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Abstract

In clinical trials, a surrogate outcome variable (S) can be measured before
the outcome of interest (T) and may provide early information regarding the
treatment (Z) effect on T. Most previous methods for surrogate validation rely
on models for the conditional distribution of T given Z and S. However, S is
a post-randomization variable, and unobserved, simultaneous predictors of S
and T may exist. When such confounders exist, these methods do not have
a causal interpretation. Using the principal surrogacy framework introduced
by Frangakis and Rubin (2002), we propose a Bayesian estimation strategy
for surrogate validation when the joint distribution of potential surrogate and
outcome measures is multivariate normal. We model the joint conditional dis-
tribution of the potential outcomes of T, given the potential outcomes of S and
propose surrogacy validation measures from this model. By conditioning on
principal strata of S, the resulting estimates are causal. As the model is not
fully identifiable from the data, we propose some reasonable prior distributions
and assumptions that can be placed on weakly identified parameters to aid in
estimation. We explore the relationship between our surrogacy measures and
the traditional surrogacy measures proposed by Prentice (1989). The method
is applied to data from a macular degeneration study and data from an ovarian
cancer study, both previously analyzed by Buyse, et al. (2000).

Keywords: Bayesian estimation; Principal stratification; Surrogate end-
points.
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1 Introduction

A surrogate endpoint (S) is an intermediate outcome variable occurring in between

the treatment (Z) and the outcome of interest (T ). The surrogate is usually known

to be involved in the mechanism of the disease process and can be measured at an

earlier time than the desired outcome. Therefore, there is considerable interest in

the use of surrogate markers in clinical trials, as they offer the potential to run trials

more cheaply and quickly by extracting information regarding the treatment effect

on T through the earlier measured S. Examples of established surrogate markers

include blood pressure under anti-hypertensive drug treatment as a surrogate for

cardiovascular disease (Weir and Walley, 2006), and three year disease free survival

as a surrogate for five year overall survival in colorectal cancer (Sargent et al., 2007).

We examine two data examples in the application of our method. The first concerns

patients with age-related macular degeneration and considers the use of change in

visual acuity at 6 months after starting treatment as a surrogate marker for change

in visual acuity at 1 year. The second concerns ovarian cancer and assesses progression

free survival as a surrogate for overall survival.

Before a surrogate can be used in practice, it must be shown to be a valid surrogate

for the outcome of interest. In a landmark paper, Prentice (1989) proposed a formal

definition of surrogacy along with a validation strategy. Prentice’s criteria require

that S and T be correlated and the treatment effect on T be fully captured by

S. Other methods for surrogacy evaluation have since been proposed, including the

proportion of treatment effect explained by S (Freedman, Graubard, and Schatzkin,

1992), and individual-level and trial-level surrogacy association measures in meta-

analyses (Buyse, et al., 2000).

Some assessments of surrogacy rely on estimating treatment effects by adjusting

for a variable that is measured after randomization. However, there may be unmea-
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sured confounders in the pathway between the surrogate and final outcome resulting

in estimates that will not have a causal interpretation (Rosenbaum, 1984). Therefore,

Frangakis and Rubin (2002) (henceforth FR) introduced a definition of a surrogate

endpoint, called a “principal surrogate”, based on a principal stratification approach.

In this framework, each subject has two potential outcomes corresponding to each

treatment, denoted S(Z) and T (Z), for Z = 0, 1. The principal surrogacy approach

looks at the distribution of the potential outcomes of T conditional on principal strata

based on the joint distribution of S(0) and S(1). The principal strata are unaffected

by treatment, and are thus pre-randomization variables. Treatment effect estimates

that condition on these principal strata are therefore causal estimates when treat-

ments are randomly assigned.

The rationale for considering whether the principal stratification approach is ap-

propriate for assessing surrogacy has been discussed in the literature, with some

support provided in the discussion by VanderWeele (2011) and by Zigler and Belin

(2011). In this approach, the value of S as a surrogate for T is determined by the

extent to which the causal effect of treatment on S can reliably predict the causal

effect of treatment on T . The rationale for considering principal surrogacy or more

generally considering the joint distribution of S(0), S(1), T (0), T (1) is most easily ex-

plained in the case where S and T are binary. In this case, the joint distribution

of S(0), S(1), T (0), T (1) amounts to a partition of the population into cells with a

probability attached to each cell. These probabilities completely characterize the

population and from them an assessment of surrogacy can be made. For example,

one can consider the fraction of the population for which T (0) is not equal to T (1)

amongst those who have S(0) not equal to S(1). Then additionally, this fraction

might be contrasted with the fraction of the population for which T (0) is not equal

to T (1) amongst those who have S(0) equal to S(1). As we will describe below, other
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summary measures that can be obtained from the joint distribution might also be con-

sidered. When S and T are continuous, the joint distribution of S(0), S(1), T (0), T (1)

again completely characterizes the population, from which summary measures for as-

sessing surrogacy, such as the distribution of T (1) − T (0) given S(1) − S(0), can

be obtained. If one accepts that the joint distribution completely characterizes the

population, then the challenges are determining what useful summary measures to

extract from this distribution, and the estimation of this distribution.

We note that the principal stratification approach to assessing surrogacy uses

a causal framework, but the causal framework it uses differs from the framework

presented by Pearl (1995) and discussed in Joffe and Greene (2009). In the principal

stratification framework, there are only two causal effects, one on S and one on T and

we are interested in the association between these two. The other causal framework,

while it may also be interesting to consider, does require additional consideration of

the effect of S on T , requiring hypothetical manipulations of S. This alternative

causal framework is more mechanistic and allows notions of direct and indirect effects

of Z on T . We will not pursue it in this paper.

Existing literature on methods for surrogacy assessment using the principal strat-

ification approach has examined settings in which both S and T are binary (Li et al.

2010), or in which S is continuous with binary T (Gilbert and Hudgens, 2008; Zigler

and Belin, 2011). For a binary S and T , Li, et al. (2010) developed an estimation

method for the causal quantities associated with the cross classification of the poten-

tial outcomes using a log-linear model and Bayesian estimation procedure. Gilbert

and Hudgens (2008) (henceforth GH) used the framework of FR to develop an esti-

mand, termed the causal effect predictiveness (CEP) surface for evaluating surrogacy

when S is continuous or categorical and T is binary. Work in the PS framework

when both S and T are continuous has primarily been discussed in the application
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to partial compliance (Bartolucci and Grilli, 2011; Schwartz, et al., 2011). In this

context, the joint distribution of the potential outcomes of the intermediate variable,

in this case degree of compliance, is modeled either parametrically or semiparametri-

cally with principal causal effects (PCEs) measured by comparisons of the potential

outcomes of T conditional on S, where the conditional distributions for T (0) and

T (1) are modeled separately.

Here, we consider the entire joint distribution of (Si(0), Si(1), Ti(0), Ti(1)) and

propose estimands to evaluate principal surrogacy when both S and T are continuous

and the joint distribution of the potential outcomes is multivariate normal. Once

parameter estimates for this distribution are obtained, various causal quantities that

may aid in the assessment of S as a surrogate marker for T may be examined. Specific

quantities of interest include E[T (1)−T (0)|S(1), S(0)], P (T (1)−T (0) > 0|S(1), S(0)),

and the correlation between T (1) − T (0) and S(1) − S(0). The use of cor(T (1) −

T (0), S(1)−S(0)) has been discussed by Wang, et al. (2012), who specifically contrast

it with the observable correlation between S and T , given the treatment group.

