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the Assessment of Unmeasured Confounding

Holly Janes, Francesca Dominici, Scott Zeger

Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD

21205, U.S.A.

Abstract

We propose a method for diagnosing confounding bias under a model which links a

spatially and temporally varying exposure and health outcome. We decompose the

association into orthogonal components, corresponding to distinct spatial and temporal

scales of variation. If the model fully controls for confounding, the exposure effect

estimates should be equal at the different temporal and spatial scales. We show that the

overall exposure effect estimate is a weighted average of the scale-specific exposure effect

estimates.

We use this approach to estimate the association between monthly averages of fine

particles (PM2.5) over the preceding 12 months and monthly mortality rates in 113 U.S.

counties from 2000-2002. We decompose the association between PM2.5 and mortality

into two components: 1) the association between “national trends” in PM2.5 and

mortality; and 2) the association between “local trends,” defined as county-specific

deviations from national trends. This second component provides evidence as to
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whether counties having steeper declines in PM2.5 also have steeper declines in

mortality relative to their national trends.

We find that the exposure effect estimates are different at these two spatio-temporal

scales, which raises concerns about confounding bias. We believe that the association

between trends in PM2.5 and mortality at the national scale is more likely to be

confounded than is the association between trends in PM2.5 and mortality at the local

scale. If the association at the national scale is set aside, there is little evidence of an

association between 12-month exposure to PM2.5 and mortality.
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In environmental epidemiology we often conduct observational studies in which

exposures to environmental agents cannot be controlled by the investigator. Inference about

the health effects of the exposures is generally drawn from a statistical model that controls

for potential confounders by including these factors as covariates. Confounding bias caused

by omitting important confounders from the regression model is the most common threat to

the validity of the exposure effect estimates.1–7

This paper illustrates an approach to diagnosing confounding bias under a causal model

linking an environmental exposure and health outcome, estimated using spatio-temporal

data. To test the model, we decompose the association between the exposure and health

outcome into orthogonal components, corresponding to distinct scales of spatial and

temporal variation. If the model adequately controls for confounding, then the exposure

effect estimates should be similar at the different spatial and temporal scales. We show that

the overall exposure effect estimate is a weighted average of the scale-specific exposure

effect estimates. Differences among the scale-specific estimates indicates confounding by

omitted covariates.

We illustrate our approach in a study of the mortality effect of 12-month exposure to

fine particulate matter (PM2.5). We develop a log-linear regression model for multi-site

time-series data to estimate the association between month-to-month variation in mortality

rates and month-to-month variation in average PM2.5 over the preceding year in 113 U.S.

counties and for the period 2000-2002. We decompose the association between PM2.5 and

mortality into two components: 1) the association between “national trends” in PM2.5 and

mortality; and 2) the association between county-specific deviations from the national
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trend, that is, between “local trends.” This second component provides evidence as to

whether counties having steeper declines in PM2.5 also have steeper declines in mortality

with respect to their national trends.

If monthly mortality rates are caused by average PM2.5 concentration in the previous

year, the associations between the national and local trends should be the same, absent

confounding and measurement error. Our proposed approach allows us to assess the validity

of this causal hypothesis.

We hypothesize that the association between the national trends in PM2.5 and mortality

is likely to be confounded by slowly time-varying factors, such as changes in industrial

activities and the economy, improving health care, and large scale weather events.8–11 Our

approach can be used to focus on the component of association that is least likely to be

confounded, the association between the local trends.

The statistical framework proposed in this paper draws from both cohort studies of

long-term exposure12–15 and multi-site time series studies of short-term exposure.16–23 As

in cohort studies, we focus on long-term average exposure (averaged over the previous

year). As in time-series studies, we estimate associations between temporal changes in

exposure and outcome within counties, to guard against bias due to county-specific

characteristics that do not vary with time.

Methods

We construct mortality counts (Y c
t ) and number of people at risk (N c

t ) for each county c

and month t for six strata (two sexes and three age groups: 65-74 years; 75-84 years; and >

85 years), using Medicare enrollment files. Our study population includes 8.2 million
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Medicare enrollees living on average six miles from an EPA PM2.5 monitor.

