log {(y + 0.5)/(n− y + 0.5)}.
The two panels of Figure 1 show a strong, direct relationship between the results obtained
by the two methods. This relationship is approximately linear on the logit scale, with cor-
relation 0.83, a pronounced shift between the two means (−0.77 for RAPLOA, −2.41 for
parasitology) but approximately equal variances (2.53 for RAPLOA, 2.76 for parasitology).
Results from the four surveys show the same general pattern, with the Congo survey devi-
ating somewhat from the other three in presenting a shallower slope for the fitted principal
axis.

Figure 1 also shows the calibration relationships obtained as described above. Note in
particular that on the prevalence scale, the calibration curves obtained from the four surveys
agree closely over the range of parasitological prevalences between zero and 20%. This is the
relevant range with respect to the declared policy regarding precautionary measures to be
taken in advance of mass treatment with Ivermectin.

3 Bivariate geostatistical modelling

3.1 A bivariate Binomial geostatistical model

To enable predictive mapping of both parasitological and RAPLOA prevalence, we fit the
following bivariate Binomial model for village level numbers of positive indications according
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to RAPLOA and parasitology.





Y1(x)|P1(x) ∼ Binomial {P1(x), N1(x)}
Y2(x)|P2(x) ∼ Binomial {P2(x), N2(x)}
logit{P1(x)} = L1(x)
logit{P2(x)} = L2(x)
L2(x)|L1(x) ∼ Normal(α0 + α1L1(x), σ2

ε )
L1(x) = µ + C(x)T β + xT γ + S(x)

(2)

Here Y1(x), Y2(x) denote the numbers of positive indications according to parasitology
and RAPLOA sampling, respectively, for the village at geographical location x, whilst N1(x)
and N2(x) denote the corresponding numbers of people sampled. Conditional on the spatial
prevalence processes P1(x) and P2(x), the count responses Y1(x) and Y2(x) are assumed to
follow independent binomial distributions. For our application, P1(x), the Loa loa parasito-
logical prevalence process, is the focus of interest and our specific objective is to identify
geographic areas where P1(x) > 0.2 with high probability.

The unobserved processes L1(x) and L2(x) represent the spatially varying log-odds of Loa
loa prevalence according to the parasitological and RAPLOA surveys respectively, and are
linked through a calibration relationship described by the fifth equation of (2). This equation
plays an important role when only RAPLOA data become available at new locations and
we wish to use these data to update our exceedance map for parasitological prevalence. A
key assumption is that the parameters α1, α2 and σ2

ε do not depend on the location x. The
results of the exploratory analysis reported in Section 2 indicate that this assumption is
reasonable. The model is completed by specifying the spatial model for L1(x) in the final
equation of (2). Here, µ is the overall mean, whilst C(x)T β describes the spatial variation
in the mean attributable to the effects of covariates observed at location x. In the current
application, we include as covariates altitude, mean greenness and standard deviation of
greenness, where greenness is derived from repeated satellite scans over a period of one year.
Finally, S(x) is a zero-mean stationary process representing any residual spatial variation
which is not explained by the available covariates.

Our bivariate binomial geostatistical model (2) is of necessity complex because the struc-
ture of the data is complex. However, the complexity is built using a series of individually
simple conditional relationships, making the model easy to understand. With regard to the
process S(x), the standard approach would be to use a stationary Gaussian process, as in
Diggle et al. (2006). However, this would be computationally burdensome for the current
application because of very large number of prediction locations. A second practical consid-
eration is the need to fit models to increasingly large data-sets as new data become available.
In the following section we describe a model for S(x) based on low-rank thin-plate splines,
which provides a computationally efficient alternative to conventional Gaussian processes or
full-rank thin-plate splines, without serious loss of flexibility.

3.2 Full-rank and low-rank thin-plate spline smoothing

The very widely used geostatistical method known as (ordinary) kriging is a linear smoothing
method which is formally equivalent to minimum mean-square prediction for a Gaussian
process, e.g. Chilès and Delfiner (1999), Cressie (1993). Both kriging and thin-plate spline
smoothing, e.g. Green and Silverman (1994), are full-rank smoothers which fall within the
family of general radial smoothers. Good discussions of the formal connection between these
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two important methods are provided by Cressie (1993) and Nychka (2000). In kriging, the
covariance structure of the unobserved process is specified directly, usually from one of several
standard parametric families. Thin-plate splines can also be identified as Gaussian spatial
processes, although from this perspective their covariance structure may seem unnatural,
e.g. Wahba (1990) 1990 and Nychka (2000).

Here, we discuss smoothing in two dimensions, although the extension to more than two
dimensions is straightforward. In its simplest form, two–dimensional smoothing operates by
fitting a model of the form

Yi = f(xi) + εi

to data (Yi, xi) : i = 1, ..., n under the assumption that the εi are mutually independent
N(0, σ2

ε ) variables. Writing xi = (x1i, x2i) so as to make explicit its two-dimensional charac-
ter, the thin-plate spline smoother f̂(·) is the solution to the following optimization problem,

min
f(·,·)

[
n∑

i=1

{Yi − f(x1i, x2i)}2 + λ

∫ ∫ {(
∂2f

∂x2
1

)2

+

(
∂2f

∂x1∂x2

)2

+

(
∂2f

∂x2
2

)2
}

dx1dx2

]
. (3)

To characterize the solution f̂(·), consider the radial basis functions C(r) = r2(M−1) log(r)
where the integer M controls the smoothness of the correlation function C(·). Denote by
X the matrix with ith row Xi = (1, xi) and by ZR the matrix with (i, j)th entry equal to
C (||xi − xj||). Write ZR

i for the ith row of the matrix ZR. Then, the solution of (3) is of

the form f̂(xi) = Xiβ̂ + ZR
i û where (β̂, û) are the solutions of the quadratic minimization

problem
min
β,u

(||Y −Xβ − ZRu||2 + λuT ZRu
)

. (4)

For any fixed value of the smoothing parameter λ, the thin-plate spline smoother has the
explict form of a ridge regression estimator,

(β̂λ, ûλ)
T = (CT C + λD)−1CT Y , (5)

where C is the n by n + 3 matrix, C = [X; Z] and D is the n + 3 by n + 3 diagonal matrix
with diagonal elements (0, 0, 0, ZR).

Many criteria have been suggested for choosing the smoothing parameter λ from the
data. These include CV or GCV (Craven and Wahba (1979)), Cp (Mallows (1973)), AIC
(Akaike (1973)) and restricted or unrestricted maximum likelihood (Ruppert, Wand, and
Carroll (2003)). We focus now on the restricted maximum likelihood (REML) criterion.
Dividing (4) by the error variance σ2

ε gives

min
β,u

(
1

σ2
ε

||Y −Xβ − ZRu||2 +
λ

σ2
ε

uT ZRu

)
. (6)

If we now write σ2
u = σ2

ε /λ and treat the u’s as a set of Normally distributed random
coefficients with mean zero, variance σ2

u and Cov(u) = σ2
uZ

−1
R , the solution of (6) is equivalent

to the best linear unbiased predictor (BLUP) in the linear Gaussian mixed model,

Y = Xβ + ZRu + ε , E

(
u
ε

)
=

(
0n×1

0n×1

)
, Cov

(
u
ε

)
=

(
σ2

uZ
−1
R 0n×n

0n×n σ2
ε In .