Because some parameters of the joint distribution are not fully identifiable from

the data, we use a Bayesian estimation procedure with plausible prior distributions

and some reasonable constraints on model parameters to reduce the non-identifiability

problem of modeling counterfactual observations and to aid in estimation of the quan-

tities of interest. In order to facilitate the consideration of reasonable constraints we

found it convenient to decompose the covariance matrix, Σ of (Si(0), Si(1), Ti(0), Ti(1))

as Σ = QRQ (Barnard et al., 2000), and place constraints on the correlations R,

rather than on the covariance terms in Σ. We also explore the relationship between

some of the proposed surrogacy assessment quantities and those based on the well

known Prentice criteria. In Section 2, we describe the model and possible constraints

that could be made to facilitate estimation. In Section 3, we introduce surrogacy mea-
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sures based on the potential outcomes framework. Section 4 describes the Bayesian

estimation procedure that we use and Section 5 provides simulation results from this

procedure. In Section 6 we apply these methods to the macular degeneration data

and ovarian cancer data. Section 7 concludes with a discussion.

2 Potential Outcomes Model

For a randomized trial with treatment assignment Z (Z = 1 or 0), continuous sur-

rogate marker S and continuous true endpoint T , each subject i, i = 1, ..., n, has

two potential outcomes for each of Si and Ti, denoted by Si(Zi) and Ti(Zi). Only

one outcome, corresponding to the received treatment for subject i in each of the

pairs (Si(0), Si(1)) and (Ti(0), Ti(1)) can be observed. The joint distribution of

(Si(0), Si(1), Ti(0), Ti(1)) describes the causal associations between Z, S and T . In

the continuous setting where (Si(0), Si(1), Ti(0), Ti(1)) is multivariate normal with

mean µ and covariance matrix Σ, we have the following joint distribution:
Si(0)
Si(1)
Ti(0)
Ti(1)

 ∼ N



µS0

µS1

µT0
µT1

 ,


σ2
S0

ρsσS0σS1 ρ00σS0σT0 ρ01σS0σT1
σ2
S1

ρ10σS1σT0 ρ11σS1σT1
σ2
T0

ρtσT1σT0
σ2
T1




The mean µ and the variances corresponding to the diagonal elements of Σ, along

with the correlations between (Si(0), Ti(0)) and (Si(1), Ti(1)) corresponding to ρ00

and ρ11, are fully identifiable from the data. Because only one of the counterfactual

pairs of outcomes is observed for each subject, ρs, ρt, ρ01, and ρ10 are not identifiable.

However, the identifiable correlation parameters together with the requirement that

Σ be positive definite places boundary constraints on these non-identified parame-

ters, which, along with other plausible assumptions that we can make, aids in their

identifiability. These parameters are therefore considered to be partially identified as

opposed to completely unidentified.
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We make the standard assumptions of ignorable treatment assignments (Ru-

bin, 1978) and the stable unit treatment value assumption (SUTVA). Ignorable

treatment assignment implies that Z is independent of (S(0), S(1), T (0), T (1)) and

holds for blinded, randomized trials. SUTVA implies that the potential outcomes

(Si(0), Si(1), Ti(0), Ti(1)) are independent of the treatment assignments of other sub-

jects. This allows us to write the potential outcomes for subject i as a function of Zi

rather than of the entire vector of subject treatment assignments.

Other context specific constraints can be added, such as all ρ’s ≥ 0, a plausible

assumption for most variables S that would be under consideration as a potential

surrogate for T , and especially when the identifiable Pearson correlation coefficients,

ρ̂00 and ρ̂11, are positive. Other plausible assumptions are ρ01 < min(ρ00, ρ11, ρs, ρt),

and ρ10 < min(ρ00, ρ11, ρs, ρt), indicating a belief that the correlation between the

surrogate response and final outcome response in opposite treatment arms is less

than the correlation between the surrogate response and final outcome response within

the same treatment arm, or the correlation between the surrogate responses or final

treatment responses across treatment arms.

3 Assessing Surrogacy Using Potential Outcomes

Framework

3.1 Definitions of Surrogacy

Because S is a post-randomization variable, unobserved simultaneous predictors of

both S and T may exist. In this case, methods of surrogacy assessment that re-

quire conditioning on S do not result in causal estimates (Rosenbaum, 1984). When

baseline covariates account for all common causes of S and T , surrogacy measures

that condition on S will be causal. However, the assumption of no unmeasured con-

founders of S and T is untestable, potentially leading to noncausal estimates (Gilbert,

8
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et al., 2009). Therefore, FR proposed a definition of principal surrogacy (PS), which

uses a principal stratification approach to assess the validity of a surrogate marker.

This framework focuses on the distribution of p(T (0), T (1)|S(0), S(1)). Since S(1)

and S(0) are unaffected by treatment assignment, they can be treated as baseline

covariates. Quantities estimated from this distribution will therefore always have a

causal interpretation. FR proposed two measures of surrogacy, the “associative ef-

fect” and the “dissociative effect”. A measure of the associative effect is given by

E(Ti(1) − Ti(0)|Si(1) = Si(0)) and a measure of the dissociative effect is given by

E(Ti(1)− Ti(0)|Si(1) 6= Si(0)).

For the multivariate normal distribution, the distribution of (T (1)− T (0)|S(1)−

S(0) = s) is normal with mean

(µT1 − µT0) +
(
ρ11σS1σT1−ρ10σS1σT0−ρ01σS0σT1+ρ00σS0σT0

σ2
S0

+σ2
S1
−2ρsσS0σS1

)
(s− (µS1 − µS0))

and variance

σ2
T0

+ σ2
T1
− 2ρtσT0σT1 −

(ρ11σS1σT1−ρ10σS1σT0−ρ01σS0σT1+ρ00σS0σT0)
2

σ2
S0

+σ2
S1
−2ρsσS0σS1

.

The mean can be written as E[Ti(1)− Ti(0)|Si(1)− Si(0) = s] = γ0 + γ1s, where

γ0 = (µT1 − µT0 )−
(
ρ11σS1

σT1
− ρ10σS1

σT0
− ρ01σS0

σT1
+ ρ00σS0

σT0

σ2
S0

+ σ2
S1
− 2ρsσS0

σS1

)
(µS1 − µS0 )

γ1 =

(
ρ11σS1

σT1
− ρ10σS1

σT0
− ρ01σS0

σT1
+ ρ00σS0

σT0

σ2
S0

+ σ2
S1
− 2ρsσS0

σS1

)

The value of γ0 is then a measure of the “dissociative effect”. Values of γ0 near zero

indicate that the causal effect of treatment on the final outcome is near zero when the

causal effect of treatment on the surrogate is near zero, a characteristic that a good

principal surrogate should possess. When γ0 is near (µT1−µT0), there can be a causal

effect of the treatment on the final outcome even if there is no causal effect of the

treatment on the surrogate, implying that the treatment affects the outcome through
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pathways that do not involve the surrogate. We note, however, that a dissociative

effect of zero does not exclude the possibility of these pathways. The value of γ0 +γ1s

is a measure of the “associative effect”, providing information on how the causal

treatment effect on the outcome changes as the causal effect of the treatment on

the surrogate changes. A good principal surrogate should result in a large associative

effect, indicating that as the treatment effect on the surrogate increases, the treatment

effect on the final outcome increases as well. This does not imply an indirect effect

of treatment on the outcome or an effect of S on T , but rather the extent to which

the effect of Z on S is associated with an effect of Z on T (VanderWeele, 2011).