The locations of the 113 US counties included in the study are shown in Figure 1. The

counties are categorized into seven geographic regions. The regions are based on our

previous national multi-site time-series studies of PM10 and mortality and of PM2.5 and

hospital admissions.16,24 These counties have nearly complete PM2.5 data (no gaps larger

than three weeks) for the period over which exposure was averaged, 1999 to 2002.

Estimating county-specific annual average PM2.5: For each county and each month, we

calculate the average level of PM2.5 over the preceding year (denoted by PM c
t ) as follows.

First, we estimate the smooth trend in PM2.5 using a linear regression model with outcome

monitor-specific daily PM2.5 level, and as predictor a natural cubic spline of time with 16

degrees of freedom. Second, for each month, we calculate the average PM2.5 over the

previous year using the fitted values from the regression model described above. This

modelled PM2.5 allows us to impute small gaps of missing data when calculating annual

averages. For counties with multiple monitors, we use the one with the most complete data,

that is, the one with the smallest maximum and average gap in observations and with the

longest observation period. We use data from a single monitor rather than from all the

monitors within a county because averaging ambient PM2.5 concentrations across monitors

that are online for varying periods of time might induce spurious trends.

Measurement error in county-specific annual average PM2.5 trends: To investigate

whether the observed variation in PM c
t trends across counties represents true

between-county variability in long-term exposure, rather than differences between monitors

within a county (“measurement error”), we perform the following analysis. First, for each

monitor, we linearly regress PM c
t on t and estimate the slope. Here, we use all monitors

with at least 80% of the data available and with no gaps longer than 1 month. Second, we
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fit a one-way random effects model to the monitor-specific estimated slopes and calculate:

1) the variability of the slopes within county (measurement error) (σ2
w); 2) the variability of

the slopes between counties (σ2
b ); and 3) the intraclass correlation coefficient,

ρ = σ2
b/(σ2

b + σ2
w).

Analysis of variance of county-specific annual average PM2.5 trends: To quantify the

variability of PM c
t in space and time, we conduct the following analysis of variance. We fit

a linear model with PM c
t as the dependent variable, and with the following predictors: 1)

county-specific intercepts (the spatial dimension); 2) a natural cubic spline of month with

16 degrees of freedom (the time dimension); and 3) an interaction between the

county-specific indicators and the smooth function of time (the space-by-time interaction).

Causal model for annual average PM2.5 and mortality: Within each age-sex stratum, we

consider the following causal model for the health effects of air pollution:

log E(Y c
t ) = log N c

t + δc
0 + δ1PM c

t . (1)

The parameters δc
0 are county-specific intercepts, which are included in the model to control

for unmeasured county-specific characteristics that do not vary with time. The parameter

δ1 denotes the association between month-to-month variation in PM c
t and month-to-month

variation in mortality.

Estimates from model (1) are likely to be confounded by factors that cause trends in

PM2.5 and mortality. Examples of such confounders are policy changes affecting the

economy, industrial activity, and health care and large scale weather events.8–11 A popular

approach to controlling for unmeasured temporal confounding at the national level is to add

to the model a smooth function of time:

log E(Y c
t ) = log N c

t + βc
0 + β1PM c

t + s(t; d), (2)
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where s(t; d) is a smooth function of time modelled using a natural cubic spline with d

degrees of freedom. We emphasize that this model controls for temporal trends at the

national level, since s(t; d) is common to all counties. The parameters βc
0 are county-specific

intercepts. This model is equivalent to the following:

log E(Y c
t ) = log N c

t + ηc
0 + η1P̂M t + η2(PM c

t − P̂M t) + s∗(t; d − 1). (3)

The term P̂M t denotes the national trend in annual average PM2.5, calculated as the fitted

values of a linear regression model having PM c
t as dependent variable (for all counties) and

a natural cubic spline of time with d degrees of freedom (s(t; d)) as predictor. The term

s∗(t; d − 1) is a smooth function of time modelled using a natural cubic with d − 1 degrees

of freedom, orthogonal to P̂M t and PM c
t .

