








For patient i (i = 1, ..., n), let Yi(t) be the total cost of the patient up to

time t. We can only observe Yi(t) at a finite number of possible time points,

t0, . . . , tK = τ . Let yki be the total cost over the kth (k = 1, ..., K) interval

[tk−1, tk), where t0 = 0 and tK = τ . That is, yki = Yi(tk)− Yi(tk−1). Then,

the total cost accumulated by the patient i over the entire interval [0, τ) is

Yi =
∑K

k=0 yki. Let Ti and Ci be the survival and censoring times of patient

i, respectively. Let Zi(t) be the p × 1 vector of potentially time-dependent

covariates for patient i. Denote Zki to be the value of Zi(t) when t is in

the kth interval. Since we take a position that no additional cost can be

accumulated after death, we have Yi(t) = Yi(t ∧ Ti). To model the effect of

covariates Z on the marginal distribution of yki, we use the same model as

in Lin (2003),

E(yki|Zki) = g(β′Zki), k = 1, ...,K; i = 1, ..., n, (1)

where g is some link function. This model includes both the previously pro-

posed linear regression model and the proportional mean model for censored

medical cost (Lin, 2000a, Lin, 2000b).

3 An Existing Estimation Procedure

In the presence of censoring, not all the yki’s are observable. Let T ∗ki =

min(tk, Ti), δ∗ki = I(T ∗ki ≤ Ci), Xi = min(Ti, Ci), and δi = I(Ti ≤ Ci). So,

yki is observable if and only if δ∗ki = 1. Define Fi = {I(Ti ≤ t), Yi(t), L̄i(t)},

where L̄i(t) represents all the measured covariate processes, and H̄(t) =

{H(s) : s ≤ t} for any process H(.). Let G(t | F̄i) = P (Ci > t | F̄i(Ti)). Lin
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(2003) proposed the following generalized estimating equation for β:

Û(β) ≡
n∑

i=1

K∑

k=1

δ∗ki

Ĝ(T ∗ki | F̄i)
h(Zki; β)(yki − g(β′Zki))Zki = 0,

where h(Zki;β) is a given scalar function. From the theory of estimating

equations, we know that an optimal choice of h(Zik; β) is given by

h(Zik; β) = g(1)(β′Zik)/var(yki).

However, since var(yki) is unknown, we let the weight function h(Zik;β)

be 1 in the analysis presented in this article, although more general choices

are possible. Misspecification of the weight function will not affect the con-

sistency of the resulting estimator, only the efficiency. Here Ĝ(· | Fi) is a

consistent estimator of G(· | Fi). In the case of completely random cen-

soring, we may set Ĝ(· | F̄) to be the Kaplan-Meier estimator Ĝ(·) for the

common survival function of Ci. Otherwise, we take Ĝ(· | Fi) to be the

Breslow (1972) estimator, defined by

Ĝ(· | F̄i) = exp


−

n∑

j=1

δ̄iI(Xj < t)eγ̂′Wi(Xj)

S(0)(Xj ; γ̂)


 ,

where Wi(t) is a vector of known function of Fi, δ̄i = 1 − δi, and γ̂ is the

maximum partial likelihood estimator of the regression parameters in the

proportional hazards model (Cox, 1972)

λ(t | F̄i) = λ0(t)eγ̂′Wi(t), i = 1, ..., n,

and

S(ρ)(t; γ) =
n∑

i=1

I(Xi ≥ t)eγ′W⊗ρ
i (t), ρ = 0, 1, 2.
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Here and in the sequel, we adopt the notation: a⊗0 = 1, a⊗1 = a, and

a⊗2 = aa′.

The solution β̂ to the above estimating equation is defined as an estima-

tor of β. Lin (2003) obtained the limiting distribution of β̂:

√
n(β̂ − β) L−→ N(0, A−1V A−1), (2)

where A = − limn→∞ n−1E(∂Û(β)
∂β ), and V is given by (5) on Page 9 when

we discuss our EL method.

4 Empirical likelihood confidence region for β

In this section we propose EL-based confidence region for β. Let

Di =
K∑

k=1

δ∗ki

G(T ∗ki | F̄i)
h(Zki; β)(yki − g(β′Zki))Zki

and

D̂i =
K∑

k=1

δ∗ki

Ĝ(T ∗ki | F̄i)
h(Zki; β)(yki − g(β′Zki))Zki.

First consider the testing problem,

H0 : β = β0 vs. H1 : β 6= β0.

Since E(Di) = 0 for all i = 1, ..., n, the problem of testing whether β0 is

the true parameter of β is equivalent to testing whether EU(β0) = 0, where

U(β0) =
∑n

i=1 Di.