)
(7)

For a formal proof of this result see, for example, Ruppert, Wand and Carroll (2003). A
further simplification can be obtained by reparameterization of the random coefficients to
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b = Z
1/2
R u, where Z

1/2
R is the principal square root of ZR. Writing Z = ZRZ

−1/2
R , model (7)

becomes equivalent to

y = Xβ + Zb + ε , E

(
b
ε

)
=

(
0n×1

0n×1

)
, Cov

(
b
ε

)
=

(
σ2

bIn 0n×n

0n×n σ2
ε In .

)
(8)

The above equivalence between thin-plate spline smoothers and Gaussian linear mixed
models provides a statistically natural way to introduce the computationally convenient
device of low-rank thin-plate spline smoothing. We first look more closely at the structure
of the matrix ZR. Since the (i, j)th entry of ZR is C (||xi − xj||), ZR can be interpreted
as the correlation matrix of an isotropic spatial process with correlation function C(r) =
r2(M−1) log(r). From a thin-plate spline perspective, every observation is treated as a knot
and ZR is the matrix of distances between each observation and each of the n knots in
the metric C(·). For example, the ith row of ZR is {C (||xi − x1||) , . . . , C (||xi − xn||)} and
represents the distances from the ith observation to the knots, which are the sampling
locations x1, . . . , xn. More generally, we can consider any set of knots κ1, . . . , κK in R2 and
construct the n×K matrix ZK with ith row {C (||xi − κ1||) , . . . , C (||xi − κK ||)}. The basic
idea behind low-rank smoothing is that it is usually not necessary to consider as many knots
as the sample size n, because when n is large and the underlying spatial structure is smooth,
K << n knots is usually sufficient to give the desired flexibility for the fitted surface in R2.

To preserve the nice statistical interpretation of the full-rank thin-plate spline, we would
like to have a mixed model representation similar to (7), but where the ZR matrix is replaced
by ZK . This can be done directly, but with one important difference. The matrix ZK has
dimension n×K and defines a non-invertible linear transformation from the k-dimensional
random vector u to the n-dimensional space of the data. Therefore σ2

uZ
−1
K does not exist,

and cannot be the covariance matrix of u. However, in the full-rank model the matrix ZR

can also be viewed as the matrix of distances between the knots x1, . . . , xn. Adapting this
idea to any set of knots κ1, . . . , κK we can assume that Cov(u) = σ2

uΩ
−1
K where the (k, l)th

entry of ΩK is wK
k,l = C(||κk − κl||). Using the same strategy as for full rank thin–plate

splines we define Z = ZKΩ
−1/2
K and obtain the low-rank thin-plate spline fit as the BLUP in

the mixed model

y = Xβ + Zb + ε , E

(
b
ε

)
=

(
0K×1

0n×1

)
, Cov

(
b
ε

)
=

(
σ2

bIK 0K×n

0n×K σ2
ε In

)
, (9)

which is now a direct analogue of (8).
Despite this simple mixed model formulation of S(x), existing statistical software cannot

handle models like (2). Therefore, a reasonable strategy is to use Bayesian inference based
on MCMC simulations. However, in this framework, MCMC simulations based on full rank
approaches are extremely expensive computationally and can be unstable as the complexity
of the algorithm increases substantially with additional data. In contrast, the computational
complexity of low-rank smoothers is determined by the number of knots, K.

More details on geostatistical modeling using low-rank thin-plate splines can be found in
Kammann and Wand (2003). Good discussions of their computational advantages can be
found in Nychka (2000) and in Ruppert, Wand and Carroll (2003).

3.3 Number and location of knots

The number of knots, K, in a low-rank smoother limits the maximum complexity of the
model, whilst the smoothing parameter λ controls the fit to the data. Ruppert, Wand and

6

http://biostats.bepress.com/jhubiostat/paper103



Carroll (2003) suggest K = max{20, min(n/4, 150)} as a default. In the Loa loa study with
n = 223 village locations, we used K = 50 to model the spatial process component, S(x), of
the Loa loa prevalence. Together with covariate terms, this implies a maximum of 57 degrees
of freedom for modelling the logit of the prevalence surface for parasitological sampling,
L1(·).

To determine the knot locations we used the space-filling design of Nychka and Saltzman
(1998), as implemented in the R-package FIELDS Nychka (2004). The algorithm to obtain
the design is fast for our sample sizes, but can be slow when n and K are large. A simple
solution is to apply the algorithm to a random sub-set of the sample locations, xi. The
intuitive idea behind the space-filling algorithm is as follows.

As discussed in section 3.2, for a given set of locations x1, . . . , xn and function C(·) a full

rank smoother is the BLUP in the mixed model (8), where Z = ZRZ
−1/2
R with (i, j)th entry

C(||xi − xj||). For most configurations of sample locations x, the eigenvalues of the ZT Z
matrix decay very quickly to zero, indicating that the effective dimensionality of the space
spanned by the columns of Z is much smaller than n. Suppose that we want to identify K n-
element vectors of the form [C(||xi − κk||)]1≤i≤n to define a subspace which best approximates
the subspace spanned by the columns of ZR. A reasonable strategy is to choose the knots
κk, k = 1, . . . , K, so that most are placed in regions of the space in which sample locations
xi are relatively dense. Now suppose that the observation locations form several clusters.
Then, we need to place a number of knots within each cluster, but to best approximate
the subspace spanned by the data–values yi a natural strategy to avoid redundancy is to
maximise the average spacing between knots. In one dimension, the resulting design reduces
to choosing the knots at the sample quantiles of the xi corresponding to probabilities k/K+1,
as recommended by Ruppert (2002) and Ruppert et al. (2003). Other ways of choosing the
knots have been suggested. For example, Ganguli and Wand (2005) use the clara algorithm
of Kaufman and Rousseeuw (1990) implemented in the R–package cluster as the default for
their low–rank thin–plate spline bivariate smoother implemented in the R–package SemiPar.
However, a general property of low-rank thin-plate splines is that their fit to data is not
strongly dependent on the exact locations of the knots.

4 Bayesian predictive inference

An important advantage of penalized low–rank thin plate splines is that they can be readily
extended to more complex models such as (2). Indeed, the only component that still needs
to be defined in model (2) is the parameterization of parasitological Loa loa logit prevalence,
L1(x). In fact, L1(x) includes a spatially varying mean µ+C(x)T β+xT γ and residual spatial
variation S(x). The spatially varying mean is a standard linear function in the parameters
µ, β, γ, where C(x) are the, possibly transformed, observed covariates at location x. Using
ideas from Section 3 we model

S(x) = Z(x)b,

where Z(x) is the row of the matrix Z = ZKΩ
−1/2
K corresponding to location x, and b is a K×1

vector of random coefficients. Model (2) is fully defined by specifying the prior distribution
on the b coefficients that controls the amount of spatial smoothing. As in Section 3 this is

b ∼ N(0, σ2
b ),
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where the shrinkage parameter σ2
b is estimated from the data. Note that, once inference is

conducted at the sampling locations, model (2) provides a simple recipe for interpolation of
the logit prevalence function at any new location, x0, because

L1(x0) = µ + C(x0)
T β + xT

0 γ + Z(x0)b.

If a Bayesian analysis is used then the joint posterior distribution of (µ, β, γ, b) is known and
the posterior distribution of L1(x0) at any location is also known. In practice, the posterior
distribution is not available in closed form, but a correlated chain from the joint posterior
distribution is usually available using Gibbs sampling. Such a chain can then be used to
obtain a correlated chain from the posterior distribution of L1(x0). This has the very nice
practical property that to make inference about L1 at any location or cluster of locations
one need only use the output from the simulation algorithm using the original sampling
locations.