GH suggest a refined definition of a principal surrogate endpoint. In their setting

with binary T they define two properties, “average causal necessity” (ACN) and

“average causal sufficiency” (ACS). ACN is satisfied if risk(1)(s1, s0) = risk(0)(s1, s0)

for all s1 = s0, where risk(z)(s1, s0) = p(T (Z) = 1|S(1) = s1, S(0) = s0). ACS is

satisfied if there exists some constant C ≥ 0 such that risk(1)(s1, s0) 6= risk(0)(s1, s0)

for all |s1 − s0| > C. GH suggest that a valid surrogate marker should satisfy both

ACS and ACN. In our setting of continuous T , we can consider the joint conditional

distribution of (T (0), T (1)). Specific summaries of this joint distribution which are

of major interest include E[T (1) − T (0)|S(1) − S(0) = s] for s = 0 and |s| > C

for some constant C ≥ 0, P (T (1) > T (0)|S(1), S(0)) and the correlation between

T (1)−T (0) and S(1)−S(0). Also of interest is the “causal effect predictiveness (CEP )

surface” proposed by GH which considers the entire curve of E[T (1)−T (0)|S(1), S(0)]

and provides a measure of the treatment effect on T within subgroups defined by

the treatment effect on the surrogate. In terms of expectations, ACN is satisfied if

E[T (1)−T (0)|S(1)−S(0) = 0] = 0 and ACS is satisfied if E[T (1)−T (0)|S(1)−S(0) =

s] 6= 0 for all |s| > C. In the above setting, this corresponds to γ0 = 0 and γ1 6= 0.

In terms of the entire conditional distribution of T (1) − T (0) given (S(1) − S(0)),
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ACN is satisfied if P (T (1) − T (0) > 0|S(1) − S(0) = 0) = 0.5 and ACS is satisfied

if P (T (1) − T (0) > 0|S(1) − S(0) > 0) increases as S(1) − S(0) increases. For

multivariate normal data this conditional probability is:

Φ10(s) = P (T (1)− T (0) > 0|S(1)− S(0) = s) = Φ

 γ0 + γ1s√
σ2
T0

+ σ2
T1
− 2ρtσT0

σT1
− γ21(σ2

S0
+ σ2

S1
− 2ρsσS0

σS1
)



In the multivariate normal setting, these two metrics of ACN and ACS are closely

related. If γ0 = 0, then Φ10 = 0.5 when S(1)−S(0) = 0 and if γ1 > 0, then Φ10 > 0.5

when S(1) − S(0) > 0. So the conclusion drawn regarding the validity of S as a

surrogate will be the same under these two measures.

Another potentially useful measure to assess surrogacy is the correlation between

T (1) − T (0) and S(1) − S(0), which we denote by ρST . It can be shown that ρST is

given by

ρST =
ρ11σS1σT1−ρ10σS1σT0−ρ01σS0σT1+ρ00σS0σT0√
σ2
S0

+σ2
S1
−2ρsσS0σS1

√
σ2
T0

+σ2
T1
−2ρtσT0σT1

A final way that we consider summarizing the conditional distribution of T (1)−

T (0) given S(1) − S(0) = s, and hence assessing surrogacy, is through the CEP

graph, which is a plot of E[T (1)− T (0)|S(1)− S(0) = s] versus s, which is simply a

plot of γ0 + γ1s versus s.

3.2 Relationship Between Principal Surrogacy Measures and
Prentice Surrogacy Criteria

The ACN and ACS measures corresponding to conditional expectation can be linked

to the original surrogacy definition proposed by Prentice (1989). Prentice’s criteria

11
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for a valid surrogate require that

f(T |Z) 6= f(T )

f(S|Z) 6= f(S)

f(T |S) 6= f(T )

f(T |S,Z) = f(T |S)

In the multivariate normal setting with

E[Ti|Zi] = θ0 + θ1Zi

E[Si|Zi] = α0 + α1Zi

E[Ti|Si] = µ0 + µ1Si

E[T |S,Z] = β0 + β1Z + β2S + β3SZ

the Prentice criteria are satisfied when θ1 6= 0, α1 6= 0, µ1 6= 0, β1 = 0, β2 6= 0, and

β3 = 0. Relating these to the parameters in the potential outcomes model we have

θ1 = µT1 − µT0

α1 = µS1 − µS0

µ1 =
1

2

(
ρ00σT0
σS0

+
ρ11σT1
σS1

)
β1 = (µT1 − µT0)−

(
ρ11σT1
σS1

µS1 −
ρ00σT0
σS0

µS0

)
β2 =

ρ00σT0
σS0

β3 =
ρ11σT1
σS1

− ρ00σT0
σS0

It can be shown that when

ρ11σT1
σS1

=
ρ00σT0
σS0

(1)
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and

ρ00ρs =
1

2

(
ρ10 + ρ01

σS0σT1
σS1σT0

)
(2)

we have γ1 = β2 = µ1, γ0 = β1 and β3 = 0. Therefore, under these conditions, the

Prentice criteria and the principal surrogacy criteria requiring that both ACN and

ACS be met (or γ0 = 0 and γ1 6= 0) will reach the same conclusions regarding the

validity of S as a surrogate. When the above conditions are not met, conflicting

conclusions may be drawn by the Prentice criteria and principal surrogacy criteria.

As we regard principal surrogacy to be the main objective in surrogacy assessment,

approaching the question of surrogacy using the Prentice criteria in this case may

lead to erroneous conclusions.

In any real setting we would not expect the conditions in equations 1 and 2 to be

exactly satisfied. However, in many settings we can see that the Prentice criteria and

principal surrogacy criteria will reach similar conclusions. Often σS0 ≈ σS1 , σT0 ≈ σT1

and we might expect ρ00 to be similar to ρ11, thus equation 1 is approximately satisfied.

Similarly we may expect ρ01 and ρ10 to be similar and hence their average to be less

than both ρ00 and ρs; thus departures from equality in equation 2 may not be large.

3.3 Parameter Identifiability and Restrictions

Given the identified parameters, the positive definite restriction on R, and plausi-

ble assumptions about correlation values, we can gain some insight into the possible

ranges, or “identification regions” (Gustafson, 2010) for the partially identified pa-

rameters and examine scenarios within this space which lead to different surrogacy

conclusions. Under the restriction that all ρ’s are non-negative, and the simplifying

assumptions that ρ01 = ρ10, ρ11 = ρ00, and σS0 = σS1 = σT0 = σT1 , the top half of

Figure 1 displays the possible ranges for ρ01 = ρ10 across different values of ρs and

ρt for a given ρ11 = ρ00, where ρ11 and ρ00 are the identifiable Pearson correlation

13
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coefficients between Si(1) and Ti(1), and Si(0) and Ti(0), respectively. The length of

the identification region for ρ01 and ρ10 is smallest when ρ11 and ρ00 are large. For all

values of ρ11 and ρ00, the length of the identification region for ρ01 and ρ10 decreases

as ρs and ρt increase. The bottom half of Figure 1 provides ranges for these param-

eters under the additional restriction that ρ01 < min(ρ00, ρ11, ρs, ρt). This restriction

greatly reduces the range of possible values for the partially identified parameters, and

has implicit effects on the possible ranges for γ0 and γ1. Under these restrictions, γ1

must be greater than 0, implying that ACS always holds. In this scenario where ACS

always holds, poor principal surrogates can be characterized by large values of γ0,

implying that the treatment can effect the outcome without effecting the surrogate.