This can be done by using Owen’s EL method (1990, 1991). Let p =

(p1, · · · , pn) be a probability vector, i.e.,
∑n

i=1 pi = 1 and pi ≥ 0 for all i.

Then, the empirical likelihood, evaluated at the true parameter value β0, is
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defined by

L̃(β0) = sup

{
n∏

i=1

pi :
n∑

i=1

pi = 1,
n∑

i=1

piDi = 0

}
.

Since Di’s depend on G(· | F̄i), which is unknown, replacing Di by D̂i, we

obtain the estimated empirical likelihood for β0:

L(β0) = sup

{
n∏

i=1

pi :
n∑

i=1

pi = 1,

n∑

i=1

piD̂i = 0

}
.

Then, by the Lagrange multiplier, we can easily get

pi =
1
n

{
1 + λ′D̂i

}−1
, i = 1, · · · , n,

where λ = (λ1, · · · , λp)′ is the solution of

1
n

n∑

i=1

D̂i

1 + λ′D̂i

= 0. (3)

Note that
∏n

i=1 pi, subject to
∑n

i=1 pi = 1, attains its maximum n−n at

pi = n−1. So we define the empirical likelihood ratio at β0 by

R(β0) =
n∏

i=1

(npi) =
n∏

i=1

{1 + λ′D̂i}−1.

Therefore, the corresponding empirical log-likelihood ratio can be defined as

l(β0) = −2 log R(β0) = 2
n∑

i=1

log{1 + λ′D̂i}, (4)

where λ = (λ1, · · · , λp)′ is the solution to Equation (3).

Before introducing the main theorem, we need some additional notation.

If censoring occurs in a completely random fashion, we define

ηi =
∫ ∞

o
q(t)dMi(t),

8
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where

Mi(t) = δ̄iI(Xi ≤ t)−
∫ t

0
I(Xi ≥ x)λ(x)dx,

λ(x) = −d log G(x)
dx

, and

q(t) = lim
n→∞n−1

n∑

i=1

K∑

k=1

δ∗kiI(T ∗ki > t)
G(T ∗ki | F̄i)P (Xi ≥ t)

h(Zki; β)(yki − g(β′Zki))Zki.

Otherwise, we define

ηi =
∫ ∞

0

[
q(t) + bΩ−1 (Wi(t)− w̄(t))

]
dMi(t),

where

Mi(t) = δ̄iI(Xi ≤ t)−
∫ t

0
I(Xi ≥ x)eγ′Wi(t)λ0(x)dx,

q(t) = lim
n→∞n−1

n∑

i=1

K∑

k=1

δ∗kiI(T ∗ki > t)eγ′Wi(t)

Ĝ(T ∗ki | F̄i)s(0)(t)
h(Zki; β)(yki − g(β′Zki))Zki,

s(ρ)(t) = lim
n→∞n−1S(ρ)(t) (ρ = 0, 1, 2),

b = lim
n→∞n−1

n∑

i=1

K∑

k=1

δ∗ki

Ĝ(T ∗ki | F̄i)
h(Zki; β)(yki − g(β′Zki))Zkir′(T ∗ki;Wi),

r(t;W) =
∫ t

0
eγ′W(x) [W(x)− w̄(x)]λ0(x)dx,

w̄(t) = s(1)(t)/s(0)(t),

Ω =
∫ ∞

0

[
s(2)(t)/s(0)(t)− w̄⊗2(t)

]
s(0)(t)λ0(t)dt.

Let

V1 = lim
n→∞n−1

n∑

i=1

D⊗2
i and V = lim

n→∞n−1
n∑

i=1

(Di + ηi)
⊗2 . (5)
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The following conditions are needed in this paper:

C1. q(t) < ∞ and s(ρ)(t) < ∞ (ρ = 0, 1, 2) for every t.

C2. ‖b‖ < ∞ and ‖Ω‖ < ∞.

C3. V1 and V are positive definite matrix.

C4. maxk,i

∥∥∥ δ∗ki

G(T ∗ki|F̄i)
h(Zki; β)(yki − g(β′Zki))Zki

∥∥∥ = op(n1/2).

Theorem 1. Assume the conditions C1-C4 hold. If β0 is the true

value of β, then l(β0) has the asymptotical distribution as a weighted sum of

independent chi-square random variables with 1 degree of freedom; that is,

l(β0)
L−→ l1χ

2
1,1 + · · ·+ lpχ

2
p,1,

where χ2
i,1’s, for 1 ≤ i ≤ p, are independent chi-square random variables with

one degree of freedom, and the weights li, 1 ≤ i ≤ p, are the eigenvalues of

V −1
1 V .