The parameters of the model (2) are µ, β, γ, α = (α0, α1), σ2
ε and σ2

b . For all parameters
that were not variance components we used independent Gaussian priors with mean zero
and standard deviation 1, 000. This choice was made by first doing a simplified frequentist
analysis as described in detail in Section 5. The priors were then chosen with a standard
error roughly 100 times larger than the largest standard deviation of individual parameters.
We conducted a limited simulation study and, as expected, centering the priors at zero did
not affect posterior inference.

As discussed by Crainiceanu, Ruppert, and Wand (2005b), the prior distributions on
the variance components should be treated carefully, since a poor choice of prior can have
serious effect on the smoothing function. To better understand this we show how critically
the choice of Gamma prior τb = 1/σ2

b may depend upon the scaling of the variables. Consider
the simple case of Gaussian smoothing described in Section 3.2. If [τb] ∼ Gamma(Ab, Bb)
where Gamma(A,B) has mean A/B and variance A/B2, then

[τb|Y , β, b, τε] ∼ Gamma

(
Ab +

K

2
, Bb +

||b||2
2

)
(10)

The prior does not influence the posterior distribution of τb when both Ab and Bb are small
compared to K/2 and ||b||2/2 respectively. Since the number of knots is K ≥ 50 it is safe
to choose Ab ≤ 0.001. When Bb << ||b||2/2 the posterior distribution is practically unaf-
fected by the prior assumptions. When Bb increases compared to ||b||2/2, the conditional
distribution is increasingly affected by the prior assumptions. In our application the pos-
terior distribution of σ2

b was essentially supported by [0.2,∞] and the value Bb = 0.001
did not influence the posterior inference. A similar discussion holds for σ2

ε . Thus, we used
Gamma(0.001, 0.001) priors both for σ2

b and σ2
ε .

4.1 Application to the Loa loa mapping problem

Our model (2) for the logit of Loa loa prevalence according to parasitology sampling, L1(x),
includes a spatially varying mean µ+C(x)T β+xT γ and residual spatial variation represented
by the Gaussian process, S(x). Also, C(x) contains 4 covariates. The first two covariates
are the mean and standard deviation of the annual Normalized Difference Vegetation Index,
which is a continuous measure of greenness derived from repeated satellite scans during
the year 2000. Both measures are calculated at the pixel level, where one pixel is roughly
equivalent to 1km2.
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The last two covariates are elevation and elevation truncated at 800 meters, which to-
gether define a linear spline with one knot at 800 meters. We modelled the residual spatial
variation S(x) as a thin-plate spline with k = 50 knots placed according to the space-filling
algorithm of Nychka, Haaland, O’Connell, and Ellner (1998).

As discussed in Section 3, one consequence of using a low-rank model is that the whole of
the spatially continuous surface S(x) is determined by a finite number of parameters and the
progress of the MCMC can be monitored accordingly. This has important computational
advantages because the number of parameters is very small compared to the numbers of
locations where Loa loa prevalence is predicted. In particular, the exceedance probability at
every location x within a geographical region of interest can be obtained from the monitored
model parameters. The MCMC sample from the posterior distribution of the parameters
induces a sample from the posterior distribution of the prevalence surface P1(x) in (2), and
the required posterior exceedance probability can be obtained as the frequency with which
P1(x) > 0.2 in this sample.

For inference we used Gibbs sampling to simulate the joint posterior distribution of
the parameters given the data. We used 20, 000 burn–in simulations and an additional
500, 000 simulations from the target distribution. Figure 2 displays every 1, 000th sample
for 9 parameters of interest indicating reasonable sampling properties. A similar, but much
less clear plot was obtained using every 100th sample. Three chains with initial parameter
values dispersed with respect to the posterior densities were used to assess convergence.
Visual inspection of these chains revealed that convergence to the target distribution occurs
before 10, 000 simulations.

While the logit prevalence function, L1(x), has very good mixing properties, the mixing
of several parameters was not as good, probably due to the lack of information about them in
the data. The best mixing properties were exhibited by α0, α1, σε, which are the parameters
of the spatial calibration, L2(x)|L1(x), between the logit of the prevalence according to the
RAPLOA and parasitological survey. The difference between these results and the nonspatial
calibration models in Section 1 is that the posterior distributions of parameters depend on
all of the data, including covariates, as well as on the structure of the spatial model S(x).
Another parameter with good MCMC mixing properties is σb (chain not shown) which
controls the amount of shrinkage of the coefficients of the radial basis.

Table 2 gives the posterior mean and 95% credible intervals for several model parameters.
The columns labeled “Whole data” correspond to analyses of the entire data set, while the
columns labeled “2 observations removed” correspond to analyses of a subset of the original
data set, where two obvious outliers were removed. More precisely, we removed observa-
tions for two villages with elevations of 1804 and 1806 meters and empirical parasitological
prevalences of 0.51 and 0.33, respectively.

These results indicate that greeness was not statistically significant in either data set.
Increased elevation up to 800 meters was postively associated with increased Loa Loa preva-
lence when the whole data set was used but became negatively associated when the two
obvious outliers were removed. Moreover, in the reduced data set elevation above 800 me-
ters is negatively associated with prevalence, with the probability of a negative change in
slope above 800 meters being 0.97. The findings in the reduced data set tend to agree more
closely with the findings of previous studies, e.g. Diggle et al. (1998). Interestingly, the
slope of the calibration equation was estimated to be 0.95 and 0.91, both being statistically
indistinguishable from 1. Thus, taking into account the spatial variation, the a–posteriori
difference between logit parasitology and RAPLOA prevalence is entirely contained in the
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Whole data 2 observations removed
Parameter Mean SD Mean SD
Intercept cal. 1.43 .11 1.39 0.11
Slope cal. 0.95 .05 0.91 0.46
Greenness 0.36 .96 0.41 1.04
Std. Greenness 0.61 2.15 3.13 2.56
Elevation× 10−3 .80 .31 -.60 0.32
Elevation>800 × 10−3 −.10 0.15 -.30 0.16

Table 2: Posterior means and standard deviations for several parameters of interest. The
columns “Whole data” correspond to all the 223 sampling locations. The columns “2 obser-
vations removed” correspond to 221 sampling locations, with 2 outliers removed.

calibration equation intercept.
Of course, the quality of prediction will depend effectively on which conclusion is sup-

ported by data at new locations. An advantage of the Bayesian method is that prior knowl-
edge, such as “Greener areas correspond to larger prevalence” can be easily embedded into the
model even if it is not supported by the current data by specifying a prior Uniform(0, 2×103)
instead of Normal(0, 106).

Figure 3 displays the estimated parasitology prevalence obtained from the Bayesian
analysis of the bivariate Binomial model (2). The sampling locations are concentrated in
three areas of the map roughly defined by the longitude/latitude rectangles [8, 16]×[3,7],
[12, 16]× [−6,−3], and [27, 31]× [1.5, 4]. To better view the details of the map the lower plot
in Figure 3 shows a zoom in on the rectangle [8.3, 16]×[3, 7]. In this graph we also plotted the
actual sampling locations color–coded according to the empirical prevalence estimate: black
P̂ (x) > 0.3, red 0.25 ≤ P̂ (x) < 0.3, magenta 0.20 ≤ P̂ (x) < 0.25, cyan 0.18 ≤ P̂ (x) < 0.20

and blue P̂ (x) < 0.18. An important characteristic of the bottom panel is the smooth shape
of the prevalence map, at least some of which is attributable to the sparsity of the data.
The data were collected with the primary aim of validating the calibration between parasito-
logical and RAPLOA estimates of prevalence over a wide geographical area; the resulting
sampling design is not well suited for estimating spatial variation in prevalence.