Alternatively, a poor surrogate would have a small value of γ1, implying that there

is still a positive, but weak association between causal effects on the surrogate and

causal effects on the outcome. These restrictions seems reasonable, as S is typically

known to somehow be associated with or a relevant aspect of the disease process, so

even if it is not a valid principal surrogate from an ACN and ACS perspective, we

expect there to be at least a small association of treatment effects on S with treat-

ment effects on T . The solid points in each figure are parameter values under which

the Prentice criteria and PS criteria are in agreement. In this restricted space the

deviation between the Prentice criteria and the PS criteria are less than in the unre-

stricted space, however we see that scenarios can arise in which the Prentice criteria

lead to incorrect conclusions regarding the validity of a principal surrogate.

4 Estimation Procedure

A Bayesian approach is used to estimate parameters. Unobserved potential outcomes

are treated as missing data and imputed from the appropriate posterior distribution at

each iteration of the Markov chain. The covariance matrix Σ is decomposed as QRQ,

14
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(e) ρ00 = ρ11 = 0.5
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(f) ρ00 = ρ11 = 0.3

Figure 1: Identification Regions of Unidentified Parameters
Plots (a), (b), and (c): under restriction ρ’s ≥ 0

Plots (d), (e), and (f): under restriction ρ’s ≥ 0, ρ01 < min(ρ00, ρ11, ρs, ρt)
Solid points: PS criteria and Prentice criteria in agreement

where Q is the diagonal matrix of standard deviations and R is the correlation matrix.

Assuming a priori independence, this allows us to factor the prior distribution p(µ,Σ)

as p(µ)p(R)p(Q) and to place non-informative priors on the fully identified parameters

µ, Q, ρ00, and ρ11. Specifically, the prior for µ is N4(0,Σ0), where Σ0 = diag(106), and

the prior for each diagonal element of Q is p(σj) ∝ 1, for j = (S(0), S(1), T (0), T (1)).

We place marginal priors on each of the correlation parameters in R and explore

the use of four different prior assumptions. For each of these there is the additional
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assumption that R must be positive definite. The four priors are

(a) Jointly uniform prior such that for each of the six correlations p(ρ) ∼ Unif(−1, 1)

(b) Jointly uniform prior such that for each of the six correlations p(ρ) ∼ Unif(0, 1)

(c) All ρ′s ≥ 0, ρ01 < min(ρ00, ρ11, ρs, ρt), and ρ10 < min(ρ00, ρ11, ρs, ρt)

(d) Beta priors such that:

• p(ρ11) ∼ Unif(0, 1)

• p(ρ00) ∼ Unif(0, 1)

• p(ρ10) and p(ρ01) ∼ Beta(3α0, 3− 3α0) such that P (ρ01, ρ10 ≤ min(ρ̂00, ρ̂11)) = 0.80

• p(ρs) and p(ρt) ∼ Beta(3α1, 3− 3α1) such that P (ρs, ρt ≥ max(ρ̂10, ρ̂01)) = 0.80

where ρ̂00 and ρ̂11 are the Pearson correlation coefficients estimated from the observed

data. Prior assumption (a) is a non-informative prior on all of the correlations. Under

scenario (b), all correlations are constrained to be positive, a plausible assumption

especially when ρ̂00 and ρ̂11 are positive. In scenario (c), in addition to the positiv-

ity assumption, we restrict ρ01 and ρ10 to be smaller than the other four correlation

parameters. This seems reasonable as ρ01 and ρ10 are measures of the correlation be-

tween the surrogate response and final outcome response in opposite treatment arms,

which is unlikely to be larger than the correlation between the surrogate response and

final outcome response within the same treatment arm, or the correlation between

the surrogate responses or final treatment responses across treatment arms. Finally,

prior assumption (d) places similar restrictions on the correlations as assumption (c),

but is a little bit more flexible as ρ01 and ρ10 are only assumed to be smaller than

the other correlations with a probability of 0.8. Appendix A provides density plots

of the Beta priors when ρ̂00 and ρ̂11 are equal to 0.8, 0.5, and 0.3.

Posterior estimates of the unobserved potential outcomes, parameter values, and
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the causal quantities of interest, γ0, γ1, Φ10(0), ρST , and the CEP curve at the points

(µS1 − µS0) ± 2SD(S(1) − S(0)), where SD(S(1) − S(0)) is the standard deviation

of (S(1) − S(0)), are obtained using the Gibbs sampler. Each component of Q and

R are drawn one at a time. When drawing each element of R, the range of possible

values must first be determined in order to satisfy the positive definite requirement,

given that the other correlations are held fixed. The range of values corresponding

to a positive definite matrix are those in the interval determined by the roots of the

quadratic equation that result from solving |R| = 0. The specific equations solved to

obtain parameter ranges are provided in Appendix B.

As the posterior distributions for the components of Q and R can not be easily

sampled from, draws are made using the griddy Gibbs sampler (Ritter and Tanner,

1992). Details of the Gibbs sampler are provided in Appendix C.

5 Simulations

We conduct simulations to evaluate the performance of the above methods of surro-

gacy assessment. We consider the scenarios where under the true parameter values of

the simulated data, surrogate validity is the same (S is valid, or S is invalid) under

both the Prentice criteria and PS criteria. We also consider the two cases where,

under the true parameter values of the simulated data, the surrogacy conclusions

drawn using the Prentice criteria would reach a different conclusion from that drawn

using the PS criteria (S valid under Prentice but not under PS, and S valid under PS

but not under Prentice). In this paper we interpret the results from the perspective

that principal surrogacy is the correct approach. We investigate whether the wrong

conclusions would be reached if the Prentice criteria were used instead, and whether

it is easier to validate a principal surrogate depending on whether or not the Prentice

criteria are also satisfied. Table 1 provides details of the four simulations considered.
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Table 1: Simulation Models

(1) S is a valid (2) S is not a valid (3) S is not a valid (4) S is a valid
principal surrogate; principal surrogate; principal surrogate; principal surrogate;

does not satisfy satisfies does not satisfy satisfies
Prentice criteria Prentice criteria Prentice criteria Prentice criteria

ρs 0.5 0.5 0.2 0.4
ρ00 0.7 0.5 0.2 0.8
ρ01 0.15 0.45 0.04 0.32
ρ10 0.15 0.45 0.04 0.32
ρ11 0.7 0.5 0.2 0.8
ρt 0.18 0.5 0.3 0.4
σ∗ 1 1 1 1
γ0 0 0.8 1.1 0
γ1 1.1 0.1 0.2 0.8
ρST 0.86 0.1 0.21 0.8
β1 0.8 0 1.1 0
β2 0.7 0.5 0.2 0.8
β3 0 0 0 0
ρ00ρs 0.35 0.25 0.04 0.32
1
2

(
ρ10 + ρ01

σS0
σT1

σS1
σT0

)
0.15 0.45 0.04 0.32

*σ = σS0 = σS1 = σT0 = σT1

We first use these four models to explore the sensitivity of the estimation to the

plausible prior restrictions on R that we might make. We simulate 200 data sets

under each of the above mentioned priors for the four different surrogacy scenar-

ios. Table 2 provides the posterior means and standard deviations of the Bayesian

estimates and means of the posterior standard deviations ( ¯PSD). The identified pa-

rameters are not sensitive to changes in the prior specifications while, as expected,

the unidentified parameters are quite sensitive to prior assumptions. In all four sce-

narios, the standard deviation of the Bayesian estimates is smaller than ¯PSD for

the unidentified parameters. Table 3 provides the means and standard deviations

of the Bayesian estimates and ¯PSD for the quantities of interest from the Prentice

model, and the causal quantities of interest, γ0, γ1, ρST , Φ10(0) and the CEP curve

at (µS1 −µS0)± 2SD(S(1)−S(0)). There is very little bias in estimating β1, β2, and

β3, while there is some bias in estimating γ0, γ1, ρST , Φ10(0) and the CEP points, as

these are functions of unidentified parameters. The estimation performed using Beta

priors appears to provide the best estimation for the unidentified parameters across
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these four models. While this prior does not always perform best in terms of bias, it

has on average better coverage of the parameters across the different scenarios than

the other models, and therefore better power to determine the validity of S.