Models (2) and (3) yield the same predicted values. The only difference between the two

models is in parametrization: model (3) takes the smooth function s(t; d) in model (2),

which is represented by a set of d basis functions, and breaks it into: 1) P̂M t, which is a

linear combination of the d basis functions; and 2) the remaining smooth function,

s∗(t; d − 1). The parameters η2 in model (3) and β1 in model (2) are exactly the same.

Model (3) allows us to estimate the association between PM2.5 and mortality trends at

two different scales: national and local. The parameter η1 denotes the association between

month-to-month variation in the national trend in PM2.5, P̂M t, and month-to-month

variation in the national trend in mortality rates. The parameter η2 denotes the association

between month-to-month variation in county-specific deviations in PM c
t from the national

trend, and month-to-month variation in county-specific Y c
t from the national trend. In

other words, η2 provides evidence as to whether counties having steeper declines in PM c
t

also have steeper declines in mortality relative to the national trend.
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If model (1) describes the causal link between annual average PM2.5 and mortality, then

the estimates of η1 and η2 in model (3) should be equal, absent confounding and

measurement error. Therefore, a comparison of η̂1 of η̂2 provides important evidence on the

causal hypothesis formulated in model (1).

In model (3), the term P̂M t controls for the national trend in annual average PM2.5,

and s∗(t; d − 1) controls for the remaining national trend in mortality. This implies that the

effect of P̂M t (η1), which represents the association between trends in PM2.5 and mortality

at the national scale, is potentially confounded by time-varying factors such as changes in

the economy and health care. We focus on η2, the association between trends in PM2.5 and

mortality at the local scale, because we believe that this exposure effect is less likely to be

confounded. In order to bias the estimation of η2, a confounder must cause county-specific

deviations in PM c
t and mortality from their national trends. An example of such a factor is

“health consciousness,” a characteristic of counties that relates to their aggressiveness in

implementing national air pollution regulatory standards and in improving health care.

It can be shown that the PM2.5-mortality association as measured by model (1) is a

composite of two pieces of information:

δ̂1 ≈ w η̂1 + (1 − w) η̂2, (4)

where η̂1 and η̂2 are the estimated coefficients of the national and local PM2.5 trends from

model (3), w = (1/V1)/(1/V1 + 1/V2), and V1 and V2 are the statistical variances of η̂1 and

η̂2. That is, δ̂1 is a weighted average of the association between the national PM2.5 and

mortality trends and the association between the local PM2.5 and mortality trends.

We also consider a pooled model that combines information across age-sex strata and
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allows for stratum- and region-specific smooth functions of time:

log E(Y c
t ) = log N c

t + αcs
0 + α1PM c

t + srs(t; d), (5)

where αcs
0 are county and age-sex stratum-specific intercepts, srs(t; d) is a stratum- and

region-specific smooth function of time modelled using a natural cubic spline with d degrees

of freedom, and α1 is the PM2.5 effect common to all age-sex strata. When d = 0, model (5)

is an age-sex stratum pooled version of model (1), and α1 is the association between PM2.5

and mortality without control for trends. When d > 0, model (5) is a pooled version of

model (2), or equivalently of model (3). The parameter α1 is the association between

month-to-month deviations in PM2.5 and mortality from their respective stratum- and

region-specific trends, i.e., the association between local trends.

In all log-linear models, we use a negative binomial variance model,25

V ar(Y c
t ) = E(Y c

t ) (1 + E(Y c
t )/φ) .

We fit the models by iterating between fitting the log-linear model for fixed φ, and

estimating φ using a method of moments estimator.26

We report results for all models when d = 16 degrees of freedom are used to model the

national trend over 3 years.

Sensitivity analyses: We assess the sensitivity of the results to different choices of d,

from d = 0 to d = 32. We vary d on the log2 scale so as to maintain the same knots as d

increases. We also calculate robust standard errors,27 which account for residual

autocorrelation in monthly mortality rates. Robust and model-based standard errors are

similar, and hence we report only the results using model-based standard errors. We also

explore the sensitivity of our results to the time period over which PM2.5 is averaged. We

fit the same models, using average PM2.5 over the previous two years as exposure.
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Results

In the measurement error analysis of PM2.5 trends, we find that 80% of the total

variability in monitor-specific trends is attributable to variability among counties.