5 A fast method for approximate predictive inference

Bayesian estimation has proved to be an effective inferential tool for the bivariate binomial
spatial model (2) describing the complex joint distribution of the village level parasitology
and RAPLOA sampling outcomes. However, in our context we have identified the following
limitations of Bayesian inference based on MCMC sampling.

1. Slow mixing. The complex structure of model (2) combined with data sparsity induces
large posterior correlations between weakly identified parameters which in turn leads
to poor mixing of the Markov chains.

2. Long updating time. In our implementation one update of all parameters takes roughly
0.3 seconds on a PC (3.6GHz CPU, 3GB RAM). This, combined with the necessity of
running long chains to overcome the slow mixing, leads to simulation times of several
hours. Simulation times are likely to be even longer on computers used by field–workers.
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3. Limited testing. Long simulation times have restricted our ability to do extensive
testing of our Bayesian methodology.

4. Need for expert supervision. All these limitations require the expert supervision of a
statistician. Such expertise is typically not available when new data become available
and predictive maps need to be updated.

In section 5.1 we present a computationally fast methodology that avoids these problems
and provides a simple and robust basis for software development. In section 5.2 we use
this simpler method for making inference about prediction maps of Loa loa. In section 6
we provide a realistic simulation study comparing the performance of this new calibration
model with the bivariate binomial model.

5.1 A fast calibration methodology

The first step in constructing the calibration model is to ignore the Binomial variability and
re–define the outcome. For those locations where parasitological sampling was conducted
the logit of the parasitological prevalence can be approximated by

L̂1(x) = logit{P̂1(x)}
P̂1(x) = Y1(x)/N1(x), x ∈ O

(11)

where Y1(x) is the number of parasitology positive samples among N1(x) subjects sampled
at location x ∈ O. Here O denotes the set of all locations where parasitological sampling
was conducted.

For locations where only RAPLOA sampling is available we simulate independently C
data sets from the calibration model

L̂c
1(x) ∼ Normal(α̂0,1|2 + α̂1,1|2L̂2(x), σ̂2

ε,1|2), c = 1, . . . , C, x ∈ M (12)

where L̂2(x) = logit{P̂2(x)}, P̂2(x) = Y2(x)/N2(x) and M is the set of locations where
RAPLOA but not parasitology sampling was conducted. The parameters α0,1|2, α1,1|2, σ2

ε,1|2
are estimated by a standard linear regression of L̂1(x) on L̂2(x) using those locations where
both parasitology and RAPLOA sampling were conducted.

Thus, we obtain C data sets by keeping fixed the sampling locations and covariates and
defining the outcome

Lc(x) = L̂1(x)I(x ∈ O) + L̂c
1(x)I(x ∈ M) (13)

where I(·) is the indicator function. Denote now by Lc the outcome vector with entries
Lc(x) for all locations x ∈ O ∪M and by X the design matrix of fixed effects with the row
corresponding to location x equal to

X(x) = [1 xT g(x) s(x) el(x) el{>800}(x)],

where xT is the location expressed as (longitude, latitude), g(x) is the greeness, s(x) is the
standard deviation of greeness, el(x) is the elevation and el{>800}(x) is elevation truncated at
800 meters. Of course, other covariates could be included in X when they become available.
Denote by Z the low–rank thin plate spline design matrix of random effects corresponding
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to the set of n survey locations and a fixed set of K knots obtained as described in Section
3.2. For each data set c = 1, . . . , C we fit the following mixed model using REML estimation
of variance components

Lc = Xβ + Zb + ε, E

[
b
ε

]
=

[
0K

0n

]
, Cov

[
b
ε

]
=

[
σ2

bIK 0K×n

0n×K σ2
ε In

]
. (14)

Here 0a, 0a×b are the a× 1 vector and a× b matrix with zero entries respectively, and Ia is
the a× a identity matrix.

Denote by (β̂T
c , b̂T

c )T the Best Linear Unbiased Predictor (BLUP) of (βT , bT )T from model
(14) using the cth simulated outcome vector Lc. Suppose that one is interested in producing
a predictive map at a particular location x0. Denote by

X0 = [1 xT
0 g(x0) s(x0) el(x0) el{>800}(x0)],

and by
Z0 = [||x0 − κk||2 log ||x0 − κk||]1≤k≤KΩ

−1/2
K

where κ1, . . . , κK are K knot locations and ΩK is the thin–plate distance matrix between
knots defined in Section 3.2. With these notations the mean logit prevalence at x0 can be
estimated by

L̂c(x0) = X0β̂
T
c + Z0b̂

T
c .

The Monte Carlo variability of the L̂c(x0) can be reduced by taking the average over all
simulated data sets

L̂A(x0) =
1

C

C∑
c=1

L̂c(x0) .

The variance of the L̂A(x0) has two components. The first component is due to variability of
the estimate around its mean while the second component is due to variability of the mean
estimator around its mean. We estimate Var{L̂A(x0)} by

V̂ar{L̂A(x0)} =
1

C

C∑
c=1

V̂ar{L̂c(x0)}+
1

C − 1

C∑
c=1

{L̂c(x0)− L̂A(x0)}2 .

Since {L̂c(x0)} is a linear transformation of the BLUP estimator (β̂T
c , b̂T

c )T its variance is
simple to estimate using mixed model results. In particular,

V̂ar{L̂c(x0)} = σ̂2
c,εSx0

(
ST S +

σ̂2
c,ε

σ̂2
c,b

D

)
ST

x0
, (15)

where the subscript c indicates that parameter estimates are obtained from the c simulated
sample, Sx0 = [X0|Z0], S = [X|Z] and

D =

[
0(p+1)×(p+1) 0(p+1)×K

0K×(p+1) IK×K

]
.

Here p is the number of covariates including longitude and latitude and in our application
p = 6. Estimator (15) is called the bias–adjusted variability estimate in Chapter 6 of Ruppert
et al. (2003) and uses the marginal variance of the BLUP over the random effects.
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The prevalence exceedance probability of any probability threshold p0 at a particular
location x0 can thus be estimated by

Ê(x0, p0) = 1− Φ


 logit(p0)− L̂A(x0)√

V̂ar{L̂A(x0)}


 .

For policy reasons, in our application p0 = 0.2 corresponding to logit(p0) = −1.386.
In summary, the model described in this section approximates model (2) by

1. Replacing the spatial binomial model for parasitology counts with a low–rank thin–
plate spline approximation of a Gaussian random field for the logit of the empirical
village level prevalence estimates.

2. Using the calibration model between the logit of RAPLOA and parasitology prevalence
estimates to predict parasitology prevalence at those locations where only RAPLOA
sampling was conducted. In contrast, the Bayesian methodology simulates imputations
of missing parasitology observations conditional on all available data and model (2).

3. Combining inferences from C different inferences corresponding to the C simulated
outcome vectors.

An important advantage of the methodology described in this section is that implemen-
tation is fast. Indeed, one data set is fit almost instantaneously because it only requires the
fit of a Linear Mixed Model (LMM) with K random effects. The most delicate part of the
estimation procedure is obtaining the REML estimates of the variance components. This
was done by maximizing the profile likelihood corresponding to λ = σ2

b/σ
2
ε over a grid. For

the grid we used 1000 equally spaced values on the log scale between [−10, 10]. In multiple
simulations we noticed that C = 10 is generally sufficient to produce reliable and repro-
ducible results. The resulting fitting procedure is so fast that the computational bottlenecks
shifted from model fitting to data loading and processing and prevalence map updating.

Because we used several approximations of model (2) it is reasonable to ask how much is
actually lost during this approximation process. We address this question in Section 6 using
a comparative simulation study in three realistic contexts.