We investigate how well the estimation procedure is able to identify the validity

of S as a surrogate marker under Beta priors. Table 4 provides an estimate of the

proportion of times that S would be considered a good principal surrogate based on

the proposed measures. For γ0 and γ1 this means that 0 is in the 95% credible interval

for γ0, and outside of the 95% credible interval for γ1. For Φ10(0) this means that 0.5

is in the 95% credible interval. For ρST , we look at the proportion of times that its

credible interval is outside of 0, and for the CEP curve we look at the proportion of

times that the 95% credible intervals at the points (µS1−µS0)+2SD(S(1)−S(0)) and

(µS1 − µS0)− 2SD(S(1)− S(0)) do not overlap (denoted by CEPU
−2SD < CEPL

+2SD).

Table 4 also provides an estimate of the proportion of times that S would be a valid

surrogate based on the Prentice criteria (0 in the 95% confidence interval for β̂1, and

β̂3 and 0 outside of the 95% confidence interval for β̂2 in a regression on the observed

data) for the four simulation scenarios considered. The entire CEP curve, shown in

Figure 2, is also used to visually assess principal surrogacy and the expected treatment

effect on T at relevant values of S(1)−S(0). We explored additional models under each

of the four surrogacy scenarios to gain a better understanding of how our estimation

procedure performs across the parameter space. The results presented appear to be

characteristic of most models that would fit into each of the four scenarios.

Our estimation procedure for γ0 and γ1 reaches the correct conclusion regarding

surrogate validity when principal surrogacy is unmet, regardless of whether or not

the Prentice criteria are met under the true parameters. We correctly identify S as a

poor principal surrogate 99% of the time in the scenario in which S is invalid under

the Prentice criteria, and 85% of the time when S is valid under the Prentice criteria.
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In comparison, the Prentice criteria incorrectly determine S to be a valid surrogate

26% and 92% of the time, respectively, in these two scenarios. When S is in truth a

good principal surrogate, our procedure most reliably determines surrogate validity

when the Prentice criteria would also conclude that S is a good surrogate. In this

scenario, we correctly identify S as a valid principal surrogate 94% of the time, while

the Prentice criteria conclude S to be a good surrogate 95% of the time. When S is a

good principal surrogate but the Prentice criteria show S to be invalid, our estimation

procedure and the Prentice approach have a similar ability to detect surrogacy, with

neither approach providing reliable surrogacy conclusions. In the scenario considered,

our estimation procedure correctly identified S as a good surrogate 37% of the time,

while the Prentice approach correctly identified S as a good surrogate 52% of the

time.

We note that by basing surrogacy assessment on the criteria that γ0 = 0 and

γ1 6= 0, we do not avoid the problem that is inherent in the Prentice criteria of proving

a null hypothesis, namely that certain parameters assume the value of 0. Therefore,

in addition to these quantities, we can also examine the other proposed estimands to

aid in validating S as a surrogate. The tests of ρST = 0 and CEPU
−2SD < CEPL

+2SD

have similar power to correctly determine surrogacy. When S is a poor principal

surrogate, the two quantities reject surrogacy 83% and 85% of the time, respectively,

when the Prentice criteria are in truth satisfied, and 99% of the time when they are

not. In the two scenarios where S is a good principal surrogate, these two quantities

improve upon the γ0, γ1 criteria, correctly determining surrogacy a majority of the

time, with greater power to detect surrogacy in the scenario where the Prentice criteria

are also met. Principal surrogacy is correctly identified 57% and 55% of the time,

respectively, when the Prentice criteria are not met and 94% and 93% of the time,

respectively, when the Prentice criteria are also met. In contrast, while the criterion
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of Φ10(0) = 0.5 being included in the 95% credible interval does reasonably well at

determining surrogacy when the Prentice criteria and PS criteria are in agreement,

it is unable to reliably distinguish good principal surrogates from poor ones with the

two criteria disagree.

Figure 2: Simulation results: CEP curves
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6 Application

6.1 Early Change in Visual Acuity as a Surrogate for Later
Change in Visual Acuity in a Trial of Age-related Mac-
ular Degeneration

We apply our estimation method to a clinical trial for 183 patients with age-related

macular degeneration. This data set was considered in a previous paper by Buyse,
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et al. (2000) where a meta-analysis surrogate validation strategy was used. These

data come from a multicenter trial comprised of 36 different centers. The number of

patients per center ranges from 2 to 18. In this example, we have a binary treatment

indicator (Zi) equal to 0 for placebo and 1 for the treatment, interferon-α. The

surrogate marker (Si) is change in visual acuity at 6 months after starting treatment

and the final endpoint (Ti) is change in visual acuity at 1 year. We first check

the Prentice criteria, subtracting off the Best Linear Unbiased Predictor (BLUP)

estimates from Si and Ti to account for random center effects. We have:

θ̂1 = −3.34(SE = 2.13, P = 0.12)

α̂1 = −2.03(SE = 1.90, P = 0.29)

µ̂ = 0.65(SE = 0.07, P < 0.0001)

β̂1 = −2.67(SE = 1.94, P = 0.17), β̂2 = 0.69(SE = 0.09, P < 0.0001),

β̂3 = −0.11(SE = 0.14, P = 0.44)

As θ1 and α1 are not statistically significant, the Prentice criteria are not met. Using

our Bayesian estimation procedure with Beta priors for the correlation parameters,

we get the following posterior estimates for the principal surrogacy parameters of

interest:

γ0 = −1.62(−5.49, 2.16)

γ1 = 0.60(−0.24, 1.43)

As γ1 contains 0 within its 95% credible interval, we conclude that change in visual

acuity at 6 months is not a valid principal surrogate for change in visual acuity at 12

months. The average Pearson correlation, ¯ρST of Ti(1)− Ti(0) and Si(1)− Si(0) was

0.48 (-0.16, 0.92), also indicative of a poor principal surrogate. This is in agreement
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with the conclusion reached by Buyse, et al. (2000) in their analysis. Figure 3(a)

shows a plot of the (CEP ) curve, where CEP = E[T (1) − T (0)|S(1) − S(0) = s]

with a 95% credible interval for each value of s. The middle dashed line indicates

the posterior mean of µS1 − µS0 , and the outer two dashed lines show the posterior

means of µS1 − µS0 ± 2SDS(1)−S(0), where SDS(1)−S(0) is the standard deviation of

S(1) − S(0), given by
√
σ2
S0

+ σ2
S1
− 2ρsσS0σS1 . The plot shows that 0 is contained

within the credible interval at almost all values of s, indicating that there could be

large effects of treatment on the surrogate with no expected effect of treatment on

the outcome. Similarly, when there is no treatment effect on S, there could still be a

treatment effect on T .