Table 1 summarizes the results of the analysis of variance of PM c
t . We find that 91% of

the total variance in PM c
t can be attributed to the space component, and 5% to the

space-by-time component. Note that the space-by-time variance of PM c
t , which provides

the main source of information for estimating η2 in model (3), is larger than the variance

due to the time component, and accounts for 57% of the temporal variance.

Figure 2A displays regional and national linear trends in annual average PM2.5

concentrations. We estimate these trends by linearly regressing PM c
t on t. Figure 2B shows

regional and national trends in log mortality rates. These trends are estimated by

log-linearly regressing Y c
t on t with offset log N c

t . The log-linear models are fit separately

for each age-sex stratum, and the fitted values are averaged across strata. Annual average

PM2.5 concentrations are decreasing over time in all regions except in the Northeast and

Central regions. Mortality rates are decreasing in all regions. This information is used to

estimate the association between the national trends in PM2.5 and mortality in model (3).

Figure 3A shows how county-specific linear trends in PM c
t deviate from the national

linear trend. County-specific PM c
t trends are calculated by linearly regressing PM c

t on t.

The deviations are the differences between these county-specific trends and the national

trend. The deviations are centered at zero in order to draw attention to the trends, rather

than to the levels. Figure 3B shows how county-specific linear log mortality rate trends

deviate from the national linear trend. For each county and age-sex stratum, we calculate

the trend in the log mortality rate by log-linearly regressing Y c
t on t with offset log N c

t .
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Deviations are the differences between the county- and stratum-specific trends and the

national stratum-specific trend. The deviations are centered at zero and averaged across

age-sex strata. Three counties with very different trends– Los Angeles county (CA), Peoria

county (IL), and De Kalb county (GA)– are identified. This plot examines whether counties

in which PM2.5 is decreasing faster than the national trend also have mortality rates

decreasing faster than the national trend. In LA county, for example, PM2.5 is increasing

relative to the national trend, but mortality is decreasing relative to the national trend.

Observe the substantial variability in the county-specific deviations from the national trend.

This information is used to estimate the association between local trends in PM2.5 and

mortality in model (3).

Figure 4 shows a scatterplot of the slopes estimated by linearly regressing PM c
t on t

versus the slopes estimated by log-linearly regressing Y c
t on t with offset log N c

t . The

mortality rate slopes are averaged across age-sex strata. Los Angeles county (CA), Peoria

county (IL), and De Kalb county (GA) are again highlighted. The median PM2.5 slope is

-0.048 (interquartile range [IQR] = 0.056), which corresponds to an average decrease of 0.58

µg/m3 PM2.5 concentration per year (12×0.048 = 0.58). The median log mortality rate

slope is -2.112 ×10−3 (IQR = 1.904 ×10−3), which corresponds to a 2.50% decrease in the

mortality rate each year on average (e12×−2.112×10−3

= 0.9750). We evaluate the association

between the PM2.5 slopes and the mortality slopes using a weighted linear regression model,

where the weights are the inverse variances of the mortality slope estimates. The regression

line is superimposed. There is no evidence of a positive association between the rates of

change in PM2.5 and log mortality rates (slope estimate = -0.001; 95% CI = -0.006 to

0.003).

Table 2 displays the results of models (1) and (3), separately for each age-sex stratum.
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We report results for model (3) when d = 16, but note that any d ≥ 8 provides qualitatively

similar results. The first column contains estimates of δ1 from model (1), and the second

and third columns show estimates of η1 and η2 from model (3). As expected from Figure 2,

we find a strong evidence of an association between national trends in PM2.5 and mortality

(second column). However, there is no evidence of an association between local trends in

any of the strata (third column). This is consistent with the data displayed in Figure 3 and

the exploratory analysis shown in Figure 4.