5.2 Application to the Loa loa data

We applied the fast calibration methodology described in the previous section to the logit
of the empirical parasitology prevalence. Basically, we fitted the mixed model (14) with
the difference that all parasitological information is available at all locations, thus avoiding
the calibration step. We used K = 50 knots for the P–spline and REML estimation of the
smoothing parameter.

Table 3 displays the point estimate and 95% confidence intervals for the fixed effects for
the whole data set and the reduced data set obtained by removing two outliers. None of
the parameters was statistically significant at level α = 0.05 when the whole data set was
used. However, when the two outliers were removed the effect of greeness and increased
elevation above 800 meters became statistically significant (p–value=0.018 and 0.004 respec-
tively). These results agree with prior scientific knowledge that greenness and elevation are
reasonable proxies for the density of day–biting Chrysops flies, which are the main agent of
transmission of the filarial nematode Loa loa to humans.
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Whole data 2 observations removed
Parameter Estimator 95% CI Estimator 95%
greenness 3.71 1.99 4.21 1.78
Std. greenness 6.80 5.06 7.78 4.48
elevation×103 −.1 .66 −.6 .52
Elevation>800 × 103 −.7 .41 −.9 .31

Table 3: Point estimator and standard error for several parameters of interest. The columns
“Whole data” correspond to all the 223 sampling locations. The columns “2 observations
removed” correspond to 221 sampling locations, with 2 outliers removed.

The estimated number of degrees of freedom of the regression was d.f. = 26.8, down from
a maximum of 57 degrees of freedom allowed by the model. The degrees of freedom were
partitioned into 4 for fixed effects, 3 for intercept, longitude and latitude, and 22.7 for the
random coefficient component. This indicates serious departures from linear spatial effects.
In fact, testing for linear effects versus a general nonparametric alternative is equivalent to
testing

H0 : σ2
b = 0 vs. HA : σ2

b > 0

where σ2
b is the variance of the random coefficients b in the model (14). Theory developed by

Self and Liang (1987) for likelihood ratio tests of zero variance does not apply in this context
because the response vector cannot be partitioned into independent subvectors. Instead
we used the finite sample distribution of the RLRT derived by Crainiceanu and Ruppert
(2004) and Crainiceanu, Ruppert, Claeskens, and Wand (2005a) for testing H0 and obtained
a p–value less than 0.001. Thus, the null hypothesis of linear spatial dependence is rejected
against a nonparametric fit.

Figure 4 displays the estimated parasitology prevalence using the fast calibration analysis
of the empirical village level parasitology prevalence estimates. The sampling locations
are located in three areas of the map roughly defined by the longitude/latitude rectangles
[3, 7]× [8, 16], [12, 16]× [−6,−3], and [27, 31]× [1.5, 4]. To better view the details of the map
the lower plot in Figure 4 shows a zoom in on the rectangle [3.5, 6.5] × [13, 15.5]. In this
graph we also plotted the actual sampling locations color–coded according to the empirical
prevalence estimate: black P̂ (x) > 0.3, red 0.25 ≤ P̂ (x) < 0.3, magenta 0.20 ≤ P̂ (x) < 0.25,

cyan 0.18 ≤ P̂ (x) < 0.20 and blue P̂ (x) < 0.18.

6 Simulation study

Three simulation studies have been used to compare the performance of the Bayesian in-
ference of the Bayesian binomial spatial model (2) with the frequentist analysis of the fast
calibration model described in Section 5.1.

The first simulation study uses the same 223 sampling locations as the ones from the
parasitology/RAPLOA sampling locations from West Africa. The underlying logit parasito-
logical prevalence is fixed for all locations and is set equal to

L1 = Xβ∗ + Zb∗

where (β∗, b∗) are the posterior means of the (β, b) based on the Bayesian inference of model
(2), and X and Z are the design matrices described in Section 5.1. Parasitology counts were
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then simulated independently from
{

Y1(x) ∼ Binomial(N1(x), P1(x))

P1(x) = exp{L1(x)}
1+exp{L1(x)} ,

where N1(x) is the sample size in the original study and L1(x) is the fixed logit prevalence at
location x. The logit prevalence according to RAPLOA sampling is simulated independently
from the model

L2(x) ∼ Normal(α∗0 + α∗1L1(x), σ∗2ε)

where α∗0, α
∗
1, σ

∗2
ε are the posterior means of the calibration model parameters from model

(2). RAPLOA counts are simulated from the model
{

Y2(x) ∼ Binomial(N2(x), P2(x))

P2(x) = exp{L2(x)}
1+exp{L2(x)}

To compare results we focused on the region of interest (ROI) situated between 8.3 and 16
degrees longitude and 3 and 7 degrees latitude which contains 74 sampling locations. There
were 100 simulated data sets. Bayesian analysis of model (2) for each data set was based
on 20, 000 samples from the joint posterior distribution of the parameters given the data
after 20, 000 discarded burn–in samples. Because in the first simulation study there were no
missing parasitology observations the frequentist analysis fits only one data set (C = 1).

To better characterize the differences between the two methods in terms of prevalence
estimation we calculated the MSE for each simulated data set. More precisely, for a particular
region, R, simulated data set and fitting method, we calculated

MSE =
1

|R|
∑
x∈R

{L̂1(x)− L1(x)}2, (16)

where |R| denotes the number of locations in region R and L̂1(x) denotes a generic estimator
of the logit prevalence function. We focused on two regions R, the first being the entire
ROI and the second containing just the sampling locations. Figure 5 displays boxplots for
the frequentist calibration versus the Bayesian bivariate methodologies for the ROI (two
leftmost boxplots) and for the sampling locations (two rightmost boxplots). Remarkably,
the two methods perform almost identically in terms of MSE, with the bivariate method
marginally outperforming the fast calibration method. This indicates that if the object of
inference were the prevalence function itself it would not practically matter which method
is used. In this case it would make sense to use the calibration method which is much faster
and provides a more robust software platform.

However, in our application the focus is on predicting locations where the prevalence
exceeds 20%. Because in our simulation study the true prevalence function, P1(x), is known
the truly positive (P1(x) ≥ 0.2) and truly negative (P1(x) < 0.2) locations are also known.

Either inferential procedure produces an estimate L̂1(x) of the true logit prevalence function

L1(x) and an estimate of its variability V̂ar{L̂1(x)}. The exceedance probability of the
p0 = 0.2 threshold at location x can be estimated by

Ê(x, p0) = 1− Φ


 logit(p0)− L̂1(x)√

V̂ar{L̂1(x)}


 (17)
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Once an estimate of the exceedance probability of the threshold of interest is available at
every location x, a reasonable decision rule is to fix a particular probability threshold, T ,
and declare positive all locations x with Ê(x, p0) > T . For a given set of locations R we
define the sensitivity of the inferential procedure as

Sens.(R, T ) =
1

R

∑
x∈R

I
{

Ê(x, p0) > T, P1(x) ≥ 0.2
}

, (18)

which represents the frequency with which the procedure correctly identifies truly positive
locations in region R using the probability threshold T . Here I(·) denotes the indicator
function.

Similarly, we define the specificity of a given procedure as

Spec.(R, T ) =
1

R

∑
x∈R

I
{

Ê(x, p0) < T, P1(x) < 0.2
}

(19)

and represents the frequency with which the procedure correctly identifies truly negative
locations in region R using the probability threshold T . The threshold value T could be
anything between 0 and 1, but some insight into reasonable values can be obtained using
simulations. Figure 6 displays the sensitivity (left two panels) and specificity (right two
panels) functions for the bivariate Bayesian (top two panels) and calibration (bottom two
panels) models for each of the 100 simulated data sets. These functions are specific to the ROI
and are obtained using an equally spaced grid for threshold values between [0.0225, 0.975].