6.2 Progression Free Survival Time as a Surrogate for Over-
all Survival Time in an Ovarian Cancer Trial

Our second data application is to data from a randomized trial in advanced ovarian

cancer. This trial along with 3 others were analyzed by Buyse, et al. (2000) using a

meta-analytic validation method, with the center in which patients were treated in

each trial as the unit of analysis. In the trial we examine, a total of 274 women were

treated for ovarian cancer in two treatment arms. Of these patients, 201 experienced

a cancer progression prior to death, and 43 died without recurrence. The remaining

30 patients were censored for death and were not considered in the analysis. Again,

we have a binary treatment with 126 subjects in the control arm and 118 in the

treatment arm. The surrogate marker is progression free survival (PFS) time, in

months and the final endpoint is overall survival (OS) time, in months. As both of

these outcomes were right skewed, a log-transformation was taken to normalize the

data. Estimates of parameters used to assess the validity of the Prentice criteria are
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as follows:

θ̂1 = 0.07(SE = 0.13, P = 0.58)

α̂1 = 0.17(SE = 0.14, P = 0.23)

µ̂ = 0.90(SE = 0.02, P < 0.0001)

β̂1 = −0.26(SE = 0.17, P = 0.13), β̂2 = 0.88(SE = 0.03, P < 0.0001),

β̂3 = 0.05(SE = 0.04, P = 0.27)

As in the macular degeneration data, θ1 and α1 are not statistically significant, and the

Prentice criteria are therefore unmet. We obtain the following posterior estimates for

the causal quantities of interest using our method with Beta priors on the unidentified

parameters:

γ0 = −0.08(−0.17, 0.007)

γ1 = 0.94(0.83, 1.09)

The 95% credible interval for γ0 (barely) contains 0 while the 95% credible interval

for γ1 does not and ¯ρST was 0.93 (0.87, 0.98). We therefore conclude that progression

free survival time is a marginally valid principal surrogate for overall survival. This

agrees with the findings of Buyse, et al. (2000), who concluded that progression

free survival could be used as a surrogate for overall survival in advanced ovarian

cancer. Figure 3(b) provides a plot of the CEP curve and 95% credible interval

at each S(1) − S(0) = s, with both S and T on the log scale. The middle and two

outer dashed lines indicate the posterior mean of µS1−µS0 , and the posterior means of

µS1−µS0±2SDS(1)−S(0), respectively. The plot shows that when there is no treatment

effect on S, there is little or no expected treatment effect on T , and as the treatment

effect on S increases, the treatment effect on T is also expected to increase.
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Figure 3: CEP Curves for Data Examples

7 Discussion

In this article, we develop a method for the assessment of surrogate markers within the

principal surrogate framework. We assume a multivariate normal distribution for the

potential surrogate outcomes and potential final outcomes and derive quantities that

may be useful in determining the validity of a surrogate marker. Through our model

setup, context specific assumptions can be incorporated into the prior distributions

of unidentified parameters to aid in estimation. The estimation procedure can be

extended to scenarios where T is partially missing, or to the multiple trial setting.

We compare some of the proposed quantities for surrogate validation to the orig-

inal validation criteria put forth by Prentice and show that, in many settings, we

might expect the Prentice and principal surrogacy criteria to be in agreement. Based

on our simulation study, it appears that when principal surrogacy is present, it is

most accurately determined in cases where the Prentice criteria would also correctly
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identify surrogacy. When principal surrogacy is not present, it can be determined

both when the Prentice criteria are able to correctly identify S as invalid and when

the Prentice criteria incorrectly deem S to be valid. We note that even with the use

of informative priors to aid in the estimation of the partially identified parameters,

the coverage rates in many cases are not ideal.

Each of the proposed quantities have merits and drawbacks in terms of their ability

to characterize surrogacy. The proposed γ0 and γ1 quantities are easily interpretable,

but proving that γ0 is equal to 0, a necessary condition for a valid surrogate, is diffi-

cult to do in practice. The correlation measure, ρST , captures the causal correlation

between the treatment effect on the surrogate and the treatment effect on the out-

come, but fails to capture the concept of ACN. The CEP graph provides a way to

estimate expected treatment effects on T when treatment effects on S are at relevant

clinical values, but does not offer a single summary of the value of S as a surrogate.

Finally, the Φ10 quantity provides information about the entire conditional distribu-

tion, as opposed to just the expectation, but is more difficult to estimate and seems

to have poor properties. While no single parameter estimate can completely assess

principal surrogacy, a variety of measures that consider the distribution of the causal

effect of treatment on the outcome conditional on the causal effect of treatment on

the surrogate can be used in combination to provide evidence as to whether or not S

is a valid surrogate for T .

Due to the nonidentifiability of some parameters in our model, certain assumptions

on the relationships between nonidentifiable associations were made and informative

priors were used for unidentified parameters to aid in estimation. The use of other

priors or other context specific assumptions about parameters could be made. Zigler

and Belin (2011) also explore the effects of various model assumptions in a principal

surrogacy estimation procedure. They use a Bayesian estimation approach for the
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CEP surface when S is continuous and T is binary. In their procedure, priors are

placed on the regression coefficients of the CEP surface, and an independence as-

sumption is made for T (1) and T (0) conditional on the surrogate and other baseline

covariates.

Previous work on principal surrogates has focused on binary endpoints (Li et al.,

2010) or a categorical or continuous surrogate outcome with a binary or continuous

final endpoint with the conditional distributions of pairs of potential outcomes esti-

mated separately (Gilbert and Hudgens, 2008). Qin et al. (2008) used a principal

stratification approach in the assessment of a continuous surrogate with a time to

event outcome. Extensions to other common data types, such as the setting where

both the surrogate and final outcome are time to event endpoints, may be possible

through the use of multivariate copula models.
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Table 2: Simulation Results Under Different Prior Specifications

Identified Parameters

S Valid PS, S Invalid PS, S Invalid PS S Valid PS
S Invalid Prentice S Valid Prentice & Prentice & Prentice

Prior True True True True
Parameter Scenario Value Mean (SD) ¯PSD Value Mean (SD) ¯PSD Value Mean (SD) ¯PSD Value Mean (SD) ¯PSD

µs0 11 4 4.00(0.07) 0.08 4 4.00(0.08) 0.08 4 4.00(0.09) 0.08 4 4.00(0.08) 0.08
22 4.00(0.09) 0.08 4.01(0.08) 0.08 4.00(0.08) 0.08 4.00(0.08) 0.08
33 4.00(0.08) 0.08 4.00(0.08) 0.08 4.01(0.08) 0.08 4.00(0.09) 0.08
44 3.99(0.08) 0.08 4.01(0.08) 0.08 3.99(0.08) 0.08 4.00(0.08) 0.08

µs1 1 6 5.99(0.07) 0.08 6 5.99(0.09) 0.08 6 6.00(0.08) 0.08 6 6.00(0.08) 0.08
2 6.01(0.08) 0.08 5.99(0.07) 0.08 5.99(0.08) 0.08 6.00(0.08) 0.08
3 6.00(0.08) 0.08 6.00(0.08) 0.08 6.00(0.08) 0.08 5.99(0.08) 0.08
4 6.01(0.08) 0.08 5.99(0.08) 0.08 5.99(0.08) 0.08 5.99(0.09) 0.08

µt0 1 7.8 7.80(0.08) 0.08 9 9.00(0.08) 0.08 8.5 8.51(0.08) 0.08 8.4 8.40(0.08) 0.08
2 7.80(0.09) 0.08 9.00(0.08) 0.08 8.50(0.08) 0.08 8.39(0.08) 0.08
3 7.80(0.08) 0.08 9.00(0.09) 0.08 8.50(0.08) 0.08 8.40(0.08) 0.08
4 7.78(0.08) 0.08 9.00(0.08) 0.08 8.49(0.07) 0.08 8.40(0.08) 0.08