We provide a proof of Theorem 1 in the Appendix. In order to apply

Theorem 1, we first need to estimate the weights li, 1 ≤ i ≤ p. To estimate

the weights, we define

η̂i = δ̄iQ(Xi)−
n∑

j=1

δ̄jI(Xj ≤ Xi)Q(Xj)∑n
l=1 I(Xl ≤ Xj)

, if Ĝ is the Kaplan-Meier estimator,

where

Q(t) =
n∑

i=1

K∑

k=1

δ∗kiI(T ∗ki > t)h(Zki; β̂)(yki − g(β̂′Zki))Zki

Ĝ(T ∗ki)

/
n∑

j=1

I(Xj ≥ t)

or

η̂i = δ̄iNi(Xi)−
n∑

j=1

δ̄jI(Xj ≤ Xi)eγ̂′Wi(Xj)Ni(Xj)
S(0)(Xj ; γ̂)

, if Ĝ is the Breslow estimator.
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Here

Ni(t) = Q̃(t) + BΩ̂−1
[
Wi(t)− S(1)(t; γ̂)/S(0)(t; γ̂)

]
,

Q̃(t) =
n∑

i=1

K∑

k=1

δ∗kiI(T ∗ki > t)eγ̂′Wi(t)

Ĝ(T ∗ki | F̄i)S(0)(t; γ̂)
h(Zki; β̂)(yki − g(β̂′Zki))Zki,

B = n−1
n∑

i=1

K∑

k=1

δ∗ki

Ĝ(T ∗ki | F̄i)
h(Zki; β̂)(yki − g(β̂′Zki))ZkiR′(T ∗ki;Wi),

R(t;W) =
n∑

i=1

δ̄iI(Xi < t)eγ̂′W(Xi)

[
W(Xi)− S(1)(Xi; γ̂)

S(0)(Xi; γ̂)

]/
S(0)(Xi; γ̂) , and

Ω̂ =
n∑

i=1

δ̄i

[
S(2)(Xi; γ̂)
S(0)(Xi; γ̂)

− S(1)(Xi; γ̂)⊗2

S(0)(Xi; γ̂)2

]
.

Then we can consistently estimate V1 and V by

V̂1 = n−1
n∑

i=1

D̃⊗2
i , (6)

V̂ = n−1
n∑

i=1

(
D̃i + η̂i

)⊗2
, (7)

respectively, where

D̃i =
K∑

k=1

δ∗ki

Ĝ(T ∗ki | F̄i)
h(Zki; β̂)(yki − g(β̂′Zki))Zki.

Here the estimator V̂ of V is the same as the one given in Lin (2003). Hence

li, 1 ≤ i ≤ p can be consistently estimated by the eigenvalues l̂i’s of V̂ −1
1 V̂ .

Confidence regions for β can be constructed as follows. Let

Rα(β) = {β : l(β) ≤ cα}, (8)

where cα is the Monte Carlo approximation to the (1 − α)th quantile of

the weighted chi-square distribution l1χ
2
1,1 + · · · + lpχ

2
p,1. Then from the
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earlier discussion, Rα(β) gives an approximate confidence region of β with

asymptotically correct coverage probability 1− α, i.e.,

P (β0 ∈ Rα(β)) = 1− α + o(1).

Note that Monte Carlo simulation is needed to calculate the critical value

cα in (8). This can be done by first generating a large number of realizations

of l̂1χ
2
1,1+· · ·+ l̂pχ

2
p,1 and then taking cα to be the (1−α)-th sample quantile.

Next we describe another method for constructing a confidence region

of β without resorting to Monte Carlo simulation. Define

rn(β) =
tr(V̂ −1Sn)
tr(V −1

1n Sn)
,

where

V1n =
1
n

n∑

i=1

D̂iD̂
′
i, Sn =

( 1√
n

n∑

i=1

D̂i

)( 1√
n

n∑

i=1

D̂i

)′
,

and V̂ is defined by equation (7) in Section 4. Then, by examining the proof

of Theorem 1 (see Appendix), we have

rn(β)l(β) L−→ r(β)
p∑

i=1

liχ
2
i,1, as n →∞,

where r(β) = p/tr(V −1
1 V ) with tr(·) denoting the trace operator. Rao

and Scott (1981) showed that the distribution of r(β)
∑p

i=1 liχ
2
i,1 could be

approximated by the standard χ2
p distribution. Therefore, an approximate

1− α confidence region of β0 can be constructed as follows:

{β : rn(β)l(β) ≤ χ2
p(α)}, (9)

where χ2
p(α) is the (1− α)-th quantile of the standard χ2

p distribution. It is

worth noting that the adjustment factor rn(β) can be motivated from the
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fact that r(β) can be rewritten as r(β) = tr(V −1V )/tr(V −1
1 V ), replacing

V −1, V −1
1 and V by V̂ −1, V −1

1n and Sn respectively leads to rn(β).