The trade–off between sensitivity and specificity is clear in Figure 6 because sensitivity is
a decreasing function while specificity is an increasing function of the probability threshold.
One could, of course, have perfect sensitivity by setting T = 0 or close to zero. The problem
with such an approach is that it would result in abysmal specificity results. Indeed, for low
values of T both procedures correctly identify truly negative locations with probability less
than 0.5 for many data sets, meaning that both procedures would be worse than a coin toss.
A similar discussion holds for values of T close to 1. The large variability of the specificity
and sensitivity functions is most probably due to lack of information at locations that are
far from sampling locations.

While very informative, it would be hard to use the plots in Figure 6 for choosing a certain
decision threshold. Figure 7 displays the average ±2se for the sensitivity and specificity
functions. The average and the standard errors were obtained using the 100 values of the
function at a fixed threshold corresponding to simulated data sets. This graph shows that
with a threshold T = 0.7 one would obtain roughly 0.8 average sensitivity with both methods
and 0.9 average specificity for the specific ROI. In this specific ROI, under our model there
were 231, 815 truly positive locations and 128, 502 truly negative locations.

Note that both inferential methods are much more accurate at the actual sampling lo-
cations, as shown by the MSE plot in Figure 5. Similarly, both methods have much better
predictive properties at these locations. The average sensitivity curves for sampling locations
shown in Figure 8 are much improved over the average sensitivity curves in Figure 7. In
fact, the bivariate binomial model has 0.89 average sensitivity for the probability threshold
T = 0.975. The calibration model behaves reasonably well for thresholds between 0.7 and
0.8, but exhibits a rapid decrease in sensitivity for higher thresholds. In our simulation there
were 37 truly positive and 37 truly negative locations.

The second and third simulation studies were designed to mimic a possible sampling
scenario, in which RAPLOA sampling is conducted at some locations without conducting
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the parasitological sampling. This was achieved by following the simulation recipe described
above for the first simulation, except that at each simulation we did not use parasitology
count data simulated at some specific locations in the ROI. The second simulation study
considered 15 specific locations while the third considered all 74 sampling locations within
the ROI. Instead, these data were treated as missing and were simulated from their joint
posterior distribution in the bivariate Binomial Bayesian model. In the frequentist model
we used the calibration and pooling algorithm described in Section 5.1.

Figure 9 presents the same type of results as Figure 5 comparing the MSE for the bivari-
ate Bayesian methodology with that of the calibration model for the case when 15 locations
were not parasitologically surveyed. Note that the Bivariate methodology produces larger
MSE than its calibration counterpart over the entire ROI and slightly smaller MSE over just
the sampling locations. This may, in part, be due to the slow mixing of the Markov Chains
combined with the inherent computational limitations of our simulation study. Our choice
of number of burn–in/simulation samples was 20, 000/20, 000 because this was enough for
the case without missing parasitology data. Moreover, increasing the number of simulations
to obtain reasonable results would result in un–reasonably long simulation times. Not sur-
prisingly, both methods perform better at the sampling locations than over the entire region.
However, it is surprising that there is a serious loss of estimation efficiency from the case
when parasitology sampling is actually conducted at sampling locations. If one compares
results from Figure 9 with those in Figure 5 one can see the much larger MSE in the case
when parasitology is missing at some locations (note the different scales). Indeed, average
MSE increases roughly 30% from 0.25 to 0.32 for the ROI and from 0.08 to 0.11 for the
sampling locations using the frequentist calibration methodology.

While the results in Section 2 seem to indicate good calibration between the parasitolog-
ical and RAPLOA sampling, using only RAPLOA sampling may result in serious losses of
efficiency in estimating the prevalence function. As expected, the loss of information is also
reflected in the loss of prediction properties of both methods. This can be seen by comparing
the average sensitivity and specificity curves for the ROI corresponding to missing parasitol-
ogy sampling in Figure 10 with the ones corresponding to full data analysis in Figure 6.
Similar losses were observed for the sampling locations.

Figures 11 and 12 present the same type of results when parasitology was not conducted
at all 74 locations of the ROI. The Bayesian bivariate method performs better than the
calibration methodology both in terms of MSE and prediction properties both at sampling
location and over the entire region. However, these properties are farther degraded when
compared to the case when only 15 observations were missing. Indeed, average MSE increases
roughly 63% from 0.32 to 0.52 for the ROI and 255% from 0.11 to 0.39 for the sampling
locations using the frequentist calibration methodology.

7 Software Implementation and Testing

The statistical methods described here were implemented using the R software package [R
Development Core Team (2004)]. Code for computing predictions of exceedence probabilities
was written into an R package and called arlat, standing for ‘A Raploa Analysis Tool’.

The robustness of the code was tested by simulations. We first generate a fairly smooth
Gaussian random field over our possible study area. Then at a number of locations we com-
pute simulated parasitology and RAPLOA prevalences. We run the exceedence computation
using some subset of the points as calibration data (using both parasitology and RAPLOA
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data) and the rest as new RAPLOA data. This process was repeated many times with
various variations on the numbers and positions of locations. This kind of testing reveals
shortcomings with the code coping with certain edge-case situations, such as having one or
no locations in the calibration or survey data, but cannot test whether the results are correct!

In order to enable workers in the field to use our statistical methodology we needed to
develop an easy-to-use user interface. We could have developed something completely within
R but instead chose to write an add-on to an existing geographic information system (GIS).
Our choice of GIS was constrained by the need for interaction with R, and we chose a freely-
available multi-platform (Windows, Linux, Solaris) package for ease of development and lack
of licensing issues.

After studying several alternatives we settled on OpenEV [G Walter (2002)]. Large
amounts of this system are written using the Python [van Rossum and Fred L. Drake (2003)]
language and it has the facility to write add-on modules that integrate with the menu system,
can query geographic data, and create new data layers.

In order to communicate between Python and R we use the Rserve facility. This runs
R in the background as a server, and client programs connect to it via a socket interface.
Client libraries for Rserve are available for Java and C++ languages, but it was relatively
easy to develop a library for Python to talk to Rserve. With this in place we now have the
components for OpenEV to use R for calculations and OpenEV for display and manipulation
of the data.

The end-user experience is quite simple: they supply a dataset of new survey locations
with the number of people tested for Raploa and the number of positive tests at each location.
This is imported into OpenEV (from a spreadsheet file) and can then be displayed with
other map data, such as country or region boundaries, village maps, roads, topography etc.
The user then starts the Arlat dialog from a drop-down menu. Here they select the map
layer containing the survey data and define a rectangle over which to produce the predicted
exceedance probability. The resolution of the output grid is also chosen.

On clicking the ‘ok’ button, OpenEV uses the Python-Rserve code to use the arlat

package in R to compute the exceedence probability over the specified area. This is then
loaded into OpenEV as a new raster grid layer.

Figure 13 provides a screen shot of our software showing sampling locations (in red) and
corresponding exceedance probabilities in a small area containing the sample locations. By
default the grid is coloured such that exceedences below 0.7 are invisible, and from 0.7 to 1.0
are coloured from green through yellow and orange up to red. The table in the upper right
hand corner of the screen allows simple data updating, while the arlat software can rapidly
produce exceedance probabilities based on the methodology described in Section 5.