The first column of Table 2 contains results from model (1). These estimates quantify

the association between annual average PM2.5 and mortality without control for temporal

confounding. In each age-sex stratum, δ̂1 lies between η̂1 (second column) and η̂2 (third

column). This follows from the weighted average result, equation (4). Observe that the

positive association between PM2.5 and mortality estimated based on model (1) (δ1) is a

combination of a very strong positive association between national trends (η1) and a null

association between local trends (η2). The large difference between these two effects (η1 and

η2) suggests that they should not be combined in a weighted average. In the fourth column

of Table 2, we show the weight that is given to the national trend component, 1/V1

1/V1+1/V2
.

We find that the national trend component accounts for about 40% of the information

contained in δ1.

Figure 5 shows estimates of the association between annual average PM2.5 and

mortality based on the pooled model (5), as a function of the degrees of freedom allowed in

each stratum- and region-specific trend term per year. When d = 0, we estimate the

association without control for temporal confounding. We estimate that a 1 µg/m3 increase

in PM2.5 is associated with an 0.86% increase in mortality (95% CI = 0.64% to 1.09%).

This corresponds to an 8.96% increase in mortality for each 10 µg/m3 increase in PM2.5,
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which is remarkably similar to the PM2.5 effect estimated in previous cohort studies.12–14

However, as d > 0 (that is, as we start to control for smooth trends in PM2.5 and

mortality), the evidence changes. For d ≥ 8 we find no evidence of an association between

local trends in PM2.5 and mortality.

Figure 5 also displays the results of model (5) separately for each year. Again if there is

a causal association between exposure and outcome, the estimated association should be

similar in different subsets of the data. When d = 0, the three year-specific PM2.5 effects

are very different, but all statistically significant. The change in mortality associated with a

1 µg/m3 increase in PM2.5 ranges from a 4.02% decrease in 2001 (95% CI = 3.25% to

4.79%) to a 5.30% increase in 2002 (95% CI = 4.41% to 6.19%). As d increases, the three

year-specific estimates become more similar, and settle around a null effect.

We explore the sensitivity of our results to the time period over which PM2.5

concentrations are averaged, by using PM2.5 averaged over the previous two years as

exposure (and using mortality data for 2001 and 2002). The results of the age-sex

stratum-specific models are shown in Table 3. For model (3), using now just two years (24

months) of mortality data, we report results when d = 8 degrees of freedom are used to

model the national trend. Results are qualitatively similar for all d ≥ 4. The results shown

in Table 3 are qualitatively similar to those in Table 2. We find an association between

national trends for most strata, but no association between local trends.

Discussion

This paper illustrates an approach to the assessment of confounding bias in

observational studies where environmental exposures and health outcomes vary in time and
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space. We introduce a causal model for the association between monthly variations in

annual average PM2.5 and mortality rates. We show how this association can be

decomposed into two components: the association between national trends in PM2.5 and

mortality, and the association between local trends in PM2.5 and mortality. We find a very

large association at the national scale, and no evidence of association at the local scale. We

believe that the national trend component is more likely to be confounded than the local

trend component. If we set aside the association between national trends, we are left with

no evidence of an effect of PM2.5 on mortality.

Chay, Dobkin, and Greenstone9 estimated the association between trends in air

pollution and adult mortality in the US using an instrumental-variables approach.

Following the Clean Air Act of 1970, counties were designated as “attainment” or

“non-attainment” according to their levels of total suspended particulates (TSP). These

authors compared changes in TSP levels and mortality rates across attainment and

non-attainment counties. They found that, while non-attainment status was associated

with large reductions in TSP in the years 1971-1972, non-attainment status was not

significantly associated with reductions in adult or elderly mortality.

In another recent paper, Laden and colleagues28 used extended follow-up data from the

Harvard Six Cities Study14 to examine trends in average PM2.5 and mortality rates in six

U.S. cities. They partitioned time into two periods, 1974-1989 and 1990-1998. Controlling

for average PM2.5 in the first time period, they found that a reduction in average PM2.5 in

the second period was associated with a reduction in the mortality rate.

In our analysis we define long-term exposure as average PM2.5 over the preceding year.