µt1 1 10 9.99(0.08) 0.08 10 9.99(0.08) 0.08 10 10.00(0.09) 0.08 10 10.00(0.08) 0.08
2 10.00(0.08) 0.08 10.00(0.08) 0.08 9.99(0.08) 0.08 10.00(0.07) 0.08
3 10.00(0.07) 0.08 10.00(0.08) 0.08 9.99(0.08) 0.08 9.99(0.08) 0.08
4 10.01(0.09) 0.08 10.00(0.08) 0.08 10.00(0.08) 0.08 10.00(0.09) 0.08

σs0 1 1 1.01(0.06) 0.09 1 1.00(0.05) 0.07 1 1.02(0.06) 0.08 1 1.01(0.06) 0.09
2 1.00(0.06) 0.06 1.00(0.06) 0.06 1.00(0.06) 0.06 1.00(0.06) 0.06
3 1.00(0.05) 0.06 1.00(0.06) 0.06 1.01(0.06) 0.06 1.00(0.06) 0.06
4 0.99(0.06) 0.06 1.01(0.06) 0.06 1.00(0.06) 0.06 0.99(0.06) 0.06

σs1 1 1 1.01(0.06) 0.09 1 1.00(0.06) 0.08 1 1.01(0.06) 0.07 1 1.01(0.06) 0.09
2 1.00(0.06) 0.06 1.01(0.05) 0.06 1.01(0.06) 0.06 1.00(0.06) 0.06
3 1.00(0.05) 0.06 1.01(0.06) 0.06 1.01(0.06) 0.06 0.99(0.06) 0.06
4 1.00(0.06) 0.06 1.01(0.05) 0.06 1.01(0.05) 0.06 0.99(0.06) 0.07

σt0 1 1 1.00(0.06) 0.09 1 1.01(0.06) 0.08 1 1.01(0.06) 0.07 1 1.01(0.06) 0.10
2 1.00(0.06) 0.06 1.00(0.05) 0.06 1.01(0.06) 0.06 1.00(0.06) 0.06
3 1.00(0.05) 0.06 1.01(0.06) 0.06 1.02(0.06) 0.06 0.99(0.05) 0.06
4 1.00(0.06) 0.06 1.01(0.06) 0.06 1.01(0.06) 0.06 0.99(0.05) 0.06

σt1 1 1 1.01(0.06) 0.09 1 1.00(0.06) 0.08 1 1.02(0.06) 0.07 1 1.01(0.06) 0.10
2 1.00(0.06) 0.06 1.00(0.06) 0.06 1.00(0.06) 0.06 1.00(0.06) 0.06
3 1.00(0.06) 0.06 1.00(0.06) 0.06 1.01(0.05) 0.06 1.00(0.06) 0.06
4 1.01(0.06) 0.06 1.00(0.06) 0.06 1.01(0.06) 0.06 0.99(0.06) 0.06

ρ00 1 0.7 0.68(0.04) 0.05 0.5 0.48(0.07) 0.06 0.2 0.19(0.07) 0.08 0.8 0.78(0.03) 0.03
2 0.68(0.04) 0.04 0.48(0.06) 0.06 0.20(0.07) 0.07 0.79(0.03) 0.03
3 0.69(0.04) 0.04 0.48(0.06) 0.06 0.20(0.07) 0.07 0.78(0.03) 0.03
4 0.68(0.04) 0.04 0.48(0.06) 0.06 0.20(0.07) 0.07 0.79(0.03) 0.03

ρ11 1 0.7 0.68(0.04) 0.05 0.5 0.48(0.07) 0.06 0.2 0.18(0.08) 0.08 0.8 0.78(0.03) 0.04
2 0.68(0.05) 0.04 0.49(0.06) 0.06 0.19(0.07) 0.07 0.79(0.03) 0.03
3 0.68(0.04) 0.04 0.49(0.07) 0.06 0.20(0.07) 0.07 0.78(0.03) 0.03
4 0.69(0.04) 0.04 0.49(0.06) 0.06 0.20(0.06) 0.07 0.78(0.03) 0.03

Unidentified Parameters

ρs 1 0.5 -0.35(0.23) 0.33 0.5 -0.22(0.22) 0.35 0.2 -0.15(0.23) 0.37 0.4 -0.35(0.24) 0.34
2 0.32(0.08) 0.19 0.39(0.07) 0.22 0.37(0.08) 0.22 0.24(0.07) 0.15
3 0.34(0.06) 0.13 0.45(0.05) 0.16 0.46(0.06) 0.21 0.22(0.04) 0.10
4 0.47(0.07) 0.18 0.43(0.06) 0.20 0.34(0.06) 0.21 0.43(0.08) 0.16

ρ01 1 0.15 -0.45(0.21) 0.29 0.45 -0.28(0.21) 0.33 0.04 -0.18(0.23) 0.35 0.32 -0.48(0.22) 0.29
2 0.32(0.08) 0.19 0.39(0.07) 0.22 0.37(0.06) 0.22 0.24(0.07) 0.15
3 0.14(0.04) 0.11 0.16(0.03) 0.10 0.06(0.02) 0.04 0.09(0.03) 0.07
4 0.40(0.08) 0.20 0.28(0.07) 0.19 0.14(0.04) 0.15 0.40(0.09) 0.18

ρ10 1 0.15 -0.37(0.21) 0.32 0.45 -0.28(0.24) 0.34 0.04 -0.16(0.23) 0.35 0.32 -0.39(0.21) 0.33
2 0.34(0.08) 0.19 0.39(0.07) 0.22 0.37(0.07) 0.22 0.24(0.07) 0.15
3 0.15(0.04) 0.11 0.16(0.02) 0.11 0.06(0.02) 0.04 0.10(0.03) 0.08
4 0.42(0.08) 0.19 0.28(0.07) 0.19 0.14(0.03) 0.14 0.42(0.08) 0.17

ρt 1 0.18 -0.47(0.19) 0.27 0.5 -0.32(0.23) 0.32 0.3 -0.18(0.22) 0.36 0.4 -0.53(0.18) 0.28
2 0.31(0.08) 0.19 0.37(0.07) 0.22 0.37(0.07) 0.22 0.24(0.06) 0.16
3 0.32(0.05) 0.13 0.44(0.05) 0.16 0.46(0.06) 0.21 0.21(0.04) 0.09
4 0.45(0.07) 0.19 0.42(0.06) 0.20 0.34(0.05) 0.21 0.42(0.08) 0.17

1: No restrictions on ρ
2: ρ ≥ 0
3: ρ ≥ 0 and ρ10, ρ01 < ρs, ρt, ρ00, ρ11
4: Beta priors
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Table 3: Simulation results: Bias, variability and coverage rate of surrogacy parame-
ters

S Valid PS, S Invalid PS, S Invalid PS S Valid PS
S Invalid Prentice S Valid Prentice & Prentice & Prentice

Prior True 95% True 95% True 95% True 95%
Parameter Scenario Value Mean (SD) ¯PSD Coverage Value Mean (SD) ¯PSD Coverage Value Mean (SD) ¯PSD Coverage Value Mean (SD) ¯PSD Coverage