Before we end this section, we remark that when there is no censoring

in the observations, ηi = 0 for i = 1, ..., n, and l(β0)
L−→ χ2

p. So Theorem 1

reduces to the Wilks’ theorem in the context of generalized linear regression

models.

5 Empirical likelihood based intervals for the ex-
pected total costs

Let zk0 and yk0 be the covariate value and the total cost of a patient at

the kth interval [tk, tk+1), where k = 1, . . . , K. Then, the total cost of

this patient over the entire interval [0, τ) is Y0 =
∑K

k=1 yk0. We want to

construct a confidence interval for u0 =
∑K

k=1 E(yk0 | zk0). Based on the

assumed generalized linear model in Section 2, we obtain an expression for

u0 as follows:

u0 =
K∑

k=1

g(β′zk0). (10)

Let R be the (1−α)100% empirical likelihood based confidence region for β,

as defined in (9). Then, we can obtain a confidence interval for the expected

cost u0 of a patient with z = (z01, . . . , z0K)′ as follows:

{µ(z) =
K∑

k=1

g(β′zk0) : β ∈ R}. (11)

This confidence interval has the coverage probability that is greater than or

equal to 1− α with the equality achieved when g(.) is an one-one function.
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6 Numerical studies

We carried out two simulation studies to compare the finite-sample prop-

erties of our proposed method with the method of Lin (2003). Since the

confidence interval for the expected cost u0 is determined by the confidence

region of β, in the simulation studies we focus on the coverage accuracy of

the confidence regions of β.

In the first simulation, we adopt a similar parameter set-up as in Lin

(2003). Survival and censoring times are generated from the exponential

distribution with mean m and uniform (0, c) distribution, respectively. The

combinations of (m, c) = (5, 40), (5, 20), and (10, 20) yield the mean censored

rate of approximately 12.6%, 24.4%, and 43.2%, respectively. We divide the

entire study period into three equally spaced intervals. We set

yki =
[
I(k = 1)ud

i + I(Ti > tk)(εi + uki)

+I(tk−1 < Ti ≤ tk){(εi + uki)(Ti − tk−1) + uf
i }

]
exp(ξZi)

for k = 1, 2, 3; i = 1, · · · , n, where εi, uki, u
d
i and uf

i are independent ran-

dom variables with uniform distributions. Specifically, εi and uki have the

uniform (0, 1) distribution, ud
i and uf

i have the uniform (0, 5) and (0, 10)

distributions, respectively. This scheme creates J-shaped time patterns. For

the same subject, the costs in different intervals share a common random

effect and are thus positively correlated. It is easy to see that the cost data

satisfy

E[yki|Zi] = µk exp{ξZi}
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So, β = (ξ, µ1, µ2, µ3), µk is the mean cost in time (k − 1, k] for the sub-

ject with the covariate Z = 0. We choose two different sets of values for

(m, u1, u2, u3): (5, 4.313, 1.484, 1.215), and (10, 3.928, 1.292, 1.1689). We set

Z to be a treatment indicator with n/2 subjects in each of the two groups

and ξ to be 1. We choose n = 100, 200 and 500 as in Lin (2003). We sum-

marize the results from 500 repetitions in Table 1 along with the coverage

accuracy of the confidence regions for β using our method and the normal

approximation method based on Lin’s approach. Our results for ξ are very

similar to those reported in Lin (2003), and hence are not reported in Table 1

as our focus is on β.

Table 1 goes here

In Table 1, EL.CP is the coverage probability of the 95% nominal level

confidence region for β, based on the empirical likelihood method. The CP

is the coverage probability of the 95% nominal level confidence region for β,

based on the normal approximation of β̂, given in Lin (2003), and defined

by

n(β̂ − β)T (Â−1V̂ Â−1)−1(β̂ − β) ≤ χ2
p(α), (12)

where Â and V̂ are consistent estimators of A and V respectively (see also

(2) in Section 3). From Table 1 we see that both the empirical likelihood

and normal approximation methods yield the confidence regions for β that

are close to the nominal level, and the empirical likelihood method is slightly

better than the normal approximation method for heavy censoring.
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Since generated cost observations in Table 1 above are from some uni-

form distributions, the resulting cost data have an approximately normal

distribution. In fact, simulation studies done in Lin’s papers (2000a, 2000b,

2003) assumed that cost data followed a normal distribution. However, as

we know from the literature (Zhou et al, 1997; Jiang and Zhou, 2004), cost

data are not normally distributed but instead are skewed. In the second

simulation study, we generate cost data from a skewed distribution. This

simulation study is similar to the first one, except that covariates are gen-

erated from a normal distribution N(ν, σ2), where ν = 2, σ is chosen to be

1 and 2, and the coefficient ξ was chosen to be 0.1, 0.2, 0.4, and 0.6. Under

this setup, the distribution of the total medical cost of a patient becomes

more skewed as σ and ξ increase.