National monitoring data for PM2.5 started in 1999 and therefore we do not have data to

estimate exposures for longer time periods. Our sensitivity analysis suggests that, when a
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different exposure averaging period is used, results do not change qualitatively. Determining

the appropriate long-term PM2.5 exposure measure is an important scientific question that

deserves further research.

Our analysis focuses on 113 counties with relatively complete PM2.5 data over the study

period, and uses data from the best single monitor for each county. We conducted the same

analysis using a larger set of 250 US counties (meeting less strict PM2.5 measurement

criteria) and using as exposure the annual average PM2.5 concentration averaged across all

monitors in each county. This produced very similar results.

In these data, we estimate that 20% of the total variability in PM2.5 trends is

within-county variability (measurement error). Using a regression calibration correction,29

we estimate that our PM2.5 local trends coefficient is attenuated by 20% (1 - 0.80, where

0.80 is the intraclass correlation). In contrast, we assume that the national trend in PM2.5

is estimated without error, since it is based on data from 113 counties. We conclude that

the attenuation of the local trends coefficient is not enough to explain the discrepancy

between the effects of the local and national PM2.5 trends.

Our study, as with most air pollution studies, is potentially affected by various sources

of bias. This bias comes from three sources. First, we use county-level exposure to represent

individual-level exposure. Previous studies have shown that this tends to bias exposure

effects towards the null.30,31 The second source of bias is due to the lack of information on

area-level time-varying confounders that affect both PM2.5 and mortality trends. We

control for such factors by including a smooth function of time in the regression models.

The third source of bias is due to the lack of adjustment for individual-level covariates

beyond age and sex. However, previous cohort studies have found the air

pollution-mortality association to be robust to the adjustment for both time-varying and

15
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time-invariant individual-level confounders.32

Our proposed methods can be used more generally to diagnose unmeasured confounding

in observational studies where the exposure and outcome vary in time and space. We

decompose the exposure variable into orthogonal components and allow each component to

have a unique effect on the outcome. If there is a causal link between exposure and

outcome, then the exposure components must affect the outcome equally, assuming there is

no confounding or covariate measurement error. Therefore, differences in these scale-specific

effects are a useful diagnostic tool for assessing confounding and its magnitude. If the

exposure effects differ, we suggest focusing on the exposure effects that are thought least

likely to be confounded. A priori knowledge about the potential confounders can guide the

partitioning: the least confounded exposure effects are those corresponding to scales of

variation at which the confounders are approximately constant.
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Table 1: Variability in PM c
t in space, time, and space-by-time dimensions. This is based on

a linear model with dependent variable PM c
t and independent variables: 1) county-specific

intercepts (space dimension); 2) a smooth function of time modelled as a natural cubic spline

of month with 16 degrees of freedom (time dimension); and 3) an interaction between the

county-specific indicators and the smooth function of time (space-by-time interaction). The

first column shows the percent of the total variance of PM c
t attributable to each of the three

components, and the second column shows the percent of the total temporal variation in

PM c
t attributable to the “time” and the “space-by-time” components.

% Variance % of Temporal

Variability

Space 90.90 —

Time 3.90 42.92

Space x Time 5.19 57.08

Residual < 0.01 —

Total 100.00 —
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Table 2: Point estimates and 95% confidence intervals (CIs) for long-term effects of PM2.5 on

mortality, by age-sex stratum. The percent change in the mortality rate per 1 µg/m3 increase

in PM2.5 is shown. The first three columns summarize the effects of PM c
t (from model (1)),

P̂M t (from model (3)), and PM c
t −P̂M t (from model (3)), respectively. Estimates in the first

column are approximately a weighted average of estimates in the second and third columns,

according to the weighted average result (equation (4)). The fourth column shows the weight

that is given to the national trend component.