8 Discussion

Our paper describes a challenging application of spatial statistical methodology to tropical
disease epidemiology. The general area of application is the spatial mapping of disease
prevalence in settings where registry data are unavailable, and the only feasible way to collect
prevalence data is by binomial sampling within a relatively small number of scattered village
communities. The specific goal in our case is to map the continuous spatial variation in
the predictive probability that local prevalence exceeds a pre–determined policy intervention
threshold. In our data, empirical prevalence in each sampled village is assessed by two
methods: a traditional, parasitological method based on the microscopic examination of
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blood-smears; and a rapid, questionnaire-based method, RAPLOA Tako et al. (2002). In our
data, both methods are used in all sampled villages, and the data were collected primarily
to establish a calibration relationship which, to a good approximation, holds over a wide
geographical area of central Africa. Because of resource limitations, it is likely that future
surveys in many areas where the current data give very imprecise predictions of prevalence
will use only the questionnaire-based method. How best to combine the existing and future
data is therefore a problem in bivariate spatial modelling. A further practical consideration
is that field-workers need a computationally simple method for the initial inspection of data
obtained in local surveys.

From a methodological perspective, our approach has been to adapt and extend the
methods of model–based geostatistics as proposed by Diggle et al. (1998), in which an un-
observed, stationary Gaussian process S(x) is added to the linear predictor in a generalised
linear model. One limitation of the methods used in Diggle et al. (1998) is that they are,
at the time of writing, computationally impractical for our data, for which we need to make
predictions at approximately millions of locations. Our response to this has been to re-
place the stationary process S(x) by a low-rank, random-coefficient two-dimensional spline
smoother. One implication of this is that the computational load is essentially indepen-
dent of both the number of sampling locations and the number of prediction locations, but
rather is determined primarily by the number of knots specified for the spline smoother.
Our method is similar in spirit to the geoadditive models of Kammann and Wand (2003) or
the thin-plate regression splines of Wood (2003). A different approach to the computational
problems posed by the need to make predictions at a large number of locations would be to
approximate the spatially continuous process S(x) by a spatially discrete Markov random
field. See, for example, Rue and Tjelmeland (2002) or Besag and Mondal (2005).

We believe our paper is also the first to address the problem of formulating and fitting a
geostatistical model for bivariate binomial data. We use a method of construction previously
proposed by Gelfand, Schmidt, Banerjee, and Sirmans (2004) for Gaussian data, in which
there is a natural asymmetry between the two components of S(x) = {S1(x), S2(x)}. This
justifies modelling S1(x) marginally, and S2(x) conditional on S1(x).

Finally, we have taken account of the practical problems of implementing sophisticated
spatial statistical analyses, especially those which rely on careful tuning of a Monte Carlo
Markov chain algorithm, routinely under field-conditions by comparing the formal Bayesian
analysis of our bivariate model with a much simpler, albeit approximate, analysis which
fits a Gaussian model on the empirical logit scale. This is a version of what Cressie (1993)
calls“trans-Gaussian kriging” which, as far as we are aware, has not previously been used in
a bivariate setting, nor have its resulting predictions been compared with those made by the
theoretically superior generalised linear modelling approach. The extent to which, in general,
generalised linear geostatistical modelling out-performs transformed Gaussian geostatistical
modelling remains an open question.

Returning to the Loa loa application, we have demonstrated the feasibility of both the full
Bayesian analysis and the simpler transformed Gaussian analysis for prediction problems on
the required geographical scale. We have also shown that the calibration relationship between
parasitological and questionnaire-based methods is consistent across widely separated areas
of central Africa. However, the sampling design for the current data is not well suited to
spatial prediction because of its strongly clustered nature, and the data therefore do not
give an authoritative solution to the prediction problem. This same point was emphasized
in Diggle et al. (2006). They argued that an important feature of probabilistic prediction in
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this context was that it can identify areas where more data are required, to fill-in gaps where
no surveys have been conducted and environmental covariates do not allow an unequivocal
conclusion that for the area in question the local prevalence lies below the policy-relevant
threshold.

Acknowledgements

The support for this research was provided by the World Health Organization through grant
H060132 “Calibration and Mapping for Parasitological and Raploa Estimates for Loa Loa
Prevalence Parasitological disease mapping in Africa”.

References

H. Akaike. Maximum likelihood identification of gaussian autoregressive moving average
models. Biometrika, 1973.

J. Besag and D. Mondal. First-order intrinsic autoregressions and the de wijs process.
Biometrika, 2005.

J-P Chilès and P. Delfiner. Geostatistics. New York : Wiley, 1999.

C.M. Crainiceanu and D. Ruppert. Likelihood ratio tests in linear mixed models with one
variance component. Journal of the Royal Statistical Society – Series B, 2004.

C.M. Crainiceanu, D. Ruppert, G. Claeskens, and M.P. Wand. Likelihood ratio tests in
linear mixed models with one variance component. Biometrika, 2005a.

C.M. Crainiceanu, D. Ruppert, and M.P. Wand. Bayesian analysis for penalized spline
regression using winbugs. Journal of Statistical Software, 2005b.

P. Craven and G. Wahba. Smoothing noisy data with spline functions. Numerische Mathe-
matik, 1979.

N.A.C. Cressie. Statistics for Spatial Data, revised edition. New York : Wiley, 1993.

P.J. Diggle, R.A. Moyeed, and J.A. Tawn. Model–based geostatistics (with discussions).
Journal of the Royal Statistical Society, Series C: Applied Statistics, 1998.

P.J. Diggle et al. Spatial modelling and prediction of loa loa risk: decision making under
uncertainty. under review, 2006.

P Farris-Manning G Walter, F Warmerdam. An open source tool for geospatial image
exploitation. In Proceedings of the IGARSS 2002 Conference, volume 6, pages 3522–3524,
2002. DOI: 10.1109/IGARSS.2002.1027236.

B. Ganguli and M.P. Wand. SemiPar 1.0 Users’ Manual, 2005. URL
http://www.maths.unsw.edu.au/ wand/papers.html. R package version 1.0.

A.E. Gelfand, A.M. Schmidt, S. Banerjee, and C.F. Sirmans. Nonstationary multivariate
process modeling through spatially varying coregionalization (with discussion). Test, 2004.

20

http://biostats.bepress.com/jhubiostat/paper103



P. J. Green and B. W. Silverman. Nonparametric regression and generalized linear models:
a roughness penalty approach. Chapman and Hall Ltd (London; New York), 1994.

Kammann and M.P. Wand. Geoadditive models. Applied Statistics, 2003.

L. Kaufman and P.J. Rousseeuw. Finding Groups in Data: An Introduction to Cluster
Analysis. Wiley: New York), 1990.

C. L. Mallows. Some comments on cp. Technometrics, 1973.

Doug Nychka. fields: Tools for spatial data, 2004. URL
http://www.cgd.ucar.edu/stats/Software/Fields. R package version 2.0.

D.W. Nychka. Spatial process estimates as smoothers. In M. Schimek (Ed.), Smoothing and
regression. Heidelberg: Springer–Verlag, 2000.

D.W. Nychka, P. Haaland, M. O’Connell, and S. Ellner. FUNFITS, data analysis and
statistical tools for estimating functions. In D. Nychka, W.W. Piegorsch, and L.H. Cox
(Eds.), Case studies in Environmental Statistics (Lecture Notes in Statistics), volume 132.
New York: Springer–Verlag, 1998.

D.W. Nychka and N. Saltzman. Design of air quality monitoring networks. In D. Nychka,
W.W. Piegorsch, and L.H. Cox (Eds.), Case studies in Environmental Statistics (Lecture
Notes in Statistics), volume 132. New York: Springer–Verlag, 1998.

R Development Core Team. R: A language and environment for statistical com-
puting. R Foundation for Statistical Computing, Vienna, Austria, 2004. URL
http://www.R-project.org. ISBN 3-900051-07-0.