The results with a fixed sample size of 100 from 500 repetitions are

summarized in Table 2. With lightly skewed cost data, the improvement

in the coverage accuracy of the empirical likelihood based confidence re-

gion is minimal compared to the one based on the normal approximation

confidence region. But when the skewness increases, the improvement is no-

ticeably significant, and the coverage probability of the empirical likelihood

based confidence region is much closer to the nominal level than the normal

approximation confidence region.

Table 2 goes here

Numerical studies are also conducted at a larger sample size under the

same simulation scheme as in Table 2. Table 3 shows a comparison of the two

types of confidence regions with n = 400. As the sample size increases, the
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performance of both types of confidence regions improve; however, the cov-

erage probabilities from the normal approximation approach are still much

lower than the nominal level when the cost distribution is severely skewed.

The empirical confidence region has the better and more robust performance

than the normal approximation approach for all the cases considered here.

Table 3 goes here

In summary, the accuracy of the EL-based confidence regions and the

normal approximation based regions for β are close when data is less skewed.

When cost data are highly skewed, which are likely to occur in practice, the

EL-based confidence regions greatly outperform the normal approximation

method although there is still room for further improvement.

7 A real data example

To illustrate the application of our methodology, we use the same SEER

Medicare database as in Lin (2003). Our data consist of 985 and 2647 pa-

tients diagnosed with regional and distant stages of epithelial ovarian cancer,

respectively. The data on survival time and monthly medical expenditures

are available from 1983 to 1990. The subjects who were still alive at the end

of 1990 are censored. There is no voluntary loss to follow-up in this study,

so that censoring, which is solely caused by limited study duration, can be

regarded as completely random. Thus, the proposed methods with Ĝ as the

Kaplan-Meier estimator can be used. Since most of the patients did not

survive to the 7th year, we confine our attention to the first 6 years after

the diagnosis. The focus of our analysis is to provide a confidence interval
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for the expected total cost of a patient during the first 6 years after the first

diagnosis of cancer, using the given covariates of the patient.

From Figure 4 in Lin (2003), we see that the effects of the stages on the

cost are not constant over time on either an additive or multiplicative scale.

So, we compute the expected total cost on [0, τ ] separately for regional and

distant groups. To illustrate the proposed methodology, we also include a

continuous covariate Z, the time of the first diagnosis, in the model, where

Z = 0 corresponds to a new cancer patient. We are interested in constructing

a confidence interval for the expected total cost over [0, τ ] for a patient with

Z = z, where τ = 72 months. Let Y0 be the total cost over [0, τ ] of a

patient with Z = z0. Then, we like to construct a 95% confidence interval

for u0 = E(Y0 | Z = z0).

Let yki denote the total cost over the kth month for patient i, k =

1, . . . , τ = 72, and let Zi be the value of Z for the ith patient. We fit

a separate generalized linear model for patients with regional stages and

patients with distant stages, respectively. The fitted model has the following

general form:

E(yki|Zi) = µk exp{ξZi},

where k = 1, . . . , τ = 72. Since there is no closed form for the confidence

interval of the expected total cost when the empirical likelihood method is

used, we propose a numerical method to determine the EL-based confidence

interval. Note that the expected total cost over [0, τ ] is
∑τ

k=1 µk exp{ξz}

when Z = z and that the univariate empirical likelihood confidence region is
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always an interval. Let β = (ξ, µ1, · · · , µτ )T , and R be the 95% confidence

region for β. Then, we can write the EL-based confidence interval for the

expect total cost on (0, τ) as (q0, q1), where

q0 = min

{
τ∑

k=1

µk exp{ξz} : β ∈ R

}
,

and q1 = max

{
τ∑

k=1

µk exp{ξz} : β ∈ R

}
.

From (8), we know that we can write q0 and q1 as

q0 = min{
τ∑

k=1

µk exp{ξz} : l(β) = c, 0 ≤ c ≤ cα}

≈ min{∪N
i=1{

τ∑

k=1

µk exp{ξz} : l(β) = ci}} for large N,

q1 = max{
τ∑

k=1

µk exp{ξz} : l(β) = c, 0 ≤ c ≤ cα}

≈ max{∪N
i=1{

τ∑

k=1

µk exp{ξz} : l(β) = ci}} for large N,

where {c1, . . . , cN} is a random sample of size N generated from the uniform

distribution over [0, cα]. Therefore, for estimating q0 and q1, we need to

solve the equation l(β) = c for any c ∈ [0, cα]. Tian et al. (2003) proposed

a numerical algorithm for a similar problem, but their method requires an

initial approximation solution for the equation l(β) = c which is difficult

to obtain in our case. Therefore, we propose a nonparametric technique to

solve l(β) = c. First, we note that it is feasible to compute l(β) for any

given β and that R may be approximated by R0, which is defined by

R0 = {β : µ̂k − 1.96σ̂k ≤ µk ≤ µ̂k + 1.96σ̂k, k = 1, · · · , τ,

and ξ̂ − 1.96σ̂ ≤ ξ ≤ ξ̂ + 1.96σ̂
}

,
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where σ̂k is the estimator of the standard error of µ̂k, k = 1, · · · , τ and σ̂ is