% Change in % Change in

% Change in mortality rate per mortality rate per

mortality rate per µg/m3 increase in µg/m3 increase in

µg/m3 increase in PM2.5 national PM2.5 local % Information

PM2.5 (δ1) trend (η1) trends (η2) from national

Point estimate Point estimate Point estimate trend

Age (years) Sex (95% CI) (95% CI) (95% CI) ( 1/V1

1/V1+1/V2

)

65-74 Men 1.48 (0.93 to 2.03) 3.55 (2.77 to 4.34) 0.04 (-0.58 to 0.67) 40.66

Women 0.83 (0.24 to 1.43) 1.97 (1.12 to 2.83) -0.03 (-0.71 to 0.66) 40.15

75-84 Men 0.85 (0.34 to 1.35) 2.48 (1.83 to 3.14) -0.34 (-0.87 to 0.19) 40.87

Women 0.77 (0.28 to 1.27) 2.29 (1.66 to 2.93) -0.31 (-0.82 to 0.21) 40.77

85+ Men 0.70 (0.03 to 1.38) 1.38 (0.52 to 2.26) < 0.01 (-0.71 to 0.73) 41.26

Women 0.59 (0.05 to 1.12) 1.65 (1.01 to 2.29) -0.22 (-0.74 to 0.31) 41.19
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Table 3: Point estimates and 95% CIs for long-term effects of PM2.5 on mortality, by age-

sex stratum, using PM2.5 concentrations averaged over the previous two years as exposure.

The percent change in the mortality rate per 1 µg/m3 increase in PM2.5 is shown. The

first 3 columns summarize the effects of PM c
t (from model (1)), P̂M t (from model (3)), and

PM c
t − P̂M t (from model (3)), respectively. Estimates in the first column are approximately

a weighted average of estimates in the second and third columns, according to the weighted

average result (equation (4)). The fourth column shows the weight that is given to the

national trend component.

% Change in % Change in

% Change in mortality rate per mortality rate per

mortality rate per µg/m3 increase in µg/m3 increase in

µg/m3 increase in PM2.5 national PM2.5 local % Information

PM2.5 (δ1) trend (η1) trends (η2) from national

Point estimate Point estimate Point estimate trend

Age (years) Sex (95% CI) (95% CI) (95% CI) ( 1/V1

1/V1+1/V2

)

65-74 Men 0.74 (-0.48 to 1.97) 4.48 (2.57 to 6.43) -1.25 (-2.61 to 0.14) 36.25

Women 0.24 (-1.06 to 1.57) 1.48 (-0.57 to 3.58) -0.40 (-1.90 to 1.12) 35.51

75-84 Men 0.51 (-0.61 to 1.64) 2.87 (1.27 to 4.49) -0.73 (-1.89 to 0.45) 36.14

Women 0.83 (-0.24 to 1.90) 2.85 (1.31 to 4.41) -0.11 (-1.23 to 1.03) 35.86

85+ Men -0.70 (-2.15 to 0.76) 0.18 (-1.84 to 2.23) -1.37 (-2.87 to 0.15) 36.25

Women -0.34 (-1.48 to 0.82) 2.17 (0.63 to 3.73) -1.54 (-2.65 to -0.40) 36.23
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Figure 1: The location of the 113 counties used in the analysis. Each region is plotted using

a different symbol.
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Figure 2: Regional and national linear trends in (A) PM c
t and (B) log mortality rates. Trends

in PM c
t are calculated based on linear models, and log mortality rate trends are calculated

using log-linear models. These mortality trends are then averaged across age-sex strata.
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Figure 3: County-specific deviations in (A) linear PM c
t trends and (B) linear log mortality

rate trends from their respective national linear trends. The mortality deviations are averages

of age-sex stratum-specific deviations from their respective national trends. Three counties

Los Angeles, CA (dotted line), De Kalb County, GA (dashed line), and Peoria County, IL

(solid line) counties, are highlighted.
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Figure 4: County-specific linear rates of change in PM c
t versus county- and stratum-specific

linear rates of change in mortality. The mortality trends are averaged across age-sex strata.

A weighted linear regression model is overlaid, where the weights are the inverse variances of

the mortality slope estimates. Three counties, Los Angeles, CA (diamond), De Kalb County,

GA (triangle), and Peoria County, IL (circle), are highlighted.
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Figure 5: The percent increase in the mortality rate associated with a 1 µg/m3 increase in

PM2.5 based on model (5), as a function of the degrees of freedom per year. Confidence

intervals are superimposed. Estimates are also shown separately for each year.
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