H. Rue and H. Tjelmeland. Fitting gaussian markov random fields to gaussian fields. Scan-
dinavian Journal of Statistics, 2002.

D. Ruppert. Selecting the number of knots for penalized splines. Journal of Computational
and Graphical Statistics, 2002.

D. Ruppert, M.P. Wand, and R.J. Carroll. Semiparametric Regression. Cambridge University
Press: UK, 2003.

S.G. Self and K.-Y. Liang. Asymptotic properties of maximum likelihood estimators and
likelihood ratio tests under nonstandard conditions. Journal of the American Statistical
Association, 1987.

I. Tako et al. Rapid assessment method for prevalence and intensity of l. loa infection.
Bulletin of the World Health Organisation, 2002.

Guido van Rossum and Jr. (Editor) Fred L. Drake. The Python Language Reference Manual.
Network Theory Ltd, 2003. ISBN 0954161785.

G. Wahba. Spline models for observational data. SIAM [Society for Industrial and Applied
Mathematics], 1990. ISBN 0-89871-244-0.

S.N. Wood. Thin plate regression splines. Journal of the Royal Statistical Society, Series B:
Statistical Methodology, 2003.

21

Hosted by The Berkeley Electronic Press



−6 −4 −2 0 2

−
6

−
4

−
2

0
2

RAPLOA logit

pa
ra

si
to

lo
gy

 lo
gi

t

0 20 40 60 80 100

0
20

40
60

80
10

0

RAPLOA prevalence

pa
ra

si
to

lo
gy

 p
re

va
le

nc
e

Figure 1: Calibration relationships between RAPLOA–based and parasitology–based esti-
mates of prevalence from four surveys. The top plot shows results on the empirical logit
scale. The bottom plot shows results back–transformed to the prevalence scale. The four
surveys are distinguished by the plotting colors: (Cameroon); (DRC West); (DRC East);
(Congo).
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Figure 2: Posterior simulations from the joint distribution of some of the parameters of
model (2). MCMC sampling was used to produce 500, 000 correlated samples from the
target distribution after an initial 20, 000 burn–in simulations. For clarity, only every 1000th
sample is displayed.
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Figure 3: Posterior predictive surface for the Loa loa parasitological prevalence based on
the Bayesian analysis of the Bivariate Binomial spatial model (2). Top panel represents the
results as they are extrapolated to a very large region containing all sampling locations.
The bottom panel is the inference in a smaller region that contains 74 sampling locations
color–coded according to the observed (empirical) parasitology prevalence: black P̂ (x) > 0.3,

red 0.25 ≤ P̂ (x) < 0.3, magenta 0.20 ≤ P̂ (x) < 0.25, cyan 0.18 ≤ P̂ (x) < 0.20 and blue

P̂ (x) < 0.18.
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Figure 4: Posterior predictive surface for the Loa loa parasitological prevalence based on the
calibration and pooling method described in Section 5.1 of the calibration Gaussian spatial
model (2). Top panel represents the results as they are extrapolated to a very large region
containing all sampling locations. The bottom panel is the inference in a smaller region that
contains sampling locations and contains 74 sampling locations color–coded according to the
convention from Figure 3.
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Figure 5: Mean square error comparison of the Bayesian bivariate method calculated over the
ROI (Bivar.ROI) and at the sampling location (Bivar.loc.) with the frequentist calibration
method calculated over the ROI (Univar.ROI) and at the sampling locations (Univar.loc.).
Results are calculated over 100 simulated data sets according to the first simulation study
described in Section 6. All data sets contained parasitology and RAPLOA sampling at every
location.

26

http://biostats.bepress.com/jhubiostat/paper103



0.0 0.2 0.4 0.6 0.8 1.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Exceedance probability threshold

B
ay

es
.fu

ll

Sensitivity over 100 data sets

0.0 0.2 0.4 0.6 0.8 1.0
0.

2
0.

4
0.

6
0.

8
1.

0
Exceedance probability threshold

B
ay

es
.fu

ll

Specificity over 100 data sets

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Exceedance probability threshold

F
re

q.
fu

ll

Sensitivity over 100 data sets

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

Exceedance probability threshold

F
re

q.
fu

ll

Specificity over 100 data sets

Figure 6: Sensitivity (left panels) and specificity (right panels) functions calculated over the
ROI for each of the 100 simulated data sets as a function of the probability threshold. The
Bayesian bivariate method is represented by the top panels and the frequentist calibration
method by the bottom panels. All data sets contained parasitology and RAPLOA sampling
at every location. Sensitivity represents the proportion of truly positive locations identified
by a method for a given exceedance probability threshold.
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Figure 7: Average sensitivity and specificity functions with 95% confidence intervals based
on sensitivity and specificity results shown in Figure 6. In particular, for every exceedance
probability threshold the mean and the standard error is calculated based on the 100 results
corresponding to that particular threshold. The bivariate binomial model results are pre-
sented as a solid line with dashed lines for confidence intervals. The calibration model results
are presented as a solid line with dotted lines for confidence intervals. Results correspond to
the ROI.
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Figure 8: Same type of results as Figure 7 with the difference that results correspond to
sampling locations only. The bivariate binomial model results are presented as a solid line
with dashed lines for confidence intervals. The calibration model results are presented as a
solid line with dotted lines for confidence intervals.
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Figure 9: Mean square error comparison of the Bayesian bivariate method calculated over the
ROI (Bivar.ROI) and at the sampling location (Bivar.loc.) with the frequentist calibration
method calculated over the ROI (Univar.ROI) and at the sampling locations (Univar.loc.).
Results are calculated over 100 simulated data sets according to the first simulation study
described in Section 6. All data sets contained RAPLOA sampling at every location. Para-
sitology samples were simulated at all but 15 specific locations in the ROI
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Figure 10: Average sensitivity and specificity functions with 95% confidence intervals based
on 100 simulated data sets. Parasitology samples were simulated at all but 15 specific
locations in the ROI. For every exceedance probability threshold the mean and the standard
error is calculated based on the 100 results corresponding to that particular threshold. The
bivariate binomial model results are presented as a solid line with dashed lines for confidence
intervals. The calibration model results are presented as a solid line with dotted lines for
confidence intervals. Results correspond to the ROI.
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Figure 11: Mean square error comparison of the Bayesian bivariate method calculated over
the ROI (Bivar.ROI) and at the sampling location (Bivar.loc.) with the frequentist cali-
bration method calculated over the ROI (Univar.ROI) and at the sampling locations (Uni-
var.loc.). Results are calculated over 100 simulated data sets according to the first simulation
study described in Section 6. All data sets contained RAPLOA sampling at every location.
Parasitology samples were simulated at all locations with the exception of the 74 locations
within the ROI.
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Figure 12: Average sensitivity and specificity functions with 95% confidence intervals based
on 100 simulated data sets. Parasitology samples were simulated at all locations with the
exception of the 74 locations within the ROI. For every exceedance probability threshold the
mean and the standard error is calculated based on the 100 results corresponding to that
particular threshold. The bivariate binomial model results are presented as a solid line with
dashed lines for confidence intervals. The calibration model results are presented as a solid
line with dotted lines for confidence intervals. Results correspond to the ROI.
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Figure 13: Screen shot of our software showing sampling locations (in red) and corresponding
exceedance probabilities in a small area containing the sample locations. By default the grid
is coloured such that exceedences below 0.7 are invisible, and from 0.7 to 1.0 are coloured
from green through yellow and orange up to red. The table in the upper right hand corner
of the screen allows simple data updating, while the arlat software can rapidly produce
exceedance probabilities based on the methodology described in Section 5.
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