the estimator of the standard error of ξ̂. By generating J vectors β(j), j =

1, · · · , J uniformly over R0 that satisfy l(β)(j) ≤ cα, we can estimate β

which satisfies l(β) = c for any given c ∈ [0, cα] by a smoothing technique

(for example, local linear or spline) based on data (β(j), l(β(j))), j = 1, · · · , J ,

where the value of J depends on the number of parameters. In our example,

for τ = 12, since the number of the parameters is 13, we take J = 1000

because the results do not change significantly as J is chosen to be greater

than 10000. Similarly, for τ = 24, we choose J = 2000, and for τ = 72, we

choose J = 20000.

In Tables 4 and 5, we report the 95% confidence interval for u0 = E(Y0 |

Z = z0) when z0 = 0. The EL-based confidence interval is wider than the

interval based on the normal approximation. The result is consistent with

our simulation results which have shown that the normal approximation

interval has a coverage probability that is lower than the nominal level while

the EL based interval has a coverage probability that is close to the nominal

level.

Tables 4 and 5 go here

8 Discussion

In this paper we develop an empirical likelihood (EL) based interval estima-

tion method for the expected total cost of a patient with given covariates

over a certain period when costs of some patients were censored. The is-

sue of correctly predicting such an expected cost has important implications
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in health economics, especially in prospective payment systems. We have

also developed the underlying asymptotic theory for the proposed EL-based

method and conducted a simulation study to compare its performance with

the existing method in finite-sample sizes. Our simulation results show

that the proposed EL-based method performs equally well with the exist-

ing method when cost data are not so skewed, and outperforms the existing

method when cost data are moderately or highly skewed in terms of coverage

accuracy in almost all cases.

Since in almost all cost studies, cost data are skewed, and many of them

have the skewness of greater than 1.0 and a sample size between 100 and

4000 (see Katon et al (2004) and Liu et al (2003)), we believe that our new

method has more practical relevance that the existing method.

The EL have better coverage probability than the direct normal ap-

proximation, which is a phenomenon happened in many applications of EL

methods. For example, see Qin and Jing (2001); Qin and Tsao (2003); Li

and Wang(2003); Wang, Linton, and Hrdle(2004) among others. The fu-

ture research will be in the direction of finding the edgeworth expansion

for the coverage probability of EL intervals, which may shed some light on

why EL method having better coverage accuracy than the direct normal

approximation.

As noticed by the referee, the EL confidence intervals can have poor

coverage, which occur when the data is seriously skewed. A future research

direction is to see whether we can obtain better intervals if we can find

a transformation that can transform the original data into less skewed or

21

http://biostats.bepress.com/uwbiostat/paper270



almost symmetric data before we apply our EL method.
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Appendix. Proof of Theorem 1

We need a few lemmas for proving Theorem 1.

Lemma 1. (See Lin, 2003)

1√
n

n∑

i=1

D̂i
L−→ N(0, V )

Lemma 2. We have the following properties for D̂i.

(i) max
i
‖D̂i‖ = op(n1/2) (ii)

1
n

n∑

i=1

D̂iD̂′
i

p−→ V1.

Proof of the Lemma 2.

(i). From the condition C4, we have

max
i
‖Di‖ = op(n1/2).

Using the uniform consistency of Kaplan-Meier estimator and Breslow esti-
mator, we get

D̂i −Di =
K∑

k=1

Ĝ(T ∗ki | F̄i)−G(T ∗ki | F̄i)

G(T ∗ki | F̄i)Ĝ(T ∗ki | F̄i)
δ∗kih(Zki; β)(yki − g(β′Zki))Zki(13)

= op(1)

uniformly for i = 1, ..., n. So,

max
i
‖D̂i‖ ≤ max

i
‖D̂i −Di‖+ max

i
‖Di‖ = op(n1/2)
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(ii) Let Ṽ1 = 1
n

∑n
i=1 DiD′

i. Note that V1n = 1
n

∑n
i=1 D̂iD̂′

i. For any

a ∈ Rp, we have the following decomposition:

a′
(
V1n − Ṽ1

)
a =

1
n

n∑

i=1

(
a′(D̂i −Di)