β1 1 0.8 0.81(0.42) 0.51 0.99 0 0.06(0.60) 0.56 0.93 1.1 1.15(0.59) 0.59 0.96 0 0.05(0.36) 0.47 0.99
2 0.82(0.45) 0.44 0.96 0.02(0.51) 0.52 0.96 1.18(0.54) 0.54 0.96 0.03(0.37) 0.37 0.95
3 0.84(0.44) 0.43 0.94 0.04(0.56) 0.52 0.93 1.07(0.51) 0.55 0.98 -0.01(0.35) 0.07 0.96
4 0.78(0.43) 0.44 0.94 0.004(0.51) 0.52 0.95 1.10(0.54) 0.54 0.96 0.04(0.37) 0.38 0.95

β2 1 0.7 0.68(0.06) 0.07 0.96 0.5 0.49(0.08) 0.08 0.94 0.2 0.19(0.08) 0.08 0.96 0.8 0.78(0.05) 0.07 0.97
2 0.69(0.06) 0.06 0.97 0.49(0.07) 0.07 0.96 0.21(0.07) 0.08 0.97 0.79(0.05) 0.05 0.96
3 0.69(0.06) 0.06 0.96 0.49(0.08) 0.07 0.93 0.20(0.07) 0.07 0.94 0.78(0.05) 0.05 0.93
4 0.68(0.06) 0.06 0.97 0.49(0.07) 0.07 0.94 0.20(0.07) 0.07 0.95 0.79(0.05) 0.05 0.97

β3 1 0 0.004(0.08) 0.10 0.99 0 -0.008(0.12) 0.11 0.95 0 -0.0007(0.11) 0.11 0.96 0 -0.004(0.07) 0.09 0.98
2 0.001(0.08) 0.09 0.96 0.002(0.10) 0.10 0.95 -0.01(0.10) 0.10 0.96 0.001(0.07) 0.07 0.94
3 -0.002(0.08) 0.08 0.95 -0.001(0.11) 0.10 0.92 0.004(0.10) 0.11 0.97 0.007(0.07) 0.07 0.96
4 0.010(0.08) 0.08 0.96 0.006(0.10) 0.10 0.95 0.003(0.10) 0.10 0.96 -0.002(0.07) 0.07 0.96

γ0 1 0 0.54(0.23) 0.38 0.72 0.8 -0.33(0.33) 0.54 0.27 1.1 0.81(0.41) 0.66 0.97 0 -0.25(0.21) 0.33 0.96
2 1.09(0.26) 0.52 0.49 0.64(0.28) 0.70 1 2.07(0.28) 0.65 0.69 0.12(0.17) 0.37 1
3 0.54(0.15) 0.31 0.70 -0.30(0.23) 0.50 0.01 0.82(0.22) 0.45 1 -0.19(0.11) 0.20 0.92
4 1.10(0.26) 0.63 0.60 0.18(0.26) 0.67 0.96 1.30(0.20) 0.48 0.99 0.20(0.22) 0.51 1

γ1 1 1.1 0.83(0.11) 0.19 0.68 0.1 0.66(0.16) 0.26 0.27 0.2 0.34(0.20) 0.32 0.97 0.8 0.92(0.10) 0.16 0.94
2 0.55(0.12) 0.26 0.48 0.28(0.13) 0.35 1 -0.29(0.12) 0.32 0.64 0.74(0.08) 0.18 1
3 0.83(0.06) 0.15 0.63 0.65(0.10) 0.24 0 0.34(0.10) 0.22 1 0.90(0.04) 0.09 0.91
4 0.55(0.12) 0.31 0.60 0.41(0.12) 0.33 0.97 0.11(0.08) 0.23 1 0.70(0.11) 0.25 1

ρST 1 0.86 0.77 (0.06) 0.11 0.97 0.1 0.60 (0.11) 0.18 0.26 0.21 0.31 (0.16) 0.26 0.99 0.8 0.85 (0.04) 0.08 0.95
2 0.53(0.10) 0.20 0.54 0.17 (0.10) 0.29 1 -0.27 (0.10) 0.27 0.63 0.73(0.06) 0.12 1
3 0.81(0.04) 0.09 1 0.62 (0.06) 0.15 0 0.31 (0.07) 0.14 1 0.89 (0.02) 0.05 0.73
4 0.52(0.09) 0.23 0.68 0.38(0.09) 0.26 0.97 0.10(0.07) 0.20 1 0.66(0.08) 0.17 0.99

γ0 + γ1(µS1
− µS0

+ 2SDS(1)−S(0)) 1 4.4 4.86 (0.39) 0.57 0.90 1.2 2.97 (0.49) 0.67 0.27 2.0 2.47 (0.52) 0.80 0.96 3.35 4.59 (0.37) 0.57 0.31
2 3.45 (0.28) 0.50 0.46 1.37 (0.26) 0.64 1 0.89 (0.25) 0.61 0.56 3.40 (0.24) 0.38 0.99
3 4.08 (0.21) 0.32 0.93 2.31 (0.20) 0.39 0 2.10 (0.18) 0.28 1 3.81 (0.18) 0.24 0.49
4 3.31 (0.26) 0.55 0.36 1.82 (0.23) 0.58 0.96 1.74 (0.19) 0.45 1 3.02 (0.27) 0.45 0.96

γ0 + γ1(µS1
− µS0

− 2SDS(1)−S(0)) 1 0 -0.47 (0.38) 0.57 0.87 0.8 -1.00 (0.47) 0.67 0.25 0.99 0.51 (0.52) 0.79 0.95 -0.15 -1.39 (0.40) 0.57 0.31
2 0.96 (0.30) 0.50 0.44 0.63 (0.27) 0.64 1 2.11 (0.26) 0.61 0.58 -0.19 (0.24) 0.38 0.99
3 0.31 (0.22) 0.32 0.91 -0.30 (0.23) 0.39 0.02 0.88 (0.18) 0.28 1 -0.62 (0.17) 0.24 0.45
4 1.14 (0.26) 0.54 0.32 0.18 (0.25) 0.58 0.96 1.29 (0.20) 0.45 0.97 0.18 (0.25) 0.45 0.96

Φ10(0) 1 0.5 0.69 (0.08) 0.13 0.72 0.79 0.40 (0.09) 0.16 0.24 0.83 0.70 (0.10) 0.16 0.95 0.5 0.39 (0.08) 0.14 0.96
2 0.84 (0.06) 0.13 0.49 0.70 (0.08) 0.20 1 0.95 (0.02) 0.07 0.69 0.55 (0.08) 0.18 1
3 0.77 (0.07) 0.15 0.70 0.38 (0.08) 0.19 0.16 0.78 (0.06) 0.15 1 0.36 (0.07) 0.14 0.92
4 0.85 (0.07) 0.16 0.60 0.56 (0.09) 0.23 0.96 0.86 (0.04) 0.10 1 0.58 (0.10) 0.23 1

1: No restrictions on ρ
2: ρ ≥ 0
3: ρ ≥ 0 and ρ10, ρ01 < ρs, ρt, ρ00, ρ11
4: Beta priors

Table 4: Simulation results: Principal Surrogacy Assessment

Model 1 2 3 4
Truth
PS satisfied Yes No No Yes
Prentice satisfied No Yes No Yes
Estimation Results
γ0 = 0 Not Rejected, Reject γ1 = 0 0.37 0.15 0.01 0.94
Reject ρST = 0 0.57 0.17 0.01 0.94
CEPU−2SD < CEPL+2SD 0.55 0.15 0.01 0.93

Φ10(0) = 0.5 Not Rejected 0.60 1 0.20 1
Prentice Criteria Not Rejected 0.52 0.92 0.26 0.95
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