)2
+

2
n

n∑

i=1

(a′Di)
(
a′(D̂i −Di)

)

≤
(

1√
n

n∑

i=1

|a′(D̂i −Di)|
) (

1√
n

max
i
|a′(D̂i −Di)|+ 2√

n
max

i
|a′Di|

)

≡ J0(J1 + 2J2). (14)

From the proof of (i), we obtain that J1 = op(1) and J2 = op(1). Now

let’s look at the term J0. If the Kaplan-Meier estimator Ĝ is used as the

estimator of G, using (13) and the following martingale representation for

Ĝ,
n1/2(G(t)− Ĝ(t))

G(t)
= n−1/2

n∑

j=1

∫ t

0

dMj(x)
P (Xj ≥ x)

+ op(1),

we have

J0 =

∣∣∣∣∣∣
n−1/2

n∑

j=1

∫ ∞

0
q1(t)dMj(t)

∣∣∣∣∣∣
+ op(1)

= Op(1) + op(1) = Op(1),

where

q1(t) = lim
n→∞n−1

n∑

i=1

∣∣∣∣∣
K∑

k=1

δ∗kiI(T ∗ki > t)

Ĝ(T ∗ki | F̄i)P (Xi ≥ t)
h(Zki; β)(yki − g(β′Zki))(a′Zki)

∣∣∣∣∣

Similarly, if we use the Breslow estimator Ĝ(t | F̄) of G(t | F̄), using (13)

and the following representation due to Lin, Fleming and Wei (1994), we

obtain that

n1/2
(
G(t | F̄)− Ĝ(t | F̄)

)

G(t | F̄)
= n−1/2

n∑

j=1

∫ t

0

eγ′W(x)dMj(x)
s(0)(x)

+r′(t;W)Ω−1n−1/2
n∑

j=1

∫ ∞

0
[Wj(x)− w̄(x)] dMj(x) + op(1).
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Hence we can also get J0 = Op(1). Therefore V1n = Ṽ1 + op(1), and Lemma

2(ii) is thus proved.

Proof of Theorem 1. Applying Taylor’s expansion to (4), we get

l(β0) = 2
n∑

i=1

log{1 + λ′D̂i} = 2
n∑

i=1

(
λ′D̂i − 1

2
(λ′D̂i)2

)
+ rn, (15)

where

|rn| ≤ C
n∑

i=1

(λ′D̂i)3 in probability.

Write λ = κθ, where κ ≥ 0 and ‖θ‖ = 1. From the proof of Lemma 2(ii),

we get

θ′V1nθ = θ′Ṽ1θ + op(1).

Then, using Lemma 1, Lemma 2(ii), and the argument similar to the one in

Owen (1990), we can show that

‖λ‖ = Op(n−1/2). (16)

Hence, using (16) and Lemma 2 together we obtain

|rn| ≤ C‖λ‖3 max
1≤i≤n

‖D̂i‖
n∑

i=1

‖D̂i‖2 = op(1). (17)

Note that

1
n

n∑

i=1

D̂i

1 + λ′D̂i

=
1
n

n∑

i=1

D̂i

[
1− λ′D̂i +

(λ′D̂i)2

1 + λ′D̂i

]

=
1
n

n∑

i=1

D̂i −
(

1
n

n∑

i=1

D̂iD̂′
i

)
λ +

1
n

n∑

i=1

D̂i

(
λ′D̂i

)2

1 + λ′D̂i

.
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From (3), (16), and Lemma 2, it follows that

λ =

(
n∑

i=1

D̂iD̂′
i

)−1 n∑

i=1

D̂i + op(n−1/2). (18)

Again by (3), we get that

0 =
n∑

i=1

λ′D̂i

1 + λ′D̂i

=
n∑

i=1

(λ′D̂i)−
n∑

i=1

(λ′D̂i)2 +
1
n

n∑

i=1

(λD̂′
i)

3

1 + λ′D̂i

. (19)

By (16) and Lemma 2, we obtain

1
n

n∑

i=1

(λ′D̂i)3

1 + λ′D̂i

= op(1). (20)

From (19) and (20), we get

n∑

i=1

λ′D̂i =
n∑

i=1

(λ′D̂i)2 + op(1). (21)

By (15), (17), (18) and (21), we get

l(β0) =
n∑

i=1

λ′D̂iD̂′
iλ + op(1)

=

(
n−1/2

n∑

i=1

D̂i

)′(
n−1

n∑

i=1

D̂iD̂′
i

)−1 (
n−1/2

n∑

i=1

D̂i

)
+ op(1)

=

(
V −1/2n−1/2

n∑

i=1

D̂i

)′ (
V 1/2V −1

1 V 1/2
)(

V −1/2n−1/2
n∑

i=1

D̂i

)
+ op(1).

Then Theorem 1 directly follows from Lemma 1, Lemma 2(ii) and Lemma

5 in Qin and Jing (2001).
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Table 1: Coverage accuracy of confidence regions for β with the symmetric
distribution

m c n censored rate CP EL.CP
5 40 100 0.126 0.916 0.913

200 0.922 0.920
500 0.942 0.932

5 20 100 0.244 0.902 0.911
200 0.920 0.918
500 0.938 0.938

10 20 100 0.432 0.916 0.929
200 0.928 0.936
500 0.938 0.938
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Table 2: Simulation results for the asymmetric distribution(n = 100)

censored β
m c rate σ ξ Skewness CP EL.CP
5 40 0.1256 1 0.1 0.7841 0.9128 0.9226

2 0.1 0.9763 0.8887 0.9085
1 0.2 0.9763 0.8800 0.8972
2 0.2 1.5151 0.7816 0.8360
1 0.4 1.5151 0.7800 0.8283
2 0.4 2.7259 0.5000 0.7419
1 0.6 2.1101 0.6480 0.7445
2 0.6 3.9317 0.2773 0.6721

5 20 0.2444 1 0.1 0.7841 0.9063 0.9163
2 0.1 0.9763 0.8864 0.9106
1 0.2 0.9763 0.8760 0.8994
2 0.2 1.5151 0.7711 0.8421
1 0.4 1.5151 0.7680 0.8347
2 0.4 2.7259 0.4900 0.7425
1 0.6 2.1101 0.6600 0.7404
2 0.6 3.9317 0.2872 0.6755

10 20 0.4318 1 0.1 1.0155 0.9047 0.9165
2 0.1 1.1760 0.8763 0.8925
1 0.2 1.1760 0.8700 0.8880
2 0.2 1.6308 0.7856 0.8193
1 0.4 1.6308 0.7840 0.8096
2 0.4 2.7321 0.5140 0.7379
1 0.6 2.1592 0.6460 0.7264
2 0.6 3.9001 0.2990 0.6862
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Table 3: Simulation results for the asymmetric distribution(n = 400)

censored θ
m c rate σ ξ Skewness CP EL.CP
5 40 0.1247 1 0.1 0.8221 0.948 0.950

2 0.1 1.0491 0.952 0.952
1 0.2 1.0491 0.952 0.952
2 0.2 1.7364 0.920 0.920
1 0.4 1.7364 0.920 0.920
2 0.4 3.6446 0.700 0.832
1 0.6 2.6122 0.840 0.878
2 0.6 5.9674 0.458 0.734

5 20 0.2455 1 0.1 0.8221 0.936 0.940
2 0.1 1.0491 0.942 0.946
1 0.2 1.0491 0.942 0.946
2 0.2 1.7364 0.932 0.932
1 0.4 1.7364 0.932 0.928
2 0.4 3.6446 0.696 0.830
1 0.6 2.6122 0.846 0.886
2 0.6 5.9674 0.470 0.734

10 20 0.4334 1 0.1 1.0477 0.932 0.936
2 0.1 1.2323 0.924 0.932
1 0.2 1.2323 0.924 0.932
2 0.2 1.8215 0.916 0.926
1 0.4 1.8215 0.916 0.926
2 0.4 3.5986 0.724 0.829
1 0.6 2.6179 0.842 0.869
2 0.6 5.9025 0.450 0.723

Table 4: The average cost for the regional-stage patients in the first 6 years

τ average cost 95%CI(normal) 95%CI(EL)
12 31638.17 [30325.31, 32951.03] [28928.03, 35801.20]
24 45321.87 [43049.58, 47594.16] [40075.41, 51216.07]
36 56053.82 [52619.14, 59488.51] [49916.64, 60339.97]
48 63734.03 [59266.65, 68201.42] [56401.28, 74029.19]
60 71861.62 [66095.95, 77627.29] [63872.28, 84207.23]
72 77967.85 [71267.34, 84668.37] [70927.91, 89366.97]
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Table 5: The average cost for the distant-stage patients in the first 6 years

τ average cost 95%CI(normal) 95%CI(EL)
12 38028.34 [37007.67, 39049.00] [35195.77, 41972.41]
24 56373.66 [54557.11, 58190.21] [51378.09, 62906.75]
36 70895.30 [68057.08, 73733.51] [66108.69, 76880.35]
48 82330.58 [78034.04, 86627.12] [76459.93, 88756.02]
60 92018.35 [86056.14, 97980.55] [84334.12, 100357.07]
72 99249.84 [91981.43, 106518.24] [91162.97, 109599.23